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Abstract
A major challenge to successful crop production comes from viral diseases of plants
that cause significant crop losses, threatening global food security and the livelihoods
of countries that rely on those crops for their staple foods or source of income. One
example of such diseases is a mosaic disease of plants, which is caused by bego-
moviruses and is spread to plants by whitefly. In order to mitigate negative impact of
mosaic disease, several different strategies have been employed over the years, includ-
ing roguing/replanting of plants, as well as using pesticides, which have recently been
shown to be potentially dangerous to the environment and humans. In this paper we
derive and analyse a mathematical model for control of mosaic disease using natural
microbial biostimulants that, besides improving plant growth, protect plants against
infection through a mechanism of RNA interference. By analysing the stability of the
system’s steady states, we will show how properties of biostimulants affect disease
dynamics, and in particular, how they determine whether the mosaic disease is eradi-
cated or is rather maintained at some steady level. We will also present the results of
numerical simulations that illustrate the behaviour of the model in different dynami-
cal regimes, and discuss biological implications of theoretical results for the practical
purpose of control of mosaic disease.

Keywords Mosaic disease · RNAi · Stability and bifurcations · Numerical
simulations

Mathematics Subject Classification 92C80 · 92D40 · 34C60

1 Introduction

Mosaic disease of plants, caused by begomoviruses, affects a variety of important agri-
cultural crops around the world, including tomatos, peppers, cucumbers, aubergines,
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with estimated losses reaching 40–70% of annual harvest. In the tropical regions,
mosaic disease is, perhaps, the biggest challenge to growing cassava and Jatropha.
With cassava being a major staple food crop in many parts of the tropics, and Jatropha
curcas emerging recently as one of the most promising sources of biofuel, the mosaic
disease of these crops is having a profound negative effect on communities growing
them. Mosaic disease is obligately transmitted to plants by insect vectors, primarily
the whitefly B. tabaci, and results in mottled and distorted leaves, veinal netting, as
well as stunting of plants, often causing them to produce virtually no yield.

In terms of control of mosaic disease, a number of different strategies have been
proposed, some focusing on plants, such as roguing (removing infected plant biomass)
and replanting (replacing the infected plants with healthy ones), with others targeting
disease vectors, e.g. using insecticides, biological control, and developing vector-
resistant plant varieties [1,2]. A number of mathematical models have analysed the
effectiveness of these approaches, and also studied specific optimal strategies for
disease control. One of the earliest models, proposed by Chan and Jeger [3], looked
into whether roguing can be used to eradicate mosaic disease. Since that model did not
properly account for various characteristics of the process of disease transmission, it
was subsequently improved in Jeger et al. [4] to include the details of virus development
in vectors. More advanced models of roguing have been analysed by Jeger et al. [1],
Gao et al. [5], Luo et al. [6], and Basir and Roy [7]. Spatial aspects of various strategies
for disease management associated with roguing and replanting have been analysed
by Sisterson and Stenger [8]. These were also included in the bio-economic analysis of
disease control measures by Atallah et al. [9], while Venturino et al. [10] considered
optimal control problem of using insecticide for control of mosaic virus disease in
J. curcas plantations. Jeger et al. [2] provide a nice overview of modelling work on
control of plant virus disease in different settings.

In recent years, several promising strategies have been put forward for control
of plant disease and protection of crops against parasites, while avoiding potential
dangers to humans and environment, associated with the use of chemical pesticides.
Among these strategies, an important role is played by developing tools based on
RNA interference (RNAi), which is a fundamental biological process, through which
eukaryotic cells are able to post-transcriptionally control expression of specific genes
[11–14]. In the specific context of plant protection against parasites, RNAi can be used
in two different ways. It can protect plants from infection by stopping the expression
of plant genes that are essentially involved in the process of infection, or by halting the
expression of viral genes within plant cells [15–18]. Alternatively, it can be used to
target specificparasites that consumeRNAi complexeswhen feedingonplants, and this
then results in the reductionof their fecundity and increasedmortality through silencing
of essential parasite housekeeping genes [13,19,20]. Both of these approaches rely on
supplying plants with appropriate dsRNA (double-stranded RNA) that would trigger
RNAi process, and this dsRNA can be delivered into plants through various means,
including development of transgenic plants [21,22], root soaking [13,23], as well as
topical application (spraying) [24,25]. Recent work has demonstrated the feasibility
of RNAi for control of B. tabaci whitefly [26–30], while mathematical models have
elucidated a number of important aspects of RNAi in plants [31–33].
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An alternative but related approach to improving performance of crops and protec-
tion fromdisease is basedon theuseof biopesticides, or naturalmicrobial biostimulants
(MBs) obtained from metabolites of soil micro-organisms [34–38]. Among various
sources of natural biostimulants are soil actinobacteria of Streptomyces and Saccha-
ropolyspora genera [39–42]. One prominent example is Streptomyces avermitilis,
which produces avermectins, known to have nematicidal and insecticidal properties
[43–46], and a similar effect has been recently demonstrated for other streptomycetes
[39,40,47]. Recent work has shown thatMBs produced as combinations ofmetabolites
and cell culture supernatant of such soil streptomycetes as S. netropsis [48], and S.
violaceus [49] provide a wide range of plants with strong antagonistic activity against
various phytopathogenic bacteria and micromycetes. TheseMBs contain a wide range
of antibacterial and plant stimulating compounds, as well as amino acids, lipids and
plant hormones, which together significantly contribute towards disease resistance
and improvement of plant growth and development [50,51]. This positive effect of
biostimulants on plant growth has been demonstrated through improved callogenesis
and organogenesis in wheat [52,53]. In terms of protection against parasites, exten-
sive experimental studies have comprehensively demonstrated that these MBs trigger
within-plant production of RNAi products complementary with mRNA (messenger
RNA) of plant parasitic nematodes, and upon consumption by nematodes, these prod-
ucts trigger their death by silencing essential nematode housekeeping genes. More
specifically, nematicidal effects of these MBs on root-knot nematode M. incognita
have been shown in vitro [54], and specific RNAi-mediated bioprotective effects of
MBs have been demonstrated in wheat against the cereal cyst nematode H. avenae
[52,53], in rapeseed [55,56], Brassica rapa subs. pekinensis (Chinese cabbage) [57],
and sugar beet [58] against the cyst nematodeH. schachtii, and in cucumber and sugar
beet against both of these nematodes [59]. A natural biostimulant Regoplant has been
shown to provide effective RNAi-based protection of common horse chestnut against
the horse-chestnut leaf miner Cameraria ohridella [60].

In this article, we propose and analyse a mathematical model for control of mosaic
disease using RNAi-mediated bioprotective effects of MBs. In the next section we
derive the model and discuss its basic properties. Section 3 contains analysis of fea-
sibility and stability of different equilibria. In Sect. 4, we perform numerical stability
analysis and simulations of the model. The paper concludes in Sect. 5 with the dis-
cussion of results and future work.

2 Model derivation

To analyse how the mosaic disease can be controlled using MBs, we consider a popu-
lation of plants (this can be J. curcas or cassava) that can be exposed to mosaic disease,
which is spread by the B. tabaci whitefly. We assume that in the absence of mosaic
disease, healthy plants, whose population is denoted by X(t), reproduce logistically
with the linear growth rate r and the carrying capacity K . Once whiteflies infect a
healthy plant, it becomes infected and moves into a population of infected plants Y (t).
Following Holt et al. [61], we do not distinguish between individual parts of the plant,
such as stem, leaves etc. that can become infected, but rather consider the overall plant
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biomass. To simplify the model, we do not explicitly include a separate compartment
for the virus population, but focus instead on their whitefly vectors. Since the vectors
are relying on plants for their food source, in the model we assume that the uninfected
vectors U (t) grow logistically with a growth rate b and a carrying capacity given by
the total plant population X + Y multiplied by the maximum vector abundance m.

The virus that causes the mosaic disease is assumed to be transmitted from infected
plants to uninfected vectors at rate β, and from infected vectors to uninfected plants
at rate λ. Begomoviruses that cause mosaic disease are circulative-persistent viruses
[62], which means that once the whitefly vectors become infected, they will remain
infectious for the rest of their lifetime [1,61], as is common with vector-borne infec-
tions. The reason for this is that when whiteflies feed on infected plants, they ingest the
virus contained in the plant sap with their stylets, and subsequently the virus crosses
the filter chamber and the midgut to be then translocated into the primary salivary
glands [62,63]. When these vectors then feed on healthy plants, virus particles circu-
lating in the whitefly saliva will enter these plants and start infection in them. We will
denote by a the rate of removal of infected plant biomass, and by μ the sum of the
natural and the virus-related mortality rates for infected vectors.

Finally, MBs are applied to plants at rate B, and they will have an effect on the
plant growth rate r and the rate of disease transmission from vectors to plants λ, and
they will also cause additional mortality of vectors at rate c.

With the above assumptions, the model for the dynamics of mosaic disease takes
the following form

dX

dt
= r(B)X

[
1 − X + Y

K

]
− λ(B)XV ,

dY

dt
= λ(B)XV − aY ,

dU

dt
= b(U + V )

[
1 − U + V

m(X + Y )

]
− βUY − c(B)(X + Y )U ,

dV

dt
= βUY − μV − c(B)(X + Y )V .

(1)

Experimental evidence suggests that streptomycete-derived MBs stimulate growth
and viability of crops, as has been recently demonstrated during in vitro, in vivo and
greenhouse experiments on wheat [52,53,64], cucumbers [56], rapeseed [59], and
Chinese cabbage [57]. Thus, we replace a constant growth rate of uninfected plants
by a growing saturated function of the amount of applied MBs

r(B) = r0(1 + B)

1 + sB
, (2)

with r(0) = r0 and r(∞) = r0/s. Molecular genetic analyses show that MBs trigger
a significant increase in the within-plant synthesis of si/miRNA homologous with
plant genes associated with proteins that are important for a successful infection, as
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well as with viral genes, whose expression is needed for viral replication in plants
[19,53,55,56,58,59]. To model this effect, we take the rate of disease transmission
from infected vectors to plants in the form of a decreasing function of the amount of
applied MBs as follows,

λ(B) = λ0

1 + pB
. (3)

Finally, once whiteflies feed on plants that have been treated with MBs (irrespective
of whether the plants themselves are healthy or infected), the RNAi products they
ingest will result in vector mortality through silencing essential vector genes [13,19,
20]. Formally, this is represented in the model as an additional death term for vector
population, with the mortality rate being proportional to the total plant biomass, and
the proportionality rate c(B) being given by a growing function of the amount of
applied MBs,

c(B) = c0B

1 + c1B
. (4)

In the case where no MBs are used, we have c(0) = 0, and for an increasing amount
of biostimulants we have a saturation at c(∞) = c0/c1.

It is straightforward to show that, subject to non-negative initial conditions, all state
variables will remain non-negative and bounded for all t ≥ 0, which implies that the
model is well-posed.

3 Steady states and their stability

For any parameter values, themodel (1) has an axial equilibrium E1=(K , 0, 0, 0) char-
acterised by the absence of vector population and the presence of only healthy plants.
Provided b>cK , it also has a disease-free steady state E2=(K , 0,mK (b−cK )/b, 0).
Finally, the model (1) can also have one or more endemic equilibria E∗ =
(X∗,Y ∗,U∗, V ∗) with

Y ∗ = r X∗(K − X∗)
aK + r X∗ , V ∗ = aY ∗

λX∗ , U∗ = a(μ + cX∗ + cY ∗)
λβX∗ ,

where X∗ is the positive root of the following equation

b(U∗+V ∗)
[
m(X∗+Y ∗) − (U∗+V ∗)

]
− mU∗(X∗+Y ∗)

[
βY ∗+c(X∗+Y ∗)

]
=0.

(5)

Explicitly, this is a quintic equation

ω0(X
∗)5 + ω1(X

∗)4 + ω2(X
∗)3 + ω3(X

∗)2 + ω4X
∗ + ω5 = 0, (6)
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with the coefficients

ω0 = br L1 − mλβK (a + r)F1, ω1 = abK L1 + br L2 − mλβK (a + r)F2,

ω2 = abK L2 + br L3 − mλβK (a + r)F3, ω3 = abK L3 + br L4,

ω4 = abK L4 + br L5, ω5 = abK L5,

where

L1 = A1B1, L2 = A1B2 + A2B1, L3 = A1B3 + A3B1 + A2B2,

L4 = A2B3 + A2B3, L5 = A3B3, F1 = −βr(μr + caK + cr K ),

F2 = K (μr + caK + cr K )(ca + cr + βr), F3 = μaK 2(ca + cr + βr),

A1 = −βr , A2 = μr + caK + cr K + βcK , A3 = μaK ,

B1 = aβr + λmβK (a + r), B2= − a[μr + caK + cr K + βr K ], B3= − a2μK .

The endemic equilibrium exists only if K − X∗ > 0.
The Jacobian of the system (1) at any steady state Ē(X̄ , Ȳ , Ū , V̄ ) is given by

J = [Ji j ] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

J11 − r X̄
K 0 −λX̄

λV̄ − a 0 λX̄

b(Ū+V̄ )2

m(X̄+Ȳ )2
− cŪ b(Ū+V̄ )2

m(X̄+Ȳ )2
− βŪ − cŪ J33 b − 2b(Ū+V̄ )

m(X̄+Ȳ )

−cV̄ βŪ − cV̄ βȲ −μ − c(X̄ + Ȳ )

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

where,

J11 = r

[
1 − (2X̄ + Ȳ )

K

]
− λV̄ , and J33 = b − βȲ − 2b(Ū + V̄ )

m(X̄ + Ȳ )
− c(X̄ + Ȳ ).

At the axial equilibrium E1(K , 0, 0, 0), the eigenvalues of the Jacobian matrix are
− r , − a, b − c(B)K , and −μ − cK , suggesting that this steady state is stable for
b < c(B)K and unstable for b > c(B)K . At b = c(B)K , the steady state E1
undergoes a transcritical bifurcation, at which point it loses stability, and the disease-
free steady state E2 emerges.

If we define

R0 = mK 2βλ(B)(b − c(B)K )

ab(μ + c(B)K )
, (7)

as the basic reproduction number, then we have the following result.

Proposition 1 Suppose the condition b > c(B)K holds. The disease-free equilibrium
E2 is stable for R0 < 1, unstable for R0 > 1, and undergoes a steady-state bifurcation
at R0 = 1.
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Proof At the steady state E2, two characteristic eigenvalues can be easily found as−b
and −r , while the remaining eigenvalues satisfy a quadratic equation

ξ2 + (a + μ + c(B)K )ξ + 1

b

[
ab(μ + c(B)K ) − mK 2βλ(B)(b − c(B)K )

]
= 0.

(8)

Since a + μ + c(B)K > 0, the condition for stability of E2 reduces to

ab (μ + c(B)K ) − mK 2βλ(B) (b − c(B)K ) > 0 ⇐⇒ R0 < 1.

Thus, for R0 < 1 the steady state E2 is stable, and for R0 > 1 it is unstable. As R0
increases from R0 < 1, at the moment it passes through 1, one of the two roots of the
quadratic equation goes through zero from left to right along the real axis, making the
steady state E2 unstable, which implies that at R0 = 1, E2 undergoes a steady-state
bifurcation. ��

The characteristic equation at the endemic equilibrium E∗ has the form

ξ4 + α1ξ
3 + α2ξ

2 + α3ξ + α4 = 0, (9)

where,

α1 = −J11 − J22 − J33 − J44,

α2 = J11(J22 + J33 + J44 − J21) − J14(J41 − J42) + J33(J22 + J44) − J34 J43,

α3 = J11[(J33 + J44)(J21 − J22) + J24(J42 − J41)] + (J11 + J22)(J34 J43 − J33 J44)

− J14[J41(J22 + J33) − J42(J33 + J21) + J43(J32 − J31)],

α4 = J14[(J11 + J22)(J33 J41 + J31 J43) + (J11 + J21)(J33 J42 − J32 J43)]
+ J11(J21 − J22)(J34 J43 − J33 J44),

and we have used the fact that J12 = J11 and J24 = −J14. Since the values of all
parameters and state variables at the endemic equilibrium E∗ are positive, we have

J22 = −a < 0, J44 = −μ − c(X∗ + Y ∗) < 0, J11 = −r X∗

K
< 0,

and

J33 = −bV ∗
[
1 − U∗ + V ∗

m(X∗ + Y ∗)

]
− bU∗(U∗ + V ∗)

m(X∗ + Y ∗)
.
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From equation (5) it follows thatU∗+V ∗ < m(X∗+Y ∗), which implies that J33 < 0.
Taken together, we then find that

α1 = −J11 − J22 − J33 − J44 > 0,

for anyparameter values, forwhich the endemic steady state E∗ is biologically feasible.
Considering γ as a generic bifurcation parameter (i.e. any of the parameters of the
model), it is possible to prove the following result [7,10].

Theorem 1 (a) The endemic equilibrium E∗ is stable, if the following conditions are
satisfied

α2 > 0, α3 > 0, α4 > 0,

α1α2 − α3 > 0, α1α2α3 − α2
3 − α4α

2
1 > 0. (10)

(b) The endemic equilibrium E∗ undergoes a Hopf bifurcation at γ = γ ∗ ∈ (0,∞)

if and only if

α2(γ
∗) > 0, α3(γ

∗) > 0, α4(γ
∗) > 0, α1(γ

∗)α2(γ
∗) − α3(γ

∗) > 0,

α1(γ
∗)α2(γ

∗)α3(γ
∗) − α2

3(γ
∗) − α4(γ

∗)α2
1(γ

∗) = 0,

α3
1(γ

∗)α′
2(γ

∗)α3(γ
∗)

[
α1(γ

∗) − 3α3(γ
∗)

] �= [
α2(γ

∗)α2
1(γ

∗) − 2α2
3(γ

∗)
]

× [
α′
3(γ

∗)α2
1(γ

∗) − α′
1(γ

∗)α2
3(γ

∗)
]
,

(11)

where primes denote differentiation with respect to γ .

4 Numerical results

To better understand how different parameters affect the dynamics of the model, in
this section we explore stability of different steady states numerically, as well as solve
the model directly to illustrate its behaviour in different dynamical regimes. Baseline
values of parameters are taken from Holt et al. [61], Venturino et al. [10], and Al Basir
and Roy [7]. Regarding carrying capacity of plants, we consider a plantation with a
maximum of 50 plants, which, with a recommended spacing of around 3m×3m for
cultivating Jatropha [65] would correspond to a plot of 450m2, which is consistent
with average-size fields and farm plots used for growing Jatropha [66,67] and cassava
[68]. It should be noted that although we have chosen to fix the maximum number of
plants, an alternative is to rather treat this carrying capacity as plant density per some
pre-defined plot area [1,61], so that one could then consider a large plantation or a field
consisting of a multitude of such plots. Yet another alternative is to instead interpret
the carrying capacity as a characteristic of cumulative weight of a single plant, and
the biomass of entire plantation could be obtained by multiplying this weight by the
overall number of plants. Similarly to carrying capacity, there is significant variability
in reported/observed numbers of whiteflies feeding on a single plant, ranging from 0
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Table 1 Values of the parameters used in the numerical simulations [7,10,61]

Parameter Short description Value (unit)

r0 Growth rate of healthy plants without MBs 0.05plant−1 day−1

k Carrying capacity of plant 50plant−1

λ0 Infection from vector to plant 0.0001–0.0025vector−1 day−1

a Infected biomass reduction rate 0.05day−1

b Vector reproduction rate 0.8day−1

m Maximum vector abundance 80plant−1

β Rate of infection from plant to vector 0.0012−1 day−1

μ Vector mortality rate 0.12day−1

0 2 4 6 8 10 12 14 16

R0

0

2

4

6
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10

Y ∗

(a)

0 2 4 6 8 10 12 14 16
R0

0

20

40

60

80

100

V∗

(b)

Fig. 1 Steady state values of the infected plant biomass Y ∗ and the infected vector V ∗ population depending
on R0. The parameter values are c0 = 0.05, c1 = 5, p = 0.05, s = 0.01, B = 0.2, and the remaining
parameter values are taken from Table 1. Solid (dashed) line denotes stable (unstable) steady state

to 250 [69,70] vectors per plant, and we have chosen the maximum vector abundance
per plant to have the baseline value of m = 80. In Fig. 1 we fix the values of all
parameters and allow the rate λ0 of disease transmission from infected vectors to plants
to vary, which allows us to explore how the steady-state values of the infected biomass
and vector population change with the basic reproduction number. For R0 < 1, the
endemic steady state is not feasible, and, in accordancewith Proposition 1, the disease-
free steady state E2 is feasible and stable. As the basic reproduction number increases
and crosses unity, the endemic steady state E∗ becomes biologically feasible, and for
small values of R0 it is stable, with the values of Y ∗ and V ∗ increasing with R0. For
some value of the basic reproduction number, the equilibrium values of Y ∗ and V ∗
reach their maxima, and subsequent increase of R0 results in the reduction of these
values. Furthermore, for sufficiently high value of R0, the steady state E∗ loses its
stability via a Hopf bifurcation in agreement with Theorem 1.

Figure 2 illustrates the behaviour of the model for different values of λ0, with other
parameters chosen in such a way that it ensures biological feasibility of the endemic
equilibrium E∗. For sufficiently small λ0 < λ∗

0, the equilibrium E∗ is stable, and for
λ > λ∗

0, the Hopf bifurcation has taken place, and the system exhibits sustained peri-
odic oscillations around E∗. Further details of this transition to instability are provided

123



446 K. B. Blyuss et al.

0 500 1000 1500 2000

 Time (days)

5

10

15

20
H

ea
lth

y 
pl

an
t

bi
om

as
s,

 X
(a)

0 500 1000 1500 2000

  Time (days)

4

6

8

10

12

In
fe

ct
ed

 p
la

nt
 b

io
m

as
s,

 Y
 

(b)

0 500 1000 1500 2000

  Time (days)

500

1000

1500

2000

H
ea

lth
y 

ve
ct

or
, U

 

(c)

0 500 1000 1500 2000

  Time (days)

20

40

60

80

100

In
fe

ct
ed

 v
ec

to
r,

 V
 

(d)

Fig. 2 Numerical solution of the model (1) for parameter values as in Fig. 1 and λ0 = 0.0005 (solid),
λ0 = 0.0008 (dashed), and λ0 = 0.00101 (dotted)

in Fig. 3, which shows a bifurcation diagram for the steady state E∗ depending on the
transmission rate λ0. One observes that higher values of the disease transmission rate
not only cause instability of the equilibrium E∗, but also result in a higher amplitude
of oscillations around this steady state. Figure 4 illustrates similar behaviour when all
parameters are fixed, and the baseline rate c0, at which MBs cause death of vectors
through RNAi, is varied. Counter intuitively, we observe that increasing this rate, i.e.
making MBs more efficient, results in the suppression of oscillations and stabilisation
of the endemic equilibrium E∗.

Figure 5 demonstrates different types of dynamics that can be exhibited by the
system depending on various parameters. Figure 5a suggests that for a sufficiently
small value of the product of two disease transmission rates λ and β, the disease-free
steady state E2 is stable, and as the value of this product increases, this steady state
loses its stability via a steady-state bifurcation as discussed in Proposition 1, giving
rise to a stable endemic steady state E∗. Surprisingly, a further increase of the product
of two disease transmission rates eventually destabilises E∗ via Hopf bifurcation, as
discussed in Theorem 1, leading to the onset of stable periodic oscillations around
this state. Figure 5b shows that for a higher rate of disease transmission, a larger
amount of biostimulants B is required to eradicate the disease. Parameter values in
this plot satisfy the condition b > c(B)K for any positive value of B, which means
that the axial equilibrium E1 is always unstable, while the disease-free equilibrium E2
is feasible everywhere. Figure 5c indicates that increasing the rate of RNAi-induced
mortality of vectors c0 first results in the stabilisation of the endemic steady state,
and then it eliminates the disease by making the endemic steady state infeasible and
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Fig. 3 Bifurcation diagram of the endemic steady state E∗ depending on the transmission rate λ0, with other
parameter values as in Fig. 1. Solid line shows a stable E∗, while dots indicate minimum and maximum
values of the periodic solution around E∗ where it is unstable
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Fig. 4 Numerical solution of themodel (1) for parameter values as in Fig. 1 with λ0 = 0.0025, and c0 = 0.1
(solid), c0 = 0.08 (dashed), and c0 = 0.05 (dotted)
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Fig. 5 Stability of steady states of the system (1). Disease-free equilibrium E2 is stable in red region;
endemic equilibrium E∗ is stable in violet region and unstable in yellow region; axial equilibrium E1 is
stable in light blue region. Parameter values are taken from Table 1, except for p = 1.2, s = 0.01, c1 = 2.5.
a B = 5.2, c0 = 0.01, b β = 0.0025, c0 = 0.01, c c1 = 5, β = 0.0012, B = 5.2, d c1 = 5, β =
0.0012, λ0 = 0.0005

stabilising the disease-free steady state, and finally stabilises the axial equilibrium
E1, characterised by a complete eradication of vectors. Figure 5d shows that the total
amount of biostimulants B plays a complementary role in disease control in that
increasing either of c0 or B leads to a sequence of transitions between stable endemic,
disease-free, and axial steady states. For smaller values of B and c0, the endemic
steady state E∗ exists and is unstable, and increasing either of those parameters leads
to stabilisation of this steady state. A further increase in those parameters, which is
equivalent to decreasing the value of the transmission rate λ(B) defined in (3) and
increasing the amount of applied biostimulants c(B) defined in (4), results in reducing
the value of the basic reproduction number R0 as given in (7). As soon as the value of
R0 crosses the threshold value of 1, in accordance with Proposition 1, the disease-free
steady state E2 becomes stable. A further increase in B and/or c0 eventually results in
violating the condition b > c(B)K , resulting in making the disease-free steady state
E2 biologically infeasible, and the axial equilibrium E1 stable.

To obtain a better insight into how the biostimulant affects the endemic steady state
E∗, in Fig. 6 we have plotted the bifurcation diagram of this steady state with B being
a free parameter. This figure illustrates how increasing the amount of biostimulant
results in the stabilisation of E∗ as B crosses some critical value B∗, in agreement
with Theorem 1. One also observes that when E∗ is stable, for sufficiently small
values of the applied biostimulant B, all components of the endemic steady state are
growing with B, suggesting a counter-intuitive result that through enhancement of
plant growth, the biostimulant also effectively sustains the presence of infection. For
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Fig. 6 Bifurcation diagram of the endemic steady state E∗, depending on the amount of biostimulants, B,
with parameter values taken from Table 1, except for c0 = 0.05, c1 = 5, p = 0.05, s = 0.01, λ0 = 0.0025.
Solid line shows a stable E∗, while dots indicate minimum and maximum values of the periodic solution
around E∗ where it is unstable

much higher values of B, the populations of infected plants and vectors decrease, until
eventually the endemic steady state becomes infeasible, and the system tends to a
stable disease-free steady state, as shown earlier in Fig. 5.

5 Discussion

Due to the wide spread of mosaic disease in different geographical regions, and its
major negative economic and societal effects associated with a substantial reduction in
yields of major agricultural crops, it is of paramount importance to establish effective
means for control of this disease. In this paper we have analysed a mathematical
model for the use of natural microbial biostimulants to improve plant performance
and protect them against mosaic disease. The protective effect of MBs based on RNA
interference was taken to be in the form of reducing the level of transmission of
mosaic virus from infected whitefly to healthy plants, as well as in causing mortality
of whitefly by silencing their essential housekeeping genes. Analysis of stability of
the model’s steady states has revealed how different parameters characterising the
performance ofMBs, such as their ability to reduce disease transmission fromwhitefly
to plants, or their effect on thewhiteflymortality can result in eradication of the disease,
maintaining it at some steady level, or causing periodic oscillations in the level of
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disease. One interesting observation is that increasing the rate of disease transmission
from either vectors to plants, or from plants to vectors, actually causes an instability of
the endemic steady state via aHopf bifurcation,which is associatedwith the emergence
of stable oscillations in the populations of plants and vectors. For the fixed parameters
characterising disease transmission, increasing the amount of MBs being used, or
increasing their effectiveness in causing vector mortality, first results in suppressing
oscillations and stabilising disease at some steady level, then eradicating it andmoving
the system to a stable disease-free steady state, and eventually in stabilising a boundary
equilibrium, which represents a complete elimination of the vector population. Again,
one should note a rather counterintuitive result that for intermediate values of these
two parameters increasing their values leads to a stabilisation of endemic steady state.
Our analysis establishes critical values of parameters required for disease eradication,
while also showing various alternative mechanisms through which basic reproduction
number can be brought to the value below unity, which provides several alternative
practical routes for control of mosaic disease in specific farming circumstances.

There are several directions, in which the work presented in this paper can be
extended to make it more realistic, as well as more practically oriented. In the current
version of themodel, we only included the effect ofMBs on reducing disease transmis-
sion from infected vectors to healthy plants, and this restriction can be removed by also
considering an analogous effect of reducing disease transmission from plants to vec-
tor, based on the idea that successful within-plant RNAi reduces the amount of viable
free virus particles that are produced within plant cells and which can be consumed by
vector when feeding on plants. One can also include in the model interactions between
the effects of MBs and other available strategies for control of mosaic disease, such
as roguing [7]. Since the use of MBs largely relies on farmers’ awareness about the
mosaic disease, one can also consider how different types of disease awareness and
corresponding use of MBs affect progression and control of mosaic disease, as has
been recently explored in the context of using nutrients and insecticides [71]. It should
be noted that there are different methods of applyingMBs to plants, including soaking
of seeds prior to sowing, applying them to themedium, inwhich the plants are growing,
or spraying them directly on growing plants [52,54,64]. Each of these approaches has
its own benefits and limitations in terms of costs, ease of implementation, and the effi-
ciency of inducing within-plant production of relevant RNAi compounds. Laboratory
and field experiments have shown the effectiveness of MBs in protecting cereal crops
and vegetables against insects and plant parasitic nematodes [50,52], clearly indicat-
ing the feasibility of using MBs to protect plants against parasites and pathogens, in a
manner similar to existing approaches using RNAi for protecting crops against plant
viruses [13,25,72]. This paper has identified main effects of MBs on the dynamics of
mosaic disease from the perspective of disease control and eradication. At the same
time, to ensure that MBs deliver their desired effect in an optimal way in terms of
cost-effectiveness and minimum negative effect on the environment, one can extend
the analysis of our model by considering it from the perspective of optimal control
theory in a manner similar to Venturino et al. [10]. Combined with more detailed
experimental data on transmission of begomovirus between plants and vectors, this
would then guide the development of practical recommendations on the best use of
microbial biostimulants subject to various logistical and financial constraints, which
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would greatly facilitate the implementation of control of mosaic disease by farmers in
different settings.
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