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Cervical cancer is the second most frequent gynaecological malignancy in the world. Human 
papillomavirus (HPV) infection is the primary etiologic agent of cervical cancer. However, HPV alone 
is not sufficient for tumor progression. The clinical display of HPV infection also depends on the host’s 
immune status. Both innate and adaptive immunity recognize and fight foreign pathogens inside the 
body, but sometimes they prove ineffective against HPV. HPV has several mechanisms for evading 
the immune system. After infection, HPV multiplies in keratinocytes, which are distant from immune 
centers and have a naturally short lifespan. The naturally short life cycle of the keratinocyte removes 
the need for the virus to destroy the cells, which would trigger inflammation and immune response. 
In addition, HPV downregulates the expression of interferon genes. Despite viral immune evasion, 
the immune system effectively resists most HPV infections and mounts strong localized cell mediated 
immune responses. Despite significant progress in observations and clinical practice, many aspects of 
the complex interactions between HPV and the human immune system remain not fully understood. 
Langerhans cells (LCs) are known to play a critical role in producing innate and adaptive cellular 
immune responses against HPV infection. In this paper, we propose and analyze a mathematical of 
HPV infection with particular focus on the role of Langerhans cells in facilitating immune response, 
as well as on the treatment of HPV infection by induction of the appropriate virus-specific immune 
responses in patients. We determine equilibria of the model, analyse their stability, and derive the 
basic reproduction number. Sensitivity analysis is performed to investigate the effects of individual 
parameters on system dynamics. We explore the impulsive therapy for controlling HPV infection, and 
discuss how these findings may be helpful in development of immunotherapy against HPV infection.
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Human papillomavirus (HPV) is widely known to be a cause of intraepithelial cervical neoplasia (CIN) and 
cervical cancer. Worldwide, cervical cancer is both the fourth-most common cause of cancer, and the fourth-
most common cause of death from cancer in women1,2. In 2022, an estimated 660,000 cases of cervical cancer 
occurred worldwide, with 350, 000 deaths2, which is about 8% of the total cases and total deaths from cancer3. By 
2030, the global burden of cervical cancer is expected to increase to over 700,000 cases and over 400, 000 deaths 
per year, with over 95% of these deaths taking place in low- and middle-income countries4. “Cervical cancer” is 
the term for a malignant neoplasm arising from cells originating in the tissues of the cervix, part of the female 
reproductive system. Over 95% of cervical cancers are caused by an infection with the human papilloma virus 
(HPV)4. Among over 130 HPV types, around 40 HPV types can infect the genital areas of men and women, 
including the skin of the penis, vulva and anus, cervix and rectum5. Among these, HPV16 and 18 types are 
considered to be of particularly high risk and progression to cervical cancer6.

Human papilloma viruses (HPV) are small DNA viruses with a circular genome of approximately 8000bp 
that infect the basal cell layer of epidermis. Their genome is functionally divided into three regions. The first is a 
non-coding upstream regulatory region (URR). The second is an early region, encrypting the early viral proteins 
E6, E7, E8, E1, E2, E4 and E5, and the third is a late region, encrypting L1 and L2 proteins, which are components 
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of the viral capsid. E1 protein facilitates viral replication using the host replication machinery. The E5, E6, and E7 
proteins are considered to be associated with virus immune evasion. The E6 and E7 gene products deregulate the 
host cytotoxic lymphocyte growth cycle by binding and inactivating two tumor suppressor proteins: the tumor 
suppressor protein (p53) and the retinoblastoma gene product (pRb)7. Consequently, the normal activities of p53 
that manage arrest, apoptosis, and DNA repair of G1 are abolished8,9. Inactivation of the p53 and pRb proteins 
can lead to an increased proliferation and genomic instability, resulting in accumulation of DNA damage and 
leading to transformed cancerous cells10. Prior to development of cervical cancer, there are several stages of 
dysplasia that correspond to different proportions of basal epithelial cells being occupied by abnormal cells11. 
The progression from initial infection to cervical cancer is typically slow, often over a period of 20 or more years. 
During that time, the disease develops through a precancerous stage that can be detected through a regular 
cytological examination of the cervix with a Pap test. If the screening confirms an abnormality, additional testing 
and treatment can usually eliminate the disease.

The immune system plays an important role in clearing most of HPV infections, but some infections cannot 
be eliminated and persist for several years, becoming an additional risk factor12. Once an antigen is detected by 
the body, there are two types of immune responses the body can use to defend itself13. The first line of defense 
is the immediate response called the innate immune system, which is non-specific to the antigen. The second, 
long-lasting line of defense is the adaptive immune system13. This type of immune response is antigen-specific 
and has a memory of antigens it has come across before, but it takes longer to act, because it takes some time for 
immune system to recognize foreign antigens and mount responses in the form of antigen-specific antibodies 
and cytotoxic T cells.

During the early stages of an HPV infection, the innate immune response of the host is the first line of defense 
against infection. Dendritic cells (DCs), Langerhans cells (LCs), natural killer (NK), natural killer T (NKT) 
cells and keratinocytes, among others, plays an important role in promoting a good adaptive immune response 
against HPV infection. Most of these cell types can promote a cytokine-mediated pro-inflammatory process that 
links the innate and the adaptive immune responses. Furthermore, NK cells are able to directly eliminate HPV-
infected cells14. Langerhans cells (LC) are the primary type of antigen-presenting dendritic cells that reside in 
epidermis15. These cell play an essential role in triggering adaptive immune response against viral antigens that 
can be found in the epidermis16. However, HPV can evade the immune response, mainly through the action of 
E6 and E7 proteins17,18.

One of the first attempts to mathematically model cancer immunotherapy was made by Kirschner and 
Panetta19. They developed a system of equations describing external inflow of both IL-2 and cultured immune 
cells, and analysed immunotherapy based on the use of IL-2 together with adoptive cellular immunotherapy 
(ACI). de Boer and Hogeweg20 studied a mathematical model of cellular immune response to tumors and 
showed that initially small doses of antigens lead to tumor dormancy. Kuznetsov et al.21,22 developed models of 
immunogenic tumors that exhibit oscillatory growth patterns when the tumor stays very small for a relatively long 
period of time, and subsequently grows to become dangerously large. A model proposed by Dingli and Michor23 
includes cancer stem cells and several potential forms of treatment. Freedman and Belostotski24,25 developed 
model for radiation treatment based on a system of two differential equations for healthy and cancerous cells. 
That work analyzed four different methods of describing how the radiation treatment was administered—as a 
constant, proportional to the number of cancer cells, proportional to the ratio of cancer cells to healthy cells, 
and periodically. The effects of periodic radiation have also been studied by Liu et al.26. Isaeva and Osipov27 
analyzed a model that includes combined effects of chemo- and immunotherapy. They showed tumor-immune 
dynamics under the influence of both immunotherapy with IL-2 and IFN-a and chemotherapy. Very recently, 
Rajan et al.28 have performed sensitivity analysis for this model to estimate the parameter values and identified 
key parameters that influence transmission.

In this paper, we consider a model of immune response to HPV infection that includes Langerhans cells, 
acting as sentinels, and cytotoxic lymphocytes able to eliminate infected cells. Besides establishing conditions 
for existence and stability of the steady states, we also utilize an impulsive control approach to find appropriate 
dosing interval that allows to control infection through treatment.

The rest of paper is arranged as follows. In Sect. “The mathematical model” we present necessary biological 
background and formulate the mathematical model. Well-posedness and equilibria of the model are discussed in 
Sect. “Model well-posedness and steady states”. Section “Basic reproduction number and stability of equilibria” 
established basic reproduction number of the model and contains results on stability of equilibria, as well as 
sensitivity analysis. Section “Impulsive control approach” is devoted to impulsive control approach for possible 
treatment of HPV infection. Numerical bifurcation analyses and simulations are performed in Sect. “Numerical 
bifurcation analyses and simulation”. The paper concludes in Sect. “Discussion and conclusion” with a discussion 
of results and future research.

The mathematical model
Following29,30, we consider HPV infection starting when free virions, whose population will be denoted by 
V(t), infect healthy basal cells at rate β. With the total population of all epithelial cells assumed to be constant 
N, the number of basal epithelial cells that are thus infected will be denoted by EI(t), with the remaining 
(N − EI) cells being uninfected cells that can potentially be infected in the future. Infection is assumed to be 
density-dependent, with constant σ representing the concentration of uninfected cells at half-maximum growth. 
Once infected, the cells EI  traverse up through the epithelial column and transform into transit-amplifying 
infected cells ET  cells that reside in supra-basal (mid-layer) of the epithelium31,32. We will denote by µ the rate 
of conversion from EI  to ET  cells, and it represents the rate of expression of HPV oncogenes E6 and E7, once 
the cells become infected. Higher levels of expression of these oncogenes by ET  cells and location of these cells 
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in the supra-basal layer allows these cells to additionally self-replicate at a rate rµ. For simplicity, we assume 
that both types of HPV-infected cells, EI  and ET , die at the same rate d. With HPV being a non-lytic virus, 
new virions are released from infected cells through bursting of infected cells. Since both EI  and ET  express 
oncogenes and thus produce new virions, we will assume that the rate of production of new virions is, therefore, 
equal to kd and the same for both types of infected cells. Virions are assumed to be cleared at a constant rate dv  
that implicitly captures antibody response.

An important role in controlling HPV infection is played by cellular immunity and, in particular, by cytotoxic 
T cell lymphocytes (CTLs)17,18,33. To better understand the dynamics of CTL response, we include in the model a 
population of intra-epithelial Langerhans cells (LCs), which are antigen-presenting cells that are critical in T-cell 
priming in response to viral infections of the skin. HPV infection is directly associated with a reduction in the 
number of LCs in infected epidermis34. At the same time, LCs phagocytose vaginal epithelial cells undergoing 
apoptosis, as was demonstrated in the murine model35. We will assume LCs, to be denoted L(t), are produced at 
a constant growth rate λ and die at rate dl. The number of LCs can increase through recruitment of other LCs 
in the presence of infected cells ET , expressing high concentrations of E6 and E7 oncogenes36,37, and we assume 
this to happen at rate η. On the other hand, HPV is known to be capable both of immune evasion, and it can 
also reduce antigen presentation by downregulating NF-κB signalling in HPV-infected cells, and by inhibiting 
keratinocyte-derived CCL20 expression, which, in turn, affects LCs and limits their capacity to stimulate CD8+ 
T cells38–40. In the model this is represented by a reduction of the growth in LCs with a half-maximum growth 
constant θ and with the amount of free virus V.

Finally, we assume that HPV-specific CTLs, denoted Z(t), are produced at a constant growth rate s and cleared 
at rate dz , and their population also grows proportionally to the number of LCs and CTLs at rate α. CTLs kills 
infected cells at rate a, which is assumed to be the same for both types of infected cells, EI  and ET .

Based on the above assumptions, we have the following model for dynamics of HPV infection

	

dEI

dt
= βV (N − EI)

σ + (N − EI) − µEI − dEI − aEIZ = f1(x),

dET

dt
=µEI + rµET − dET − aET Z = f2(x),

dV

dt
=kd(EI + ET ) − dvV = f3(x),

dL

dt
=λ + ηET L

θ + V
− dlL = f4(x),

dZ

dt
=s + αZL − dzZ = f5(x),

� (1)

where x = (EI , ET , V, L, Z), with biologically-relevant initial conditions

	 EI(0) ≥ 0, ET (0) ≥ 0, V (0) ≥ 0, L(0) ≥ 0, Z(0) ≥ 0.� (2)

Model well-posedness and steady states
Since the right-hand sides fi(x) of the model (1) are smooth functions of its variables, standard theory of 
differential equations guarantees the existence of a unique solution for the system (1) with initial conditions 
(2)41,42. Before proceeding with analysis of the model, we now establish its well-posedness in terms of non-
negativity and boundedness of solutions.

Let us introduce auxiliary quantities

	
B1 = µN

d − rµ
, B2 = λ

dl − ηB1
, B3 = s

dz − αB2
,� (3)

and assume that the following conditions hold

	 d > rµ, dl > ηB1, dz > αB2.� (4)

Biologically, the first of these conditions implies that the death rate of epithelial cells should exceed the growth 
rate of self-proliferating cells, which is true for experimentally observed values of parameters as used in earlier 
papers29,30. The second and third conditions prevent unbounded growth of Langerhan cells and the CTLs, 
respectively.

Now, we have the following result.

Proposition 1  All solutions of system (1) with initial conditions (2) remain non-negative and bounded in D  for 
all t ≥ 0 , where

	

D =
{

(EI , ET , V, L, Z) ∈ R5
+ : 0 ≤ EI ≤ N, 0 ≤ ET ≤ B1,

0 ≤ V ≤ kd(N + B1)
dv

, 0 ≤ L ≤ B2, 0 ≤ Z ≤ B3

}
.

� (5)
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Proof  Considering the equation for EI , let tI > 0 be the first time when EI(tI) = 0, with other variables being 
non-negative as per initial conditions, i.e.

	 ET (t) ≥ 0, V (t) ≥ 0, L(t) ≥ 0, Z(t) ≥ 0 for t ∈ [0, tI ].

The first equation of the system (1) shows that at this moment of time,

	
dEI

dt
(tI) = βV (tI)N(tI)

σ + N
≥ 0,

suggesting that EI  cannot decrease below zero. Similarly, if tL > 0 is the first time when L(tL) = 0, with other 
variables remaining non-negative, we immediately recognise that since

	
dL

dt
(tL) = λ > 0,

from this moment of time L will increase and, hence, it also can never become negative. Using the same argument 
sequentially for other variables shows that for non-negative initial conditions, all variables will remain non-
negative for all t ≥ 0.

From the first equation of system (1), we have

	
dEI

dt
= βV (N − EI)

σ + (N − EI) − µEI − dEI − aEIZ ≤ βV (N − EI)
σ + (N − EI) = βV

(
1 − σ

σ + N − EI

)
.

If EI  exceeds N, the last bracket becomes negative, and EI  decreases, thus showing that EI(t) ≤ N  for all 
t ≥ 0. From the second equation, using EI ≤ N , we have

	
dET

dt
= µEI + rµET − dET − aET Z ≤ µEI + rµET − dET ≤ µN − (d − rµ)ET .� (6)

In light of the condition d > rµ given in (4), we then have

	
0 ≤ ET ≤ µN

d − rµ
= B1.

In a similar way, we can obtain a bound on V(t) as

	
0 ≤ V ≤ kd(N + B1)

dv
.

The fourth equation of system (1) can be rewritten as

	
dL

dt
= λ + ηET L

θ + V
− dlL ≤ λ + ηB1L − dlL = λ − (dl − ηB1)L.

which shows that

	
0 ≤ L ≤ λ

dl − ηB1
= B2.

Finally, from the last equation of system (1), we get

	
dZ

dt
= s + αZL − dzZ ≤ s + αB2Z − dzZ = s − (dz − αB2)Z,� (7)

implying

	
0 ≤ Z ≤ s

dz − αB2
= B3.

From this analysis, we conclude that the region D  is positively invariant, with all solutions of the system (1) with 
initial conditions in D  remaining within this region for all t ≥ 0. □
The system (1) can have two equilibria, namely,

	i.	 the disease-free equilibrium E0

(
0, 0, 0,

λ

dl
,

sdl

dzdl − αλ

)
,

	ii.	 the chronic equilibrium E∗(E∗
I , E∗

T , V ∗, L∗, Z∗),

where
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E∗
I =(dlL

∗ − λ)θdv(d + aZ∗ − rµ)
H∗ ,

E∗
T =(dlL

∗ − λ)µθdv

H∗ ,

V ∗ =kdE∗
I (d + aZ∗ + µ − rµ)
dv(d + aZ∗ − µr) ,

L∗ =dzZ∗ − s

α∗Z∗ ,

with

	 H∗ =kd(λ − dl)(µ + d + aZ∗ − µ) + µηdvL∗,

and Z∗ is the positive root of the following equation:

	 Φ(Z) = βV (N − EI) − [σ + (N − EI)](µ + d + aZ)EI = C0Z5 + C1Z4 + C2Z3 + C3Z2 + C4Z + C5 = 0,� (8)

where the coefficient of Z5 is

	

C0 =Na3dd2
l dvd2

zk + Na3α2ddvkλ2 + a3d2
l d2

vd2
zθ + a3α2d2

vλ2θ + a3α2ddvkλ2σ

+ a3dd2
l dvd2

zkσ − 2a3αddldvdzkλσ − 2Na3αddldvdzkλ − 2a3αdld
2
vdzλθ.

and the constant term C5 is given by

	

C5 = − 3d2d2
l dvkµ2rs2σ − Ndd2

l dvkµ3rs2 − 2Nd3d2
l dvkµrs2 + βdd2

l dvkµ2rs2θ + 2βd2d2
l dvkµrs2θ − dd2

l dvkµ3rs2σ

+ dd2
l dvkµ3r2s2σ + d3d2

l d2
vs2θ − Nβd4d2

l k2s2 + d2d2
l d2

vµs2θ + d2
l d2

vµ3r2s2θ + Nd4d2
l dvks2 + d4d2

l dvks2σ

− Nβd2d2
l k2µ2s2 − Nddld

2
vηµ2s2 − Nd2dld

2
vηµs2 + 2Nd3d2

l dvkµs2 + Ndld
2
vηµ3rs2 − βd3d2

l dvks2θ − ddld
2
vηµ2s2σ

− d2dld
2
vηµs2σ + 2d3d2

l dvkµs2σ − 2Nβd3d2
l k2µs2 + dld

2
vηµ3rs2σ + Nd2d2

l dvkµ2s2 − 2dd2
l d2

vµ2rs2θ − 2d2d2
l d2

vµrs2θ

+ 2Nβd2d2
l k2µ2rs2 + Nα2d2dvkλ2µ2z2 + Nd2d2

l dvkµ2r2s2 − Nβddldvηkµ2rs2 + Nβddldvηkµ2s2 + Nβd2dldvηkµs2

+ 2Nβd3d2
l k2µrs2 − 3Nd2d2

l dvkµ2rs2 + Ndd2
l dvkµ3r2s2 − Nβd2d2

l k2µ2r2s2 + ddld
2
vηµ2rs2σ + d2d2

l dvkµ2r2s2σ

+ Nddld
2
vηµ2rs2 − 2d3d2

l dvkµrs2σ + d2d2
l dvkµ2s2σ − βd2d2

l dvkµs2θ − βdd2
l dvkµ2r2s2θ.

Since, Eq. (8) is quintic, therefore, at least one of its roots is real. For the values of parameters from Table 1, and 
for all other parameter ranges explored in later sections, the value of the coefficient C5 is negative, while C0 is 
positive, suggesting the existence of a positive real root of Eq. (8).

Biologically, the disease-free steady state E0 describes a situation, where the immune system is able to 
successfully clear the infection, while the chronic state E∗, when it exists, is a steady state, where immune 
response fails, and the infection continues to persist at some steady level. While the disease-free steady state E0 
is feasible for any parameter values, the chronic steady state E∗ only exists in some part of the parameter space. 

Parameters Description Value

N Total epithelial cells 105

σ Half-saturation constant 106

k HPV burst size 1000 virions/cell

α Proliferation rate of CTLs 0.001 day−1

β Infection rate of uninfected cells 0.0067 day−1

dv Decay rate of free virions 0.05 day−1

r Self-division rate of infected cells 0.1

d Death rate of epithelial cells 0.048 day−1

a Killing rate of infected cells by CTLs 0.01 day−1

s Recruitment rate of CTLs 0–2 cells ml−1 day−1

λ LC recruitment rate 0–1 cells ml−1 day−1

η Proliferation rate of LCs 2.5 × 10−6day−1

µ Rate of oncogene expression 0.25 day−1

dl Clearance rate of LCs 0.25 day−1

dz Clearance rate of CTLs 0.13 day−1

θ Half-saturation constant 104

Table 1.  Values of the model parameters29,30,53–56.
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As we have noted earlier, the Eq. (8) has a positive root Z∗ for all values of parameters we explored, but this does 
not guarantee that the chronic steady state is biologically feasible with all its components being positive.

Figure 1 establishes the existence of chronic equilibrium.

Basic reproduction number and stability of equilibria
In the context of modelling the spread of infectious diseases, one of the fundamental concepts is that of basic 
reproduction number R043–45. This number quantifies an average number of secondary infections produced by a 
single infected individual in an otherwise entirely susceptible population. Subject to some generic assumptions, if 
the basic reproduction number exceeds one, there would be an outbreak of infectious disease, and if it is less than 
one, the disease would die out. The magnitude of the the basic reproduction number is used epidemiologically to 
quantify and compare severity/virulence of infections, with larger values of R0 signifying higher transmissibility.

Later, the concept of the basic reproduction number has also been used in the analysis of within-host 
mathematical models of immune response to viral infection46–49. In those models, R0 > 1 describes a situation, 
where after a certain number of host cells are infected with a virus, there would be further growth in the number 
of infected cells due to the spread of virions to as yet uninfected cells, whereas for R0 < 1, initial infection would 
be successfully cleared by the immune system without spreading to other cells.

To compute the basic reproduction number R0 for our model, we use the next-generation matrix method50,51. 
To this end, we consider the next generation matrix G as comprised of two parts, namely, F and V. The vector 
containing all terms associated with transmission from infected to non-infected classes is represented by F , 
and similarly, the vector of transitions between infected classes is represented by V . The Jacobian matrices for 
these two vectors F  and V  are denoted by F and V, respectively. The ith row and jth column elements of the 
matrix F are Fij , with Fij = ∂Fi

∂xj
, where Fi is the ith component of F , and xj  is the jth variable of the vector 

of infected classes. Similarly, Vij  is the entry of matrix V’s ith row and jth column, with Vij = ∂Vi
∂xj

. Here, xj  is 
the jth variable of the vector of infected classes, and Vi is the ith component of V .

For the model (1), we find vectors F  and V  as

	
F =

(
βV (N−EI )
σ+(N−EI )

0
0

)
, V =

(
µEI + dEI + aEIZ

−rµET − rµET + dET + aET Z
dvV

)

which, when evaluated at the disease-free equilibrium E0, gives

	

F (E0) =

[
0 0 βN

N+σ
0 0 0
0 0 0

]

V (E0) =

[
µ + d + aZ̄ 0 0

−µ −rµ + d + aZ̄ 0
−kd −kd dv

]
,

where Z̄ = sdl
dldz−αλ . The basic reproduction number R0 can now be determined as the dominant eigenvalue 

of the matrix G = F V −150,51. Thus,

	
R0 = βkdN(µ + d + aZ̄ − µr)

(N + σ)dv(d + µ + aZ̄)(d + aZ̄ − µr)
.� (9)

Fig. 1.  Polynomial Φ(Z) as given by (8) with parameter values from Table 1.
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As is common in epidemiological/immunological models, the basic reproduction number R0 increases with 
infection rate β and the total number of epithelial cells N that can potentially be infected, and decreases with 
increasing rate of viral clearance dv . The value of R0 < 1 describes a situation, where an initial infection is 
successfully cleared by the immune system and does not result in subsequent infection of other uninfected cells. 
In contrast, for R0 > 1, immune system is not capable to clear the virus before it infects other cells, resulting in 
the ongoing infection.

Now we use this basic reproduction number to obtain stability conditions for the disease-free steady state.

Stability of disease-free equilibrium
The Jacobian matrix at the disease-free equilibrium, E0 is obtained as

	

JE0 (0, 0, 0, L̄, Z̄) =




a11 0 a13 0 0
a21 a22 0 0 0
a31 a32 a33 0 0
0 ηL̄

θ
0 −dl 0

0 0 0 αZ̄ αL̄ − dz


 ,

where Z̄ = sdl/(dzdl − αλ), L̄ = λ/dl, and we also have a13 = βN/(σ + N), a21 = µ, a31 = a32 = kd, 
and a33 = −dv , a11 = −µ − d − aZ̄ < 0 and a22 = rµ − d − aZ̄ < 0 due to invariance (5).

Two eigenvalues of the Jacobian are ρ1 = −dl < 0, ρ2 = αL̄ − dz . Using the condition (4) we can show that 
ρ2 < 0. The remaining three eigenvalues ρ3,4,5 satisfy the cubic equation

	 ρ3 + γ1ρ2 + γ2ρ + γ3 = 0.� (10)

where,

	

γ1 = −(a11 + a22 + a33), γ2 = a22a33 + a11a22 − a13a31 + a11a33,

γ3 = −a13a21a31 + a13a22a31 − a11a22a33.
� (11)

Using the Routh–Hurwitz conditions, we obtain that the roots of (10) have negative real parts if the following 
conditions are satisfied:

	

(i) γ1 > 0, γ3 > 0,

(ii) γ1γ2 − γ3 > 0.
� (12)

After a straightforward calculations and using (5), we conclude that γ1 = µ + d + 2aZ̄ + dv + (d − rµ) > 0. 
If we rewrite R0 as

	
R0 = βkdN(µ + d + aZ̄ − µr)

(N + σ)dv(d + µ + aZ̄)(d + aZ̄ − µr)
= a13a31(a21 − a22)

−a11a22a33
,

we obtain

	

γ3 = − a13a21a31 + a13a22a31 − a11a22a33

= − a11a22a33

(
1 − a13a31(a21 − a22)

−a11a22a33

)

=(−a11)a22a33(1 − R0).

Hence, for R0 < 1, we have γ3 > 0. Similarly,

	

γ1γ2 − γ3 =
(
µ + d + aZ̄ + d + aZ̄ − rµ + dv

) {
dv(d + aZ̄ − rµ) + (µ + d + aZ̄)dv

+ (µ + d + aZ̄)(d + aZ̄ − rµ) − kd
βN

σ + N

}
−

{
(µ + d + aZ̄)(d + aZ̄ − rµ)dv

− kdβN(d + µ + aZ̄ − rµ)
σ + N

}

>2(µ + d + aZ̄)(d + aZ̄ − rµ)dv − kdβN(d + µ + aZ̄ − rµ)
σ + N

+ kdβN

σ + N
(µ + d − rµ − dv) + d2

v(µ + 2d + 2aZ̄ − µr)

>dv(µ + d + aZ̄)(d + aZ̄ − rµ) (1 − R0) + dv

[
dv[(µ + d + aZ̄) + (d + aZ̄ − µr)] − kdβN

σ + N

]

>
[
(µ + d + aZ̄)(d + aZ̄ − rµ)dv

]
(1 − R0) + d2

v(µ + d + aZ̄)(d + aZ̄ − rµ)
(d + µ + aZ̄ − rµ)

[
1 − R0

]

>0, if R0 < 1,

where we have used the fact that d > rµ as given by (4).
Following the above discussion, we have the following result for the stability of disease-free equilibrium, E0.

Theorem 1  The disease-free equilibrium E0 is stable if R0 < 1 and unstable when R0 > 1.
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Stability of chronic equilibrium
As discussed in the previous section, while the value of Z∗ as determined by the real positive root of Eq. (8) is 
always positive, this is not automatically true for other components of the chronic steady state E∗. Numerical 
simulations suggests that this steady state is indeed biologically feasible with all of its components being non-
negative for R0 ≥ 1. To analyse stability of the chronic equilibrium E∗(E∗

I , E∗
T , V ∗, L∗, Z∗), we evaluate the 

Jacobian at this steady state as

	

JE∗ = [Jij ] =




J11 0 β(N−E∗
I )

σ+N−E∗
I

0 −aEI

µ rµ − d − aZ∗ 0 0 −aE∗
T

kd kd −dv 0 0
0 J42 J43 J44 −η
0 0 0 αZ∗ αL∗ − dz




where,

	

J11 = −µ − d − aZ∗ − βσV ∗

(σ + N − E∗
I )2 ,

J42 = ηL∗

(θ + V ∗) , J43 = − ηE∗
T L∗

(θ + V ∗)2 , J44 = ηE∗
T

(θ + V ∗) − dl.

The characteristic equation at E∗ has the form

	 ξ5 + A1ξ4 + A2ξ3 + A3ξ2 + A4ξ + A5 = 0,� (13)

with

	

A1 = − (J11 + J22 + J33 + J44 + J55),
A2 =J11(J22 + J33 + J44) − J13J31 + J22(J33 + J44) + J33(J44 + J55) + J55(J11 + J22) + J44J55,

A3 =J13J31(J44 − J21) + J22(J13J31 − J11J33) − J22J44(J11 + J55) − J33J44(J11 + J22) − J25J42J54 − J11J44J55

− J11J22J55 + J13J31J55 − J11J33J55 − J22J33J55 − J33J44J55,

A4 =J13J44(J21J31 − J22J31) + J11J22J33J44 − J15J21J42J54 + J25J33J42J54 − J15J31J43J54 − J25J31J43J54

+ J11J25J42J54 + J13J21J31J55 − J13J22J31J55 + J11J22J33J55

+ J11J22J44J55 − J13J31J44J55 + J11J33J44J55 + J22J33J44J55,

A5 =(J13J25J31 + J15J21J33)J42J54 − J11J25J33J42J54 − J15J43J54(J21J31 + J22J31) + J11J25J31J43J54

− J22J31) − J13J21J31J44J55 + J22J44J55(J13J31 − J11J33).

According to Routh–Hurwitz criteria, the characteristic equation (13) has roots with negative real parts if the 
following conditions hold

	

(i) A5 > 0, A1A2 − A3 > 0,
(ii) A3(A1A2 − A3) − A1(A1A4 − A5) > 0,
(iii) (A1A4 − A5) · (A1A2A3 − A2

3 − A2
1A4) − A5(A1A2 − A3)2 − A1A2

5 > 0.
� (14)

Theorem 2  The chronic equilibrium is asymptotically stable when the conditions in (14) are satisfied, and unstable 
when any of these conditions is violated.

Sensitivity analysis
Besides direct effect of parameters on stability of the disease-free and chronic steady states, we can use the 
methodology proposed52 to explore sensitivity of model solutions with respect to changes in parameters. The 
sensitivity functions with respect to the killing rate a of infected cells by the CTLs are defined as

	

SEIa
(t) = ∂

∂a
EI(t), SETa

(t) = ∂

∂a
ET (t), SVa (t) = ∂

∂a
V (t),

SLa (t) = ∂

∂a
L(t), SZa (t) = ∂

∂a
Z(t).

� (15)

These sensitivity functions satisfy the following system of ODEs
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dSEIa

dt
= βSVa

[
ET + V SETa

+ 2V + L + SLa V + Z + V SZa

]
· σ + (N − EI)(1 − V )

(σ + (N − EI))2

− SEIa
(µ + d + aZ) − EI(aSZa + Z),

dSETa

dt
= µSEIa

+ (rµ − d)SETa
− ET Z − a(SETa

Z + SZa ET ),

dSVa

dt
= kd(SEIa

+ SETa
) − dvSVa ,

dLa

dt
= −dlSLa +

η(LSETa
+ ET SLa )(θ + V ) − ηSVa ET L

(θ + V )2 ,

dSZa

dt
= α(SZa L + ZSLa ) − dzSZa .

� (16)

To understand how the sensitivity functions (15) evolve in time, we need to solve the system (16) together with 
the original system (1). In a similar way, we can study sensitivity of the model with respect to other parameters.

Impulsive control approach
While preventive HPV vaccines play a fundamental role in controlling the spread of HPV and prevention of 
HPV-associated lesions and cancers, they cannot help with treatment of already established HPV infection. 
Although there are currently no specific treatments against HPV, several different clinical approaches are being 
explored. One of those approaches is the so-called therapeutic vaccines, which instead of generating neutralizing 
antibodies instead contribute to cell-mediated immunity. HPV-encoded E6 and E7 oncoproteins that are 
consistently expressed in HPV-associated cancers and precursor lesions play crucial roles in the generation and 
maintenance of HPV-associated disease, which makes them an ideal target for therapeutic vaccines. Various 
forms of therapeutic HPV vaccines targeting HPV E6/E7 antigens have been tested in preclinical models and 
clinical trials57,58.

Another possible approach to treatment of HPV is that of adoptive cell immunotherapy, where CTLs targeting 
E6/E7 antigens are isolated and then re-infused to patients, thus boosting their ability to eliminate HPV-infected 
cells59–61. While still being at the stage of clinical trials, this methodology is very promising from the perspective 
of providing patient-specific targeted treatment.

Below is a modified model of HPV dynamics that also includes impulsive control as represented by a 
proportional increase in the number of CTLs at some specific time points

	

dEI

dt
= βV (N − EI)

σ + (N − EI) − µEI − dEI − aEIZ,

dET

dt
=µEI + rµET − dET − aET Z,

dV

dt
=kdEI + kdET − dvV,

dL

dt
=λ + ηET L

θ + V
− dlL,

dZ

dt
=s + αZL − dzZ, t ̸= tn,

� (17)

	 ∆Z =ωZ, t = tn. � (18)

Here, ∆Z = Z(t+
n ) − Z(t−

n ), where Z(t−
n ) and Z(t+

n ) represent the concentration of CTLs immediately before 
and after the impulse therapy, respectively. Smoothness properties of the right-hand sides of the original model 
(1) ensure global existence and uniqueness of the solution of the impulsive system62.

Dynamics of impulsive system
In this section, we use one-dimensional impulsive differential equations to better understand the effects of 
impulse drug therapy. For this purpose, we consider an equation for CTLs from the system (17) and (18)

	

dZ

dt
=s + αZL − dzZ, at t ̸= tn,

∆Z =ωZ, for t = tn, n = 1, 2, 3, ...
� (19)

We assume that during treatment, the number of HPV-specific CTLs increases by some constant proportion ω(  
drug efficacy), where 0 < ω < 1.
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Using relation (7), for maximal concentration of CTLs Z, we can rewrite that one-dimensional impulsive 
differential equation in the form

	

dZ

dt
=s − ζZ, for t ̸= tn,

∆Z =ωZ, for t = tn n = 1, 2, 3, ...
� (20)

where ζ = dz − αB2 > 0, with B2 defined in (3). For single cycle tn ≤ t ≤ tn+1 of impulsive treatment, the 
solution of the Eq. (19) is given by

	
Z(t−

n+1) = s

ζ

[
1 − e−ζ(tn+1−tn)

]
+ Z(t+

n )e−ζ(tn+1−tn). � (21)

If we start in equilibrium state, the concentration of CTLs at the impulse times will satisfy

	

Z(t−
1 ) = s

ζ
,

Z(t+
1 ) =(1 + ω) s

ζ
,

Z(t−
2 ) =(1 + ω) s

ζ
e−ζ(t2−t1) + s

ζ

[
1 − e−ζ(t2−t1)

]
,

Z(t+
2 ) =(1 + ω)2 s

ζ
e−ζ(t2−t1) + (1 + ω) s

ζ

[
1 − e−ζ(t2−t1)

]
,

Z(t−
3 ) = s

ζ

[
(1 + ω)2e−ζ(t3−t1) + (1 + ω)e−ζ(t3−t2) − (1 + ω)e−ζ(t3−t1)

+ 1 − e−ζ(t3−t2)
]
,

Z(t+
3 ) = s

ζ

[
(1 + ω)3e−ζ(t3−t1) + (1 + ω)2e−ζ(t3−t2) − (1 + ω)2e−ζ(t3−t1)

+ (1 + ω) − (1 + ω)e−ζ(t3−t2)
]
,

Z(t−
4 ) = s

ζ

[
(1 + ω)3e−ζ(t4−t1) + (1 + ω)2e−ζ(t4−t2) + (1 + ω)e−ζ(t4−t3)+

1 − (1 + ω)2e−ζ(t4−t1) − (1 + ω)e−ζ(t4−t2) − e−ζ(t4−t3)
]
,

Z(t+
4 ) = s

ζ

[
(1 + ω)4e−ζ(t4−t1) + (1 + ω)3e−ζ(t4−t2) + (1 + ω)2e−ζ(t4−t3)+

(1 + ω)3e−ζ(t4−t1) − (1 + ω)2e−ζ(t4−t2) − (1 + ω)e−ζ(t4−t3) + (1 + ω)
]
,

� (22)

and so on. Hence, the general solution of impulsive system (20) can be found as

	

Z(t−
n ) = s

ζ

[
(1 + ω)(n−1)e−ζ(tn−t1) + (1 + ω)(n−2)e−ζ(tn−t2) + · · · + (1 + ω)e−ζ(tn−tn−1)

+ 1 − (1 + ω)(n−2)e−ζ(tn−t1) − (1 + ω)(n−3)e−ζ(tn−t2) − · · · − e−ζ(tn−tn−1)
]
,

� (23)

and

	

Z(t+
n ) = s

ζ

[
(1 + ω)ne−ζ(tn−t1) + (1 + ω)(n−1)e−ζ(tn−t2) + · · · + (1 + ω)2e−ζ(tn−tn−1)

− (1 + ω)(n−1)e−ζ(tn−t1) − (1 + ω)(n−2)e−ζ(tn−t2) − · · · − (1 + ω)e−ζ(tn−tn−1) + (1 + ω)
]� (24)

The above solutions given in (23) and (24) can help to predict the concentration of CTLs present just before and 
straight after the nth number impulse.

For a fixed impulse interval, i.e. with tn+1 − tn = Υ being constant, we have

	

Z(t−
n ) = s

ζ

[
1 + (1 + ω)e−ζΥ + (1 + ω)2e−2ζΥ + · · · + (1 + ω)n−1e−(n−1)ζΥ

− e−ζΥ
(

1 + (1 + ω)e−ζΥ + · · · + (1 + ω)n−2e−(n−2)ζΥ
)]

= s

ζ

[1 − (1 + ω)ne−nζΥ

1 − (1 + ω)e−ζΥ − e−ζΥ 1 − (1 + ω)n−1e−(n−1)ζΥ

1 − (1 + ω)e−ζΥ

]
,

and hence,
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lim

n→∞
Z(t−

n ) = s

ζ

[
1

1 − (1 + ω)e−ζΥ − e−ζΥ 1
1 − (1 + ω)e−ζΥ

]
= s

ζ

[
1 − e−ζΥ

1 − (1 + ω)e−ζΥ

]
.� (25)

This is the maximum long-term concentration of CTLs just before impulsive therapy is applied. A similar 
expression can be obtained for the long-term maximum concentration of CTLs straight after the impulse therapy

	
lim

n→∞
Z(t+

n ) = (1 + ω) lim
n→∞

Z(t−
n ) = s

ζ

[
(1 + ω)

(
1 − e−ζΥ)

1 − (1 + ω)e−ζΥ

]
.� (26)

Suppose, Zmin is the minimum concentration of CTLs to gain disease-free periodic orbit. Then after the long-
term therapy, to keep the concentration of CTLs at the level Z̃  above this minimum level, we need to find the 
corresponding maximum time interval, Υmax, between two consecutive periods of therapy:

	

(1 + ω) s

ζ

[ 1 − e−ζΥmax

1 − (1 + ω)e−ζΥmax

]
> Zmin,

or, Υmax <
1
ζ

ln
[

(Zmin − m)(1 + ω)
Zmin − m(1 + ω)

]
, where m = s

ζ
.

� (27)

Remark 1  It follows that, in the case of impulse drug dosing with fixed interval, we can derive a maximum length 
of interval of therapy using (27) that would keep the concentration of CTLs above the threshold Zmin of our 
choice. If we restrict Υ < Υmax, then the concentration of CTL can be maintained above the threshold Zmin 
after long-term therapy.

Existence and stability of disease-free periodic orbit
For a one-dimensional impulsive system

	
dZ(t)

dt
=s − ζZ, t ̸= tn, ∆Z = ωZ. � (28)

we have the following Lemma from62–64 that provides existence of a periodic solution

Lemma 1  The system given in (28) possesses a unique periodic solution denoted by Z̃(t) with period Υ = tn+1 − tn 
given by

	
Z̃(t) = s

ζ

[
(1 + ω)

(
1 − e−ζ(t−tn))

1 − (1 + ω)e−ζΥ

]
, tn < t < tn+1, Z̃(0+) = s

ζ

[ 1 − e−ζΥ

1 − (1 + ω)e−ζΥ

]
.� (29)

We now prove the following result regarding existence and stability of the disease-free periodic orbit in the system 
(1718).

Theorem 3  The system (17) has a disease-free periodic orbit, Ẽ0(0, 0, 0, L̃, Z̃), which is locally asymptotically 
stable if

	
R̃0 = βkdN

(N + σ)dv

∫ Υ

0

(µ + d + aZ̃ − µr)dt

(d + µ + aZ̃)(d + aZ̃ − µr)
< 1.

Proof  Let us denote the infection-free periodic orbit of the impulsive system (17) by Ẽ0(0, 0, 0, L̃, Z̃), where

	
Z̃(t) = s

ζ

[
(1 + ω)

(
1 − e−ζ(t−tn))

1 − (1 + ω)e−ζΥ

]
, tn < t < tn+1,

with initial condition Z(0+) as given in Lemma 1. To analyse stability of this periodic orbit, we compute the 
variational matrix at the periodic orbit Ẽ0(0, 0, 0, L̃, Z̃) as

	

M(t) = [ãij ]5×5 =




ã11 0 βN
σ+N

0 0
µ rµ − d − aZ̃ 0 0 0
kd kd −dv 0 0
0 ηL̃

θ
0 −dv 0

0 0 0 αZ̃ αL̃ − dz


 ,

where ã11 = −µ − d − aZ̃ . The variational matrix M gives the monodromy matrix P as
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P(Υ) = I4 exp

(∫ Υ

0
M(t)dt

)
,

where I5 is the 5 × 5 identity matrix.
Let, ρ̃i, i = 1, 2, 3, 4, 5 be the Floquet multipliers, and P(Υ) = diag(ρ̃1, ρ̃2, ρ̃3, ρ̃4, ρ̃5). We determine two 

of the multipliers as ρ̃1 = exp (−dvΥ), and ρ̃2 = exp
(∫ T

0

[
αL̃ − dz

]
dt

)
. Clearly, ρ̃1 < 1 is always true, 

and ρ̃2 < 1 holds when αL̃ − dz < 0 is satisfied. The remaining Floquet multipliers can be expressed as

	
ρ̃i = exp

(∫ Υ

0
ξidt

)
, i = 3, 4, 5,

where ξi are the roots of the cubic equation

	 ξ3 + γ̃1ξ2 + γ̃2ξ + γ̃3 = 0,� (30)

with

	

γ̃1 = −(ã11 + ã22 + ã33), γ̃2 = ã22ã33 + ã11ã22 − ã13ã31 + ã11ã33,

γ̃3 = −ã13ã21ã31 + ã13ã22ã31 − ã11ã22ã33.
� (31)

For the stability of the disease-free periodic orbit we need ρ̃i < 1, which is true when real parts of ξi are negative. 
Using Routh–Hurwitz conditions, we find that the roots of Eq. (30) have negative real parts if

	 γ̃1 > 0, γ̃3 > 0, and γ̃1γ̃2 − γ̃3 > 0.� (32)

Conditions in (32) are satisfied when R̃0 < 1, and in this case the Floquet multipliers ρ̃i have the modulus less 
than unity. Thus, using Floquet theory, we conclude that the disease-free periodic orbit Ẽ0(0, 0, 0, L̃, Z̃) of the 
system (17) is asymptotically stable if R̃0 < 1. □

Numerical bifurcation analyses and simulation
Using analytical findings from earlier sections, we now explore the dynamics of the models numerically, using 
baseline values of parameters as given in Table  1. Majority of parameter values in this Table follow earlier 
published work on similar models, and a few are estimated. Starting values of parameters were chosen with a 
view to agree with biological assumptions mentioned earlier.

Figure 2 illustrates how increasing the basic reproduction number R0 results in the loss of stability of the 
disease-free steady state E0 when R0 crosses the values of R0 = 1, at which point a stable chronic steady state 
E∗ appears.

In Fig. 3 we show how stability of the DFE E0 changes with parameters. As expected, the DFE E0 is stable 
for lower values of the disease transmission rate β, and it also stabilises with increased rate of production of 
Langerhans cells λ, increased rate of production of CTLs s, or with a higher rate a, at which CTLs destroy 
infected cells.

In Fig. 4, we demonstrate temporal behavior of all cell populations of the system. Starting a small number 
of infected cells, the population of susceptible cells, as represented by [N − EI(t) − ET (t)], decreases, as 

Fig. 2.  Bifurcation diagram of the model (1). The disease-free steady state E0, shown in blue, is stable for 
R0 < 1 and unstable for R0 > 1, where the chronic equilibrium E∗ exists and is stable.
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infection progresses, and some portion of this population moves to the infected class. We observe that at an early 
stage the growth of infection is slow, but then it increases, until eventually it saturates, with the system settling 
on a stable steady state E∗, which represents a chronic infection. This could be attributed to either a failure of 
the immune system, or to an immune evasion strategy pursued by HPV. Figure 5 illustrates global stability of 
chronic equilibrium, with trajectories starting at different initial conditions, but eventually converging on the 
stable chronic steady state E∗.

In Fig. 6 we have plotted the numerical solutions of impulsive system (17) and (18) for two different impulse 
intervals, Υ = 7 days and Υ = 14 days, under assumption that at each application of therapy, the concentration 
of CTLs increases by ω = 0.05 of its current value. The infection is cleared more rapidly when the interval of 
dosing therapy is lower (Υ = 7 days). In Fig. 7 we plot a similar result for a fixed impulse interval of 14 days, but 
with two different values of ω that quantifies the increase in CTLs after each therapy. Increasing drug efficacy or 
dose, which corresponds to a higher value of ω results in lower peak number of infected cells and faster clearance 
of infection.

Fig. 4.  Temporal solution of the system (1) with parameter values from Table 1.

 

Fig. 3.  Stability of the disease-free equilibrium E0 for parameter values from Table 1. Color code represents 
the maximum real part of characteristic eigenvalues of the DFE. White region indicates an area, where there 
are no feasible equilibria.
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Finally, Fig. 8 presents temporal dynamics of sensitivity functions for the viral population V(t) depending 
on different parameters. One can note that at the initial stages of infection, viral population is most sensitive 
positively to the increase in the infection rate β and negatively to the increase in the rate of death of infected cells 
µ. Sensitivity with respect to parameters λ and s that control constant growth in the number of Langerhans cells 
and HPV-specific CTLs, respectively, is negative and monotonic. The only other positive sensitivity function for 
viral population is associated with parameter k that characterizes the burst size, thus controlling how many new 
infections can arise from a single infected cell upon its death.

Discussion and conclusion
In this paper, we have studied a mathematical model of within-host HPV dynamics that includes two populations 
of infected cells, expressing lower and higher amounts of E6/E7 oncogenes, the Langerhans cells and HPV-
specific CTLs. Both LCs and CTLs play important role in orchestrating immune response against the HPV 
through recognizing and destroying infected cells. We have shown well-posedness of our model in terms of 
non-negativity and boundedness of its solutions. To characterize the onset of chronic infection and obtain 
conditions for disease elimination, we have derived a basic reproduction number using the next generation 
matrix approach. We performed numerical bifurcation analyses and simulations to explore how the dynamics 
and stability of the steady states changes with system parameters. These results show that increasing the values of 
parameters, characterizing immune response, leads to stabilization of the disease-free equilibrium. In contrast, 
increasing disease transmission rate results in the establishment of the globally stable chronic steady state. We 

Fig. 6.  Temporal dynamics of the model (17) and (18) with impulsive immune therapy for a fixed interval of 
Υ = 7 days (solid line) and Υ = 14 days (dashed line). The values of other parameter are given in Table 1.

 

Fig. 5.  Phase space of the system (1) for three different initial conditions with parameter values from Table 1. 
In this parameter regime, the chronic steady state E∗ is stable, and all trajectories eventually approach this 
state.
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have also analzed the dynamics of impulsive therapy for the treatment of HPV infection under different therapy 
regimes.

The results of this study results may be helpful for better understanding of the complexity of immune response 
to HPV and the development of HPV-related cancers. In particular, they show an intricate interplay between 
Langerhans cells and HPV-specific CTLs that is required for clearing the infection. This is particularly important 
in light of the immune evasion strategy employed by the HPV, which is able to inhibit interferons, minimize 
antigen production, and indirectly reduce the capacity of LCs to stimulate CTLs.

There are several directions, in which the work presented in this paper can be expanded. In our model, we 
made a simplifying assumption that both types of infected cells produce virions at exactly the same rate. This 

Fig. 8.  Sensitivity of viral population to changes in model parameters as a function of time, t.

 

Fi. 7.  Impulsive application of immune therapy as described by the model (17) and (18) with ω = 0.05( solid 
line) and ω = 0.1( dashed line) taking a fixed interval Υ = 14 days. The values of other parameter are given in 
Table 1.
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assumption can be removed to allow different rates of virion production, which may better reflect the reality due 
to different types of infected cells expressing significantly different concentrations of oncogenes. Similarly, CTLs 
were assumed to destroy infected cells at the same rate, but since these are antigen-specific CTLs, the model 
can consider these rates to be different, to correspond to levels of expression of oncoproteins. Another avenue 
to explore is to represent dynamics of the virus and the immune responses using fractional derivatives, as has 
recently been done for some other viral diseases65–67.

Data availability
The data sets used and/or analysed during the current study are available from the corresponding author on 
reasonable request.
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