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Abstract

We present a model for the spatio-temporal behaviour of films exposed to radiative heating, where the film can change reversibly between
amorphous (glassy) and crystalline states. Such phase-change materials are used extensively in read–write optical disk technology.

In cases where the heat absorption of the crystal phase is less than that in the amorphous state, we find that there is a bi-stability of the phases.
We investigate the spatial behaviours that are a consequence of this property and use a phase field model for the spatio-temporal dynamics in
which the phase variable is coupled to a suitable temperature field. It is shown that travelling wave solutions of the system exist and, depending
on the precise system parameters, these waves can take a range of forms and velocities. Some examples of possible dynamical behaviours are
discussed and, in particular, we demonstrate that the waves may collide and annihilate. The longitudinal and transverse stability of the travelling
waves are examined using an Evans function method which suggests that the fronts are stable structures.
c© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Phase field models are known to be an effective method
for simulating the solidification of alloys [9,15,16,31,32].
The phase field itself is, in general, a function of both
space and time, and quantifies the crystalline fraction present
within a sample. Of the other physical processes present,
it is thought that the variation in temperature is the most
important, and coupled systems can be derived that relate
the evolution of phase field to the temperature distribution.
Such equations have been used successfully to study dendritic
growth analytically and numerically during both isotropic and
anisotropic solidification. More recently, phase field methods
have been extended to describe the formation of grain
boundaries during solidification [17,19], in which case the
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crystalline orientation in the solid phase must also be taken into
account. Another area where phase field methods are known to
be helpful is in reproducing physical results concerning systems
with memory [12,24]. In this class of problem, processes are
typically characterised by some slow time relaxation and, as a
result, the whole system becomes non-local in time.

In this paper we concentrate on the use of a phase
field approach in modelling fronts that can arise during the
crystallisation of a phase-change alloy such as Ge2Sb2Te5
(GST), which is used as an active material for mass data
storage and, in particular, for optical disk memory technology
[18,28,30]. If this material is illuminated with a laser to its
melting temperature and then cooled rapidly, the crystallisation
process is quenched before nucleation and growth can occur;
this results in the sample being transformed to an amorphous
phase. Conversely, if the sample is heated to a temperature
lower than the melting point (but before the nucleation cluster
size gets too large), one can induce rapid growth of crystals
in the sample. Since the material properties of the solid and
amorphous phases are markedly different, the state of the
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system can be determined simply by illuminating it with a low
power laser and measuring the reflected light, or by finding
some other physical characteristic such as its conductivity.

Depending on the wavelength of the illuminating laser and
the exact structure of the sample and its surroundings, the rate
of absorption of heat from the laser can vary considerably with
phase. In this work we consider some fundamental phenomena
induced by this effect. We suggest that they might appear
experimentally and should be controlled in the use of phase-
change materials for optical recording. To be specific, we
incorporate illumination and phase-dependent absorption in the
equation for the temperature variation, and this influences the
phase-change processes, as described by the field equation.
As will be shown, depending on the values of parameters, the
system will admit the crystallisation/melting fronts, which will
have sharp interfaces and propagate with a constant velocity.
Physically, these fronts correspond to the situation when one
phase completely invades the space occupied by another phase.
The velocity of those fronts cannot be taken arbitrarily, but
rather it is determined by the problem parameters.

An important issue relates to the stability of these
crystallisation/melting fronts and, to study the linearized
stability problem, we implement the so-called Evans function
method. This technique, originally described in [10] and later
refined by Alexander et al. [1], centres on the construction
of a particular complex analytic function associated with
linearization about the travelling wave (a precise definition is
given in Section 5.1). These Evans functions are constructed
by integrating the eigenvectors of the appropriate linearization
operator over space, and the first numerical evaluation of
an Evans function was given in [10]; other examples are
those by Swinton and Elgin [29] and Pego et al. [23]. There
are two common potential difficulties associated with the
calculation of the Evans function. The first of these occurs
when eigenvectors corresponding to a pair of eigenvalues with
negative real parts are integrated over a large range. With most
numerical integration schemes, such eigenvectors tend to lose
their linear independence and, whilst in other contexts this
loss of independence can be alleviated by implementing some
kind orthogonalization scheme, here the downside is that the
analyticity of the Evans function tends to be compromised by
the method. The second difficulty encountered in computing the
Evans function is that starting eigenvectors will not, in general,
be analytic for all values of the spectral parameter. Fortunately,
both problems can be circumvented by using exterior algebra
and the compound matrix method used by Gilbert and Backus
[13] for the study of elastic wave propagation in stratified
media, and by Ng and Reid [21] for hydrodynamic stability
problems. Exterior algebra was employed by Brin [7,8] in his
numerical framework for Evans function computations, which
makes use of Kato’s theorem to establish the existence of
globally analytic eigenvectors. Bridges et al. [6] circumvent the
problem of analytic continuation of eigenvectors by developing
a method to compute these eigenvectors directly.

When using the compound matrix method, the solutions do
not lie in a linear space, but rather on a Grassmanian manifold,
and the numerical integration scheme ought to be chosen in
Fig. 1. Schematic diagram showing the modelling of the melting dynamics of
a sample under uniform irradiation but phase-dependent absorption. The phase
φ varies between −1 (melt) and 1 (solid), respectively.

such a way that it preserves this manifold. Allen and Bridges
[2] have shown that the class of Gauss–Legendre Runge–Kutta
(GL–RK) methods does this for the Grassmanian G2(C4) to
machine accuracy. This result motivates the particular choice
of the numerical integrator employed in this paper.

The outline of the paper is as follows. In the next section
the details of the model are introduced, and its elementary
properties in terms of steady states and their stability are
discussed in Section 3. In Section 4 numerical simulations are
used to find solidification/melting fronts and investigate the
dependence of their velocity on the problem parameters. Both
the one- and two-dimensional stability of the frontal solutions
are examined in Section 5 using the above-mentioned Evans
function approach. The paper concludes with a summary of our
principal findings, together with a brief consideration of their
implications.

2. The mathematical model

To begin, we consider a one-dimensional sample of
homogeneous material occupying some region Ω , and
introduce the phase field φ(x, t); the convention adopted is that
φ ∈ [−1, 1], with the lower limit φ = −1 corresponding to
pure melt while φ = 1 represents solid. Fig. 1 sketches the
set-up that we envisage; a sample of phase-change material
is subjected to uniform radiative heating, which can lead to
the formation of a travelling solidification or melting front.
Physically, our domain corresponds to a one-dimensional slice
of a two-dimensional crystal with the dynamics uniform in the
perpendicular direction.

The dynamics of phase-change processes is based on the
phase field equation used by Karma and Rappel [15] in their
study of crystal growth:

∂tφ = −∂φ f (φ)− uλ̂∂φg(φ)+ p2
∇

2φ. (1)

The solidification dynamics is governed by the functions f and
g given by

f (φ) = −
φ2

2
+
φ4

4
and g(φ) = φ −

2φ3

3
+
φ5

5
,
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the interface thickness p is a small parameter and λ̂ is a measure
of the strength of coupling between the phase field φ and a
dimensionless temperature field u. More specifically, u ≡ (T −

TM)/(L/cP ), where T is the temperature of the sample which
melts when T = TM, L is the latent heat of melting, and cp is
the specific heat at constant pressure. We remark that the time
variable has been scaled so as to incorporate the characteristic
time τ of attachment of atoms at the interface. Eq. (1) can be
thought of as a phenomenological balance driving the evolution
of the system toward equilibrium states as given by the minima
of free energy. To see this, we notice that, if one introduces a
Helmholtz free energy

F =

∫
Ω

dx
[

p2

2
|∇φ|

2
+ E(φ, u)

]
, (2)

with an energy density E(φ, u) = f (φ)+ λ̂ug(φ), then Eq. (1)
can be recovered simply by setting [15]

φt = −
δF
δφ
,

which indicates that temporal dynamics of the phase field is
indeed trying to minimise the free energy F .

To complete the description of the system, the phase field
equation is augmented by one for the temperature evolution. In
our case, this has the form

∂t T = [a1 + a−1 + (a1 − a−1)φ]
I

2

+ b(Ta − T )+ d∇
2T + δ∂tφ/2, (3)

where a±1 are the radiative absorption coefficients for the solid
and molten phases, b is a thermal emission coefficient, Ta is
the ambient temperature (Ta � TM), d denotes a thermal
diffusivity, δ = L/cp, and I is the rate of incident heating.
The last term in (3) corresponds to the latent heat production
at the interface [15] and, under the assumption that the energy
throughput of the system is large compared to the latent heat
and changes in specific heat, it can be omitted to give

∂t T = [a1 + a−1 + (a1 − a−1)φ]
I

2
+ b(Ta − T )+ d∇

2T . (4)

Eqs. (1) and (4), together with appropriate boundary conditions,
form a closed system for the phase-change processes that occur
in a sample of material when uniformly irradiated by a laser.

3. Steady states

We begin our analysis by studying spatially uniform steady
states of the system (1) and (4). These are given as solution
pairs (φ, T ) of the nonlinear problem

φ(1 − φ2)− λ̃(T − TM )(1 − φ2)2 = 0,

1
2
[a1 + a−1 + (a1 − a−1)φ]I + b(Ta − T ) = 0,

(5)

where λ̃ ≡ cpλ̂/L . The second of these equations is linear, and
so it is simple to relate the equilibrium phase to the temperature
as

T = Ta +
[
a1 + a−1 + (a1 − a−1)φ

] I

2b
. (6)

System (5) admits equilibria

(φ, T ) = (−1, T−1) and (φ, T ) = (1, T1), (7)

where

T±1 = Ta +
a±1 I

b
.

From the physical point of view, these equilibria correspond to
the situations when the system consists totally of either melt or
solid.

Experimentally, the relation between absorption coefficients
of the molten and solid phases can be altered by changing the
stoichiometry of the materials involved, by changing the multi-
layer structure of the optical disc [35] or the wavelength of
illumination. In particular, it is possible to achieve the situation
in which the heat absorption coefficient of the melt exceeds that
of a solid:

a−1 > a1. (8)

In this case, there is a bi-stability between the solid/melt states.
For the remainder of the paper we assume that the relation
(8) between absorption coefficients of melt/solid phases holds.
From this relation, one can find that, for a certain range of
intensities I , it is possible to satisfy the inequality

a−1 I

b
> TM − Ta >

a1 I

b
, (9)

or, in other words, T1 < TM < T−1, which implies a physically
realistic situation when the equilibrium temperature of melt
exceeds the melting temperature TM, while the equilibrium
temperature of the solid state is lower than TM. Notice also that
the particular form of Eq. (1) means that the stability of the
steady states (±1, T±1) does not depend on the actual relation
between absorption coefficients or the intensity I of external
irradiation.

Assuming that φ 6= ±1, one can reduce (5) to a cubic
equation for the equilibrium phase:

φ − λ̃(A + Bφ)(1 − φ2) = 0, (10)

where

A =
T1 + T−1

2
− TM and B =

T1 − T−1

2
. (11)

It follows that B < 0 and |A| ≤ |B| and, if we introduce the
quantities

α =
A2λ̃− 3B(1 − Bλ̃)

9B2λ̃
β =

2A2λ̃− 9B − 18B2λ̃

27B3λ̃
, (12)
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then Eq. (10) has three real roots φ1 − φ3 given by

φ1 = −
A

3B
+

2
3B

√
A2λ̃− 3B(1 − Bλ̃)

λ̃
sinψ,

φ2,3 = −
A

3B
∓

2
3B

√
A2λ̃− 3B(1 − Bλ̃)

λ̃
sin

(π
3

± ψ
)
,

(13)

where the angle ψ satisfies 2α3/2 sin(3ψ) = β and |ψ | ≤ π/6.
Depending on the precise relation between A, B and λ̃, there
can be one or more roots with φ ∈ [−1, 1], which, from the
physical point of view, are the ones of interest.

The additional steady states that do not correspond to either
pure melt or pure solid are referred to as “mushy layers”
and these have been used to model porous regions made up
of crystals surrounded by residual melt [27,33,34]. A mushy
layer separates the region occupied by the completely solidified
material from that occupied by the melt phase. Mushy layers
may form as a result of the morphological instability of
a solidification front [20] and occur frequently during the
solidification of binary and ternary alloys [3]. The presence
of a mushy layer during solidification can greatly influence
the transport of heat, mass and solute, and therefore the final
solidified product. Within mushy layers, a local thermodynamic
equilibrium prevails, and this can be maintained experimentally
on a time scale of a few seconds for metallic mushy layers [11].
For our system, we can interpret the steady states with the solid
fraction σ (defined as (1 + φ)/2) not equal to 0 or 1 as the
states of mushy layer, where the transition from melt to solid
takes place.

To examine the stability of the steady states (φ̂, T̂ ), we
linearise system (1) and (4) around (φ̂, T̂ ) and look for
solutions in the form

(φ(x, t), T (x, t)) = (φ̂, T̂ )+ (C1,C2) exp(ikx + µt)

with C1,2 constants. This leads to the dispersion relation

µ2
+ µ[b + (d + p2)k2

− 1 + 3φ̂2
− 4λ̃φ̂(T̂ − TM)(1 − φ̂2)]

+
1
2
λ̃(1 − φ̂2)2(a1 − a−1)I + p2k2(b + dk2)

− (b + dk2)[1 − 3φ̂2
+ 4λ̃φ̂(T̂ − TM)(1 − φ̂2)] = 0

(14)

from which it follows readily that already linearly stable steady
states are further stabilised by diffusion. However, this does
not exclude the possibility of the existence of linearly unstable
equilibria, which would correspond to the mushy states.

4. Travelling wave solutions

To examine the properties of solidification fronts, it is
convenient to look for solutions of (1) and (4) in the form of
travelling waves

φ = ψ(z), T = S(z), z ≡ x − ct.
The substitution of these expressions into the governing system
yields the fourth-order problem

p2ψ ′′
+ cψ ′

+ [ψ − λ̃(S − TM)(1 − ψ2)](1 − ψ2) = 0,

d S′′
+ cS′

+ [a1 + a−1 + (a1 − a−1)ψ]
I

2
+ b(Ta − S) = 0,

(15)

where the prime denotes a derivative with respect to z. Two
equilibria exist: these are (ψ, S) = (±1, T±1), and a travelling
wave represents a heteroclinic connection between them. The
linearization of the system (15) near either of the equilibria
leads to a spectrum

spec(A)=
{
−

c

2p2 ±
1

2p2

√
c2 + 8p2,−

c

2d
±

1
2d

√
c2 + 4bd

}
and it follows that the dimensions of the stable and
unstable manifolds of the equilibria are dim W u(1, T1) =

dim W s(−1, T−1) = 2. Hence, generically these two manifolds
do not intersect in a four-dimensional ambient space, and
the heteroclinic connections exist only for isolated values of
velocity c, which is determined by the model parameters.

In order to obtain insight into the possible existence of
various travelling waves for different values of parameters, we
solved the system (1) and (4) numerically using the Fortran
NAG routine D03PCF. Since we are looking for travelling
waves, the numerical domain of integration was taken to be
large compared to the front width, and typically the system
was solved for x ∈ [−L , L] with L ≈ 100. For simplicity,
Neumann conditions were imposed at the ends of the domain,
but the results shown are not sensitive to the exact forms of any
physically sensible boundary conditions.

As a first example, we present in Fig. 2(a) the results of
simulations when the initial condition was taken to be a simple
periodic function of the form

φ(x, 0) = sin(x/10),

T (x, 0) =
T1 + T−1

2
+

T−1 − T1

2
sin(x/10).

(16)

What one observes is an initial steepening of the sine
profile, which eventually develops into shock-like structures.
Neighbouring fronts then start propagating in opposite
directions, which results in annihilation and the consequent
disappearance of any wave structure. In this case, the system
settles on a uniform steady state corresponding to solid
everywhere.

To illustrate the evolution of (1) and (4) from a profile that
approaches the steady states (1, T1) and (−1, T−1) as x → −∞

and x → ∞, we next consider the initial condition

φ(x, 0) = −tanh(x/10),

T (x, 0) =
T1 + T−1

2
+

T−1 − T1

2
tanh(x/10).

(17)

In the simulations whose results are shown in Fig. 2(b), we
broke the symmetry between the two steady states by choosing
the melting temperature TM to be closer to the equilibrium
temperature T−1 of the molten phase than its value T1 for the
solid. As before, the solution initially steepens and quickly
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Fig. 2. Shape of crystallisation fronts in the system (1) and (4) with the
parameters a1 = 4, a−1 = 6, I = 1.2, b = 1, λ = 1, p = 0.316, d = 1, Ta =

2.9 and TM = 9.8 at t = 0 (dotted), t = 0.5 (dashed) and t = 10 (solid). (a)
Sinusoidal initial condition Eq. (16). (b) Initial condition given by Eq. (17).

reaches the state characterised by a sharp interface separating
the phases. This solution then propagates without change of
shape. In this case, the solutions are the solidification fronts,
i.e. the solid phase invades the space of the molten phase.

With the same values of parameters but now with the
melting temperature chosen to be closer to that of the solid
phase, then the same initial conditions will result in melting
fronts; these are fronts that propagate in the opposite direction.
Fig. 3 shows the effects on the front velocity of varying the
melting temperature and light intensity. (Negative values of
velocity correspond to the fronts propagating in the negative
x-direction.) Fig. 3(b), which relates to a fixed TM = 9.8 and
varying laser intensity I , suggests that the velocity decreases
almost linearly with increasing I until some maximum intensity
is reached; the existence of such a great I is evident from the
form of conditions (9). For fixed values of parameters, there
comes a point when one of these inequalities must be violated.
Another interesting symmetry that follows directly from the
Eqs. (1) and (4) is that changing x → −x , and also changing
the sign of velocity c → −c, leaves this system invariant. This
means that, whenever system (1) and (4) admits solidification
fronts going to the right, it also admits solidification fronts
propagating to the left.

5. The stability of travelling waves

Now that the existence of travelling front solutions has been
established for selected parameter values, the next important
question to be answered is that of their stability. Unfortunately,
Fig. 3. Variation in the velocity c of front solutions of system (1) and (4) with
parameters chosen as a1 = 4, a−1 = 6, b = 1, λ = 1, p = 0.316, d = 1 and
Ta = 2.9. (a) Changing melting temperature TM with fixed light intensity I =

1.2. (b) Changing light intensity I with fixed melting temperature TM = 9.8.

this question is not clear-cut, for there exist several possible
definitions of travelling wave stability, each reflecting some
particular characteristic of the problem. Among the most often
studied is the issue of linear stability, which reflects the absence
of any eigenvalues with positive real part in the spectrum of
the linearization near the travelling wave. A more advanced
approach is that of nonlinear, or Lyapunov, stability, which
means that, in a properly defined functional space, there exists
a class of initial conditions that tend to the travelling wave
solution as time goes to infinity. A modern review of stability
of travelling waves with an emphasis on dynamical systems
approaches can be found in Sandstede [26].

In this work we concentrate on linear stability methods
and consider two types of perturbations: longitudinal and
transverse. The former represent physically small changes in
the shape of fronts that travel in the same direction as the
fronts themselves. The transverse perturbations correspond to
a perturbation whose direction of propagation is different from
(and possibly orthogonal to) the basic direction of front motion.
As the method of choice for the analysis of linear stability,
we use an approach mentioned in the introduction. This is a
dynamical systems formulation of the stability problem that
makes use of a complex valued function, called the Evans
function, whose zeros correspond to the isolated eigenvalues of
the linearization operator. The Evans function method has been
used successfully to study the linear longitudinal and transverse
stability of solitary waves in various hydrodynamical contexts
[5,6] and in systems describing the dynamics of chemical
reactions [4] or combustion waves [14].
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5.1. Longitudinal stability

We start by considering the one-dimensional linear stability
of the travelling waves found earlier. Let the solution of the
system (1) and (4) be

(φ(x, t), T (x, t)) = (ψ(z), S(z))+ Re{exp(µt)(φ̃(z), T̃ (z))},

(18)

where ψ(z) and S(z) are the travelling waves from the previous
section. Substituting this into (1) and (4) and linearising gives,
after dropping the tildes,

p2φ′′
+ cφ′

+ [1 − µ− 3ψ2(z)]φ

+ P(z)φ − λ̃T [1 − ψ2(z)]2
= 0,

dT ′′
+ cT ′

= (b + µ)T −
1
2
(a1 − a−1)Iφ,

(19)

where the auxiliary function P(z) is defined by

P(z) = 4λ̃ψ(z)(S(z)− TM)[1 − ψ2(z)].

The travelling wave (ψ(z), S(z)) is linearly unstable if one can
find a bounded solution of the system (19) with an associated
growth rate µ having positive real part. In order to tackle this
problem, we rewrite the system (19) as a first-order system

vz = A(z, µ)v, (20)

where v = (φ, φz, T, Tz)
T and A(z, µ) is given by

A(z, µ) =


0 1 0 0

a21 −c/p2 a23 0
0 0 0 1

(a−1 − a1)I/2d 0 (b + µ)/d −c/d


(21)

where a21 ≡ [µ + 3ψ2(z) − 1 − P(z)]/p2 and a23 ≡ λ̃(1 −

ψ2(z))2/p2. In the limit z → ±∞, this matrix reduces to a
constant form A∞(µ) ≡ limz→±∞ A(z, µ) with eigenvalues

spec(A∞) =

{
±

√
µ+ 2

p
,±

√
d(b + µ)

d

}
. (22)

This spectrum implies that there is a two-dimensional subspace
of solutions U+(z, µ) of Eq. (20) that decay exponentially as
z → +∞ and another two-dimensional subspace of solutions
U−(z, µ) that decay exponentially as z → −∞. If these two
subspaces have a non-trivial intersection for some value of µ,
then this is an eigenvalue of the problem (20).

One can define the Evans function as [1]

E(µ) = exp
(

−

∫ z

0
τ(x, µ) dx

)
U−(z, µ) ∧ U+(z, µ), (23)

where ∧ is the wedge product, and

τ(z, µ) = Tr[A(z, µ)]. (24)

Zeros of the Evans function correspond to the intersection
of the above-mentioned subspaces, and the requisite µ are
then the eigenvalues of the linearised stability problem (19).
In calculating the Evans function, we follow the numerical
approach developed by Bridges et al. [6] in the context of
the fifth-order KdV equation. To be more specific, we use the
compound matrices to describe the dynamics of the subspaces
U− and U+, as well as the Hodge star operator to match
these solutions at z = 0. Moreover, we note that our problem
possesses a 2-2 splitting of eigenvalues at infinity and results [2]
have shown that use of the implicit midpoint rule to perform the
time integration will preserve the integrity of the Grassmanian
manifold to machine accuracy.

For the purposes of numerical calculations, one notices that
U+(z;µ) and U−(z;µ) can be thought of as paths in a wedge
space

∧2
(C4) of two-forms on a complex four-dimensional

space, which can be identified with C6. Their dynamics can
hence be determined by integrating the system

d
dz

U = A(2)(z, µ)U, U ∈

2∧
(C4), (25)

where the induced matrix A(2) :
∧2
(C4) →

∧2
(C4) is

defined on a decomposable 2-form x = x1 ∧ x2 as A(2)x :=

Ax1 ∧ x2 + x1 ∧ Ax2; see [2].
One can introduce the limiting matrix A(2)∞ (µ) defined by

A(2)∞ (µ) = lim
z→±∞

A(2)(z, µ) (26)

and then for Re(µ) > 0 the matrix A(2)∞ (µ) has an eigenvalue
σ+(µ), which is the sum of two eigenvalues of A(µ) having
negative real parts. This eigenvalue σ+(µ) is simple, is an
analytic function of µ, and corresponds to an exponentially
decaying behaviour at z → +∞, [2]. Similarly, there exists
an eigenvalue σ−(µ) which corresponds to an exponentially
decaying behaviour at z → −∞, and which is the sum of the
two eigenvalues of A(µ) with non-negative real parts. If ζ±(µ)

are the eigenvectors associated with σ±(µ) so

A(2)∞ (µ)ζ±(µ) = σ±(µ)ζ
±(µ),

then the solutions U of the system (25) have the property
limz→±∞ U(z;µ) = ζ±(µ).

In parallel to system (25), one can also consider the adjoint
problem

d
dz

V = −[A(2)(z, µ)]TV, V ∈

2∧
(C4) (27)

and identify the most unstable solution V− at z = −∞

of this equation with the most unstable solution U− of
the linearised system (25) at z = −∞. The asymptotic
behaviours of such solutions is governed by the relation
limz→−∞ exp(σ+(µ)z)V−(z, µ) = η−(µ), where η−(µ) is the

eigenvector of the matrix −A(2)
T

associated with the eigenvalue
−σ+; see [2,6].

In order to simplify the numerical implementation, the inner
product on

∧2
(C4) can be identified with the inner product

〈·, ·〉6 on C6, and then the Evans function may be written as [6]

E(µ) = 〈V−(0, µ),U+(0, µ)〉6. (28)
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This function is approximated by integrating the equation

d
dz

Ũ
+

= [A(2)(z, µ)− σ+(µ)Id]Ũ
+
, Ũ

+
|z=L∞

= ζ+(µ),

(29)

with an implicit midpoint rule from z = L∞ (L∞ � 1) to z =

0. (Note that the scaling Ũ
+
(z, µ) = exp(−σ+(µ)z)U+(z, µ)

removes the exponential growth.) For z < 0, we integrate the
adjoint equation

d
dz

Ṽ
−

= [−A(2)(z, µ)
T

+ σ+(µ)Id]Ṽ
−
,

Ṽ
−
|z=−L∞

= η−(µ), (30)

from z = −L∞ to z = 0 with the corresponding Ṽ
−
(z, µ) =

exp(σ+(µ)z)V−(z, µ). The eigenvectors of the limiting matrix
A(2)∞ are normalised as 〈η−(µ), ζ+(µ)〉 = 1; it is noted that,
with this choice, the analyticity of the Evans function defined
in (28) is maintained numerically even if the eigenvectors
themselves are not continued analytically [6]. At z = 0, the
Evans function now admits an equivalent form

E(µ) = 〈V
−
(0, µ),U+(0, µ)〉6 = 〈Ṽ

−
(0, µ), Ũ

+
(0, µ)〉6 .

(31)

Results of the Evans calculations are presented in Fig. 4
for the travelling fronts found in the previous section. All the
parameters are as before except for the melting temperature,
which is chosen to be TM = 9.8. In this case, the system (1)
and (4) possesses a solution in the form of a crystallisation front
moving to the right with a constant velocity, which can be found
numerically as c ≈ 0.23418.

First, we perform calculations along the real µ axis. In this
case, the Evans function itself is also real and, as Fig. 4(a)
shows, it asymptotically approaches a constant value of E(µ) =

1 as µ → ∞ (this is a consequence of the earlier choice
of normalisation of eigenvectors of A(2)∞ (µ)). At very small
values, the increment in µ was as tiny as 10−8, but these steps
gradually increased with µ. The fact that system (1) and (4)
admits travelling fronts only for a single value of c suggests
that the Evans function has a simple zero when the spectral
parameter vanishes and so has a linear behaviour near zero — a
supposition that is supported by the inset to Fig. 4(a). Numerical
results show that, starting with the value E(0) = 0, the Evans
function increases monotonically and never crosses zero again.
This suggests that most likely the linearized stability problem
(19) does not have any real positive eigenvalues.

To complete the linear stability analysis, one needs to
investigate the possibility of complex eigenvalues having
positive real part. In this case, we evaluated the Evans function
by varying the spectral parameter µ parallel to imaginary axis
with a small offset µ = ε + iµ̃, where typically µ̃ was varied
from 0 to 108. By Cauchy’s theorem, the winding number of
a closed curve in the µ-plane gives the number of unstable
eigenvalues. The purpose of the offset is to avoid the zero of the
Evans function at µ = 0 when calculating the winding number.
Fig. 4(b) shows the results of the calculation in this case, and
Fig. 4. (a). Evans function E(µ) evaluated along the real µ axis. (b). The real
versus imaginary parts of the Evans function E(µ) for µ varying parallel to
the imaginary axis with the small offset ε = 10−8. (The inset shows the local
behaviour near the origin.)

the inset plot proves that the winding number is zero. (The
Evans function behaviour was particularly carefully studied
very close to the origin, where the calculations were conducted
using 10−8 steps in the spectral parameter to ensure that no
eigenvalues were missed.) The fact that the winding number
vanishes means that the travelling front solutions connecting the
melt and solid equilibria are linearly stable. Of course, we can
only study numerically a finite portion of the complex plane but,
if there are eigenvalues outside the half-circle of the radius 108,
they would correspond to physically unrealistic growth rates
of the perturbation. Numerical simulations also suggested that
the stability properties of the travelling fronts do not change if
the system parameters are varied (provided, of course, that the
parameters are such that the travelling fronts remain possible).

In passing, note that the findings of Section 3 include the
result that the end states (1, T1) and (1, T−1) of the travelling
fronts are linearly stable in the homogeneous case, and that
they are further stabilised by diffusion. This implies that the
essential spectrum of the travelling fronts is bounded away to
the left of the imaginary axis, and hence their stability is fully
determined by the discrete eigenvalues analysed above by the
Evans function approach.

We have also performed some numerical simulations of
the full system (1) and (3) including some moderate heat
production. These simulations show that the system is robust
with respect to the increase in the latent heat and retains the
same features as in the case δ = 0, namely that initial profiles
also rapidly develop into sharp-interface fronts that then stably
propagate with constant velocity.
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Fig. 5. Schematic diagram showing the melting dynamics in 2D under uniform
irradiation but phase-dependent absorption. We examine the stability of the
plane travelling wavefront to perturbations in the y direction.

5.2. Transverse stability

In the previous subsection we showed that the crystallisation
fronts connecting the steady states of (1) and (4) corresponding
to the fully molten and fully crystallised states are linearly
stable. From the physical point of view, it is also of interest
to investigate the stability of the fronts with respect to
transverse perturbations, i.e. perturbations in the direction
orthogonal to that of front propagation. Fig. 5 illustrates the
two-dimensional set-up that we consider. To model this case,
we replace Laplacian operators in Eqs. (1) and (4) by their two-
dimensional counterparts: ∇

2
→ ∂xx + ∂yy .

Now one can seek solutions of the system (1) and (4) in the
form of a superposition of harmonics in the transverse direction:

(φ(x, y, t), T (x, y, t)) = (ψ(z), S(z))

+ Re
{

exp(iky + µt)(φ̃(z), T̃ (z))
}
,

where z ≡ x − ct is the travelling wave argument, k is
the transverse wavenumber, µ is the instability growth rate,
and ψ(z) and S(z) represent the one-dimensionally stable
front analysed in the previous sections. Substituting the above
expressions into (1) and (4) and linearising, one obtains (after
dropping the tildes)

p2φ′′
+ cφ′

+ [1 − µ− 3ψ2(z)− k2 p2
]φ

+ P(z)φ − λ̃T [1 − ψ2(z)]2
= 0,

dT ′′
+ cT ′

= (b + µ+ k2d)T −
(a1 − a−1)

2
Iφ.

(32)

The one-dimensional travelling fronts are linearly transversely
unstable if one can find bounded solutions of the system (32)
with Re(µ) > 0 for some transverse wavenumber k. In order
to analyse this problem, we again use Evans functions. It is
easy to see that the reformulation of (32) as a first-order system
would coincide with (20), but for the two entries a21 and a43 in
the matrix A that transform into a21 → a21 + k2 and a43 →

a43 + k2. The inclusion of these extra terms proportional to k2

does not affect the spectrum of A∞, so the same construction
Fig. 6. Stability of solidification fronts with transverse wavenumbers k = 0.1
(dotted), k = 0.5 (dashed) and k = 1 (solid). (a). Evans function E(µ) along
real µ axis. (b). The real versus imaginary parts of the Evans function E(µ) for
µ varying parallel to the imaginary axis with the small offset.

of the Evans function as before is sufficient, save for the fact
that now it also depends on the transverse wavenumber k as an
extra parameter, i.e. we have E(µ, k). In order to investigate
the possibility of transverse instability, we increase k starting
from 0, and for each fixed k the Evans function E(µ, k) is
evaluated in the complex µ-plane. If for some value of µ it
crosses zero, then this value is the eigenvalue of the linearised
stability problem corresponding to a transverse wavenumber k.

Fig. 6 shows the plots of the Evans function as a function
of a spectral parameter µ when integrated along the real µ axis
and also along the line parallel to the imaginary axis in order to
investigate the possibility of complex eigenvalues with positive
real part. The value of the transverse wavenumber k was varied
to study both the long- and the short-wavelength transverse
instability. Fig. 6(a) illustrates the Evans function evaluated
along the real axis of spectral parameter µ. The qualitative
behaviour is the same as in the one-dimensional case: the Evans
function increases monotonically and approaches its value of
unity as µ → ∞. At the same time, it is noteworthy that the
value of E(0) increases with k 6= 0, emphasising the fact that
there are no neutrally stable modes except when k = 0. This
can be seen by inspecting the linearized stability problem (32)
and observing that, in this system as compared with (19), the
eigenvalues µ have been substituted by µ + k2 p2 in the first
equation and µ + dk2 in the second equation. From here, one
can expect that if the eigenvalues µ are in the left half-plane
in the longitudinal case, in the case of transverse perturbations
they will have even more negative real parts if k > 0. The plot
of the Evans function in the complex domain of the spectral
parameter is shown in Fig. 6(b) and it confirms the absence
of eigenvalues in the complex right half-plane. This implies
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that the crystallisation fronts are persistent against perturbations
aligned away from the basic direction of their propagation.

6. Conclusions

In this paper we have used a phase field model to investigate
the effect of phase-dependent heat absorption on the dynamics
in a phase-change sample irradiated by a laser. This model
shows that the phase-dependent heat absorption is sufficient to
permit bi-stability of a single component solid/melt system.

We have shown that the bi-stability of the steady states
can be manifested on a spatial level as the existence of
travelling front solutions — melting or crystallisation fronts.
A travelling wave reduction of the full system has provided
a basis for a dynamical system formulation of the linearised
stability problem, and we have used Evans function methods to
study the stability of fronts with respect to both longitudinal
and transverse perturbations. These results suggest that the
fronts are stable in both cases. Physically, this suggests that
solidification (melting) fronts can propagate in a phase-change
sample via this mechanism, and the stability calculations imply
that they should be experimentally observable. On the other
hand, the stability of these fronts indicates that, even though
the model at hand can be used for studying the processes of
solidification and melting, it cannot be applied for the analysis
of interface instability and dendritic growth. The reason for
this is that, in the evolution equation for the temperature, the
term describing latent heat production at the interface has been
neglected in comparison with other contributions. However,
given different material properties, the inclusion of latent heat
in the thermal equation may well induce front instabilities.

It is worth noting that our model considers only a simple
radiative thermal heating effect such as is used in data storage
applications. The heating is governed by an absorption rate that
is different for the solid and molten phases; the variation of this
with wavelength and intensity of illuminating light may make
possible the control of crystallisation fronts and therefore prove
to be very useful in practice.

An interesting and important application of this work
would be in the context of so-called explosive crystallisation
within phase-change materials. Some recent studies of this
phenomenon, both theoretical and experimental in nature, have
revealed the existence of unexpectedly high velocities of the
fronts separating amorphous and crystalline regions [22,25].
The models adopted to date have neglected the difference in
the response of different phases to external heat sources but
have concentrated instead on heat loss to surrounding substrates
as well as latent heat release at the interface. An extension
of the current phase field model could incorporate the latent
heat release at the interface between amorphous and crystalline
zones and thereby lead to a better understanding of explosive
crystallisation.
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