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This paper studies the effects of distributed-delay
coupling on the dynamics in a system of non-identical
coupled Stuart–Landau oscillators. For uniform and
gamma delay distribution kernels, the conditions for
amplitude death are obtained in terms of average
frequency, frequency detuning and the parameters
of the coupling, including coupling strength and
phase, as well as the mean time delay and the width
of the delay distribution. To gain further insights
into the dynamics inside amplitude death regions,
the eigenvalues of the corresponding characteristic
equations are computed numerically. Oscillatory
dynamics of the system is also investigated, using
amplitude and phase representation. Various branches
of phase-locked solutions are identified, and
their stability is analysed for different types of
delay distributions.

1. Introduction
The dynamics of many complex physical, biological and
engineering systems can be effectively modelled mathe-
matically using ensembles of coupled oscillators [1,2].
A significant advantage of such an approach over
other methodologies lies in the possibility to identify
and study regimes with particular types of behaviour,
such as emergence and stability of cooperation and
(de)synchronization, different types of spatial patterns,
travelling waves, etc. Such analyses often provide
very important insights for practical applications.
Our understanding and treatment of various brain
pathologies and deficiencies, such as Parkinson’s,
Alzheimer’s and epilepsy, relies heavily on the analysis
of synchronization of oscillating neural populations [3–5].

2013 The Author(s) Published by the Royal Society. All rights reserved.

 on August 26, 2013rsta.royalsocietypublishing.orgDownloaded from 

http://crossmark.crossref.org/dialog/?doi=10.1098/rsta.2012.0466&domain=pdf&date_stamp=2013-08-19
mailto:y.kyrychko@sussex.ac.uk
http://rsta.royalsocietypublishing.org/


2

rsta.royalsocietypublishing.org
PhilTransRSocA371:20120466

......................................................

Recent work on laser communication networks has extensively used coupled oscillator models
to study the dynamics of in-phase or anti-phase and complete chaos synchronization [6–10].
Chimera states, where a network of oscillators splits into coexisting domains of coherent, phase-
locked and incoherent, desynchronized behaviour, have also been observed [11–15]. These studies
have shown that coupling between different elements can play a dual role in the dynamics: it can
both lead to suppression of oscillations and also facilitate a certain degree of synchronization
between different elements.

When analysing the dynamics of coupled systems, it is important to take into account the
fact that, in many cases, the coupling between different elements is not instantaneous. Time
delays associated with such coupling can have a major impact on the overall dynamics of the
system. In practical examples, these time delays are often associated with delays in propagation or
processing of signals, response time of mechanical actuators, translation and transcription time in
genetic oscillators or driver reaction time in traffic dynamics [16–21]. In all these examples, explicit
inclusion of time delays in the model has provided a more realistic and accurate representation
of the system under consideration. From a mathematical perspective, differential equations with
time delays are infinite-dimensional dynamical systems, which makes their analysis, as well as
numerical simulations, quite involved [22,23].

In the case when the coupling between oscillators is sufficiently weak, it is possible to reduce
the full system to a phase-only model [1]. A significant amount of research has been carried out
over the years on the analysis of phase oscillators with different types of time-delayed coupling
[2,24–32]. Such systems of phase oscillators demonstrate a rich variety of dynamical regimes,
including chaos, synchronization, splay and chimera states, characterized by the coexistence of
coherent and incoherent states. In many cases, coupling in the phase models leads to phase
entrainment and the emergence of the so-called phase-locked solutions, where all oscillators start
to oscillate with the same common frequency and have a constant shift between their phases. The
existence and stability of such phase-locked solutions have been studied in a number of systems
of oscillators with different types of local and non-local coupling [14,31].

For sufficiently strong coupling between oscillators, one can observe another interesting and
important aspect of dynamics of coupled oscillator systems: the ability of external coupling to
suppress otherwise stable periodic oscillations. This was first discovered by Bar-Eli in the context
of chemical reactions with instantaneous coupling [33], and it has been shown for a system of two
coupled Stuart–Landau oscillators that the ‘Bar-Eli effect’ can only occur provided the coupling
strength and the frequency detuning of the two oscillators are both sufficiently large [34–36]. Later,
it was discovered that, when the coupling is time-delayed, it is possible to achieve suppression
of oscillations and stabilization of an unstable fixed point even for identical oscillators [37,38].
This phenomenon, named amplitude death [37], oscillator death, or ‘death by delay’ [39], has
been demonstrated experimentally in nonlinear electronic circuits [40], in the dynamics of the
slime mould Physarum polycephalum [41] and in thermo-optical oscillators linearly coupled by heat
transfer [42]. Amplitude death has been subsequently studied for a number of different systems
and couplings [31,43–52].

Despite successes in the analysis of systems of coupled oscillators with time-delayed coupling,
one of the limitations of the majority of this research has been the restriction on the type of time-
delayed coupling, which is usually taken to be in the form of one or several constant time delays.
At the same time, in many realistic systems, the time delays themselves are not constant [53,54]
and may either vary depending on the values of system variables (state-dependent delays) or
just not be explicitly known. In order to account for such situations mathematically, one can
use the formalism of distributed time delays, where the time delay is represented through an
integral kernel describing a particular delay distribution [55–57]. Distributed time delay has
been successfully used to describe situations when only an approximate value of time delay
is known in engineering experiments [58,59], for modelling distributions of waiting times in
epidemiological models [60], maturation periods in population and ecological models [61,62],
as well as in models of traffic dynamics [63], neural systems [64], predator–prey and food
webs [65].
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In this paper, we investigate amplitude death and phase dynamics in a system of coupled
Stuart–Landau oscillators with distributed-delay coupling. This system is a prototype for
dynamics near a supercritical Hopf bifurcation, and, in this capacity, it captures the essential
features of many realistic systems in such a regime. The corresponding mathematical model can
be written in the form

ż1(t) = (1 + iω1)z1(t) − |z1(t)|2z1(t) + K eiθ
[∫∞

0
g(t′)z2(t − t′) dt′ − z1(t)

]

and ż2(t) = (1 + iω2)z2(t) − |z2(t)|2z2(t) + K eiθ
[∫∞

0
g(t′)z1(t − t′) dt′ − z2(t)

]
,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(1.1)

where z1,2 ∈ C, ω1,2 are the frequencies of the two oscillators, K ∈ R+ and θ ∈ R are the strength
and the phase of coupling, respectively, and g(·) is the kernel of the delay distribution. The kernel
g is taken to be positive-definite and normalized to unity:

g(u) ≥ 0 and
∫∞

0
g(u) du = 1.

The case g(u) = δ(u) corresponds to instantaneous coupling (z2 − z1), describing a situation when
oscillators interact without any delay. For g(u) = δ(u − τ ), the coupling takes the form of a discrete
time delay: z2(t − τ ) − z1(t). Atay [66] has analysed this system for the case of zero coupling
phase and a uniform delay distribution kernel analytically for the case of identical oscillators
and numerically for non-identical oscillators, and identified regimes of amplitude death in
terms of coupling strength and mean time delay. Kyrychko et al. [67] have analysed amplitude
death in model (1.1) with ω1 =ω2 =ω0 for uniform and gamma distributed-delay kernels and
non-zero phase.

The outline of this paper is as follows. In the next section, we analyse the stability of the trivial
equilibrium of system (1.1) and find regions of amplitude death depending on the parameters
of the coupling and delay distribution. The eigenvalues of the corresponding characteristic
equations determining the stability of the steady state are computed numerically to gain a
better understanding of system dynamics inside amplitude death regimes. Section 3 contains
an analysis of phase-locked solutions of system (1.1) for uniform and gamma distributions in
the case of constant equal amplitudes of oscillations (when the system reduces to a coupled
system of Kuramoto oscillators with distributed-delay coupling), as well as in the general
case of arbitrary amplitudes. In each case, we identify branches of phase-locked solutions and
numerically compute their stability. The paper concludes with a discussion of the results as well
as possible further developments of this work.

2. Amplitude death
To study the possibility of amplitude death in the system (1.1), we linearize this system near the
trivial steady state z1,2 = 0. The corresponding characteristic equation is given by

(1 + iω1 − K eiθ − λ)(1 + iω2 − K eiθ − λ) − K2e2iθ [{Lg}(λ)]2 = 0, (2.1)

where λ is an eigenvalue of the Jacobian, and

{Lg}(s) =
∫∞

0
e−sug(u) du (2.2)

is the Laplace transform of the function g(u). Atay [66] has investigated the case θ = 0
analytically for identical oscillators ω1 =ω2 =ω0, and numerically for ω1 �=ω2 and a uniform
delay distribution kernel. More recently, Kyrychko et al. [67] have studied analytically and
numerically the case of ω1 =ω2 =ω0 and a non-vanishing coupling phase θ �= 0 with uniform
and gamma delay distributions.
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(a) Uniformly distributed kernel
To make further analytical progress, it is instructive to specify a particular choice of the delay
kernel, which would also be relevant for applications. As a first example, we consider a uniformly
distributed kernel

g(u) =
⎧⎨
⎩

1
2ρ

, for τ − ρ ≤ u ≤ τ + ρ,

0, elsewhere.
(2.3)

This distribution has the mean time delay

τm ≡ 〈τ 〉 =
∫∞

0
ug(u) du = τ ,

and the variance

σ 2 =
∫∞

0
(u − τm)2g(u) du = ρ2

3
. (2.4)

The uniformly distributed-delay kernel (2.3) has been successfully used in a number of different
contexts, including ecological models [68,69] where it describes a lag between environmental
changes and the reproductive response of species, models of traffic dynamics with delayed
driver response [63], stem cell dynamics [70], time-delayed feedback control [53] and genetic
regulation [71].

In the case of uniformly distributed kernel (2.3), it is quite easy to compute the Laplace
transform of the distribution g(u) as

{Lg}(λ) = 1
2ρλ

e−λτ (eλρ − e−λρ ) = e−λτ sinh(λρ)
λρ

,

and this transforms the characteristic equation (2.1) into

(1 + iω1 − K eiθ − λ)(1 + iω2 − K eiθ − λ) = K2e2iθe−2λτ
[

sinh(λρ)
λρ

]2
. (2.5)

Because the roots of the characteristic equation (2.5) are complex-valued, the stability of the trivial
steady state can change only if some of these eigenvalues cross the imaginary axis. To this end,
we can look for characteristic roots in the form λ= iω. Substituting this into the characteristic
equation (2.5) and separating real and imaginary parts gives the following system of equations
for (K, τ ) as parametrized by the Hopf frequency ω:

(1 − K cos θ )2 − (ω̄ − ω − K sin θ )2 + Δ2

4
= K2δ(ρ,ω) cos[2(θ − ωτ )]

and 2(1 − K cos θ )(ω̄ − K sin θ − ω) = K2δ(ρ,ω) sin[2(θ − ωτ )],

⎫⎪⎬
⎪⎭ (2.6)

where

δ(ρ,ω) =
[

sin(ωρ)
ωρ

]2
,

and we have introduced the frequency mismatch (detuning) Δ and the mean frequency ω̄ as

Δ=ω1 − ω2 and ω̄= ω1 + ω2

2
.

Squaring and adding the two equations in (2.6) gives a single quartic equation for the coupling
strength K:

[
(1 − K cos θ )2 − (ω̄ − ω − K sin θ )2 + Δ2

4

]2

+ 4(1 − K cos θ )2(ω̄ − K sin θ − ω)2 = K4δ2(ρ,ω).

(2.7)
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In a similar way, dividing the two equations in (2.6) gives the equation for the time delay τ at the
Hopf bifurcation as

tan[2(θ − ωτ )] = 2(1 − K cos θ )(ω̄ − ω − K sin θ )
(1 − K cos θ )2 − (ω̄ − ω − K sin θ )2 +Δ2/4

. (2.8)

When the coupling phase vanishes (θ = 0), the above equations for (K, τ ) simplify to

[
(1 − K)2 − (ω̄ − ω)2 + Δ2

4

]2

+ 4(1 − K)2(ω̄ − ω)2 = K4δ2(ρ,ω)

and tan(2ωτ ) = 2(1 − K)(ω − ω̄)
(1 − K)2 − (ω̄ − ω)2 +Δ2/4

.

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(2.9)

For Δ= 0, we have two identical oscillators with the same frequency ω1 =ω2 =ω0. Substituting
this into equation (2.7) gives the equation for the Hopf frequency in the form

(1 − K cos θ )2 + (ω̄ − ω − K sin θ )2 = K2δ(ρ,ω), (2.10)

and the equation for the critical time delay τ at the Hopf bifurcation reduces to

tan[2(θ − ωτ )] = 2(1 − K cos θ )(ω̄ − ω − K sin θ )
(1 − K cos θ )2 − (ω̄ − ω − K sin θ )2 = 2z

1 − z2 ,

z = ω̄ − ω − K sin θ
1 − K cos θ

.

Using the trigonometric identity tan 2α= 2 tanα/(1 − tan2 α), we find

tan(θ − ωτ ) = ω̄ − ω − K sin θ
1 − K cos θ

. (2.11)

Equations (2.10) and (2.11) have been recently studied by Kyrychko et al. [67], where the effects
of the width of delay distribution ρ, as well as coupling strength K and the coupling phase θ ,
on the amplitude death were investigated. In the case of vanishing coupling phase (θ = 0), these
equations reduce even further to the system studied by Atay [66].

To illustrate the effects of varying the coupling strength K and the time delay τ on the
(in)stability of the trivial steady state, we now compute the stability boundaries (2.7) and (2.8)
as parametrized by the Hopf frequency ω. Besides the stability boundaries themselves, which
enclose the amplitude death regions, we also compute the maximum real part of the eigenvalues
using the traceDDE package in Matlab. In order to compute these eigenvalues, we introduce real
variables z1r,i and z2r,i, where z1 = z1r + iz1i and z2 = z2r + iz2i, and rewrite the linearized system
with the distributed kernel (2.3) as

ż(t) = L0z(t) + K
2ρ

∫−(τ−ρ)

−(τ+ρ)
Mz(t + s) ds, (2.12)

where

z = (z1r, z1i, z2r, z2i)
T, L0 =

(
N1 02
02 N2

)
,

M =
(

02 R
R 02

)
, R =

(
cos θ sin θ

− sin θ cos θ

)
,

N1 =
(

1 − K cos θ K sin θ − ω1
ω1 − K sin θ 1 − K cos θ

)
, N2 =

(
1 − K cos θ K sin θ − ω2
ω2 − K sin θ 1 − K cos θ

)
,

and 02 denotes a 2 × 2 zero matrix. When ρ = 0, the last term in the system (2.12) turns into
KMz(t − τ ), which describes the system with a single discrete time delay τ . System (2.12) is in
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Figure 1. Regimes of amplitude death depending on the coupling strength K and τ for the uniform distribution kernel with
θ = 0, ρ = 0 (discrete time delay) and ω̄= 10. Colour code denotes [−max{Re(λ)}] for max{Re(λ)} ≤ 0. (a)Δ= 0;
(b)Δ= 1.45; (c)Δ= 1.65; (d)Δ= 1.75. (Online version in colour.)

a form that is amenable to the algorithms described in Breda et al. [72] and implemented in
traceDDE.

First of all, we consider the case ρ = 0 and θ = 0, corresponding to a discrete time delay and
vanishing coupling phase, as shown in figure 1. This figure shows that, as the frequency detuning
increases, this leads to the emergence of new islands of amplitude death, and for sufficiently
high detuning Δ, these islands merge into a single continuous region in the plane of coupling
strength K and average time delay τ , where amplitude death can occur for an arbitrary value of τ ,
provided K lies in the appropriate range. One can note that, unlike the case of identical oscillators
considered in Kyrychko et al. [67], in this situation, the values of K needed to achieve stabilization
of the trivial steady state for any τ are in the lower part of the overall range of K values. Increase
in the width of the uniform delay distribution ρ leads to a corresponding increase in the region
of amplitude death, as illustrated in figure 2. When we consider the impact of coupling phase
on amplitude death, as shown in figure 3, it becomes clear that the largest range of admissible K
values is attained for θ = 0, but overall the range of coupling phases, for which amplitude death
is possible, increases with the frequency detuning Δ. It is worth noting, however, that, unlike the
situation considered in Kyrychko et al. [67] where increase in the width of the distribution ρ led to
the asymmetry of amplitude death regions with regard to the coupling phase, as Δ is increased,
the region of amplitude death remains symmetric in θ (for small ρ).

(b) Gamma distribution kernel
The second example we consider is that of a gamma distribution, which can be written as

g(u) = up−1αp e−αu

Γ (p)
, (2.13)

with α, p ≥ 0, and Γ (p) being the Euler gamma function defined by Γ (0) = 1 and Γ (p + 1) = pΓ (p).
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For integer powers p, this can be equivalently written as

g(u) = up−1αp e−αu

(p − 1)!
. (2.14)
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For p = 1, this is simply an exponential distribution (also called a weak delay kernel) with the
maximum contribution to the coupling coming from the present values of variables z1 and z2.
For p> 1 (known as strong delay kernel in the case p = 2), the biggest influence on the coupling at
any moment of time t is from the values of z1,2 at t − (p − 1)/α. The delay distribution (2.14) has
the mean time delay

τm =
∫∞

0
ug(u) du = p

α
, (2.15)

and the variance

σ 2 =
∫∞

0
(u − τm)2g(u) du = p

α2 .

A gamma distributed-delay kernel (2.14) was originally analysed in models of population
dynamics [73–76], and has subsequently been used to study machine tool vibrations [77],
intracellular dynamics of HIV infection [78], traffic dynamics with delayed driver response [79]
and control of objects over wireless communication networks [80].

When studying the stability of the trivial steady state of the system (1.1) with the delay
distribution kernel (2.14), one could use the same strategy as the one described for a uniform
distribution. The Laplace transform of the distribution kernel in this case is given by

{Lg}(λ) = αp

(λ+ α)p .

Substituting this into the characteristic equation (2.1) yields a polynomial equation for λ:

(1 + iω1 − K eiθ − λ)(1 + iω2 − K eiθ − λ)(λ+ α)2p = K2e2iθα2p. (2.16)
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Figure 5. Regimes of amplitude death depending on the coupling strength K and the coupling phase θ for the weak delay
distribution kernel (2.14) with α = 10, p= 1 and ω̄= 10. Colour code denotes [−max{Re(λ)}] for max{Re(λ)} ≤ 0.
(a)Δ= 0; (b)Δ= 2; (c)Δ= 5; (d)Δ= 9. (Online version in colour.)

In appendix A, we show how the same characteristic equation can be derived using a linear chain
trick without resorting to the Laplace transform.

Figure 4 illustrates the regions of amplitude death for a weak delay distribution kernel (2.14)
with p = 1, vanishing coupling phase and increasing frequency detuning Δ. Similar to the case of
uniform delay distribution, asΔ increases, new islands of amplitude death appear, and eventually
they merge into a single continuous region of amplitude death. Because, in this figure, the regions
of amplitude death are plotted in terms of α, which according to (2.15) is the inverse average
time delay τ , this implies that, for the case of a single connected region of amplitude death in the
(α, K) plane, amplitude death can happen for an arbitrarily small value of the average time delay,
provided that the frequency detuning is sufficiently large. In figure 5, we illustrate how amplitude
death regions depend on the coupling phase. This figure suggests that, for the same average time
delay, provided the coupling phase is sufficiently negative, it is possible to achieve amplitude
death for an arbitrary value of the coupling strength K starting from some minimal value. The
regions of amplitude death are strongly asymmetric in θ , and amplitude death is possible for
higher positive values of θ for larger frequency detuning Δ.

When one considers a strong distribution kernel (2.14) with p = 2 with vanishing coupling
phase, there is a minimum value of the average time delay required to achieve amplitude death,
as shown in figure 6. This figure also suggests that the actual value of the minimum average time
delay increases with the increasing frequency detuning Δ. Figure 7 illustrates how the coupling
phase affects amplitude death. One can note that, similar to the case of a weak distribution kernel,
the regions of amplitude death are asymmetric in θ . However, there are two major differences
from the case p = 1, namely that the regions of amplitude death are closed in the (K, θ ) parameter
plane, and these regions shrink with increasing Δ rather than grow as was the case for p = 1. The
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implication is that now it is not possible to find a coupling phase for which amplitude death could
be achieved for an arbitrary value of the coupling strength K.

3. Phase-locked solutions
In the previous section, we analysed the situation when the distributed time delay in the coupling
leads to the destruction of stable limit cycles and stabilization of the previously unstable fixed
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point. In order to understand the phase dynamics of the system, we introduce new real variables
(R1(t), R2(t),φ1(t),φ2(t)) as follows:

z1(t) = R1(t) eiφ1(t) and z2(t) = R2(t) eiφ2(t).

Here R1,2 ≥ 0 and φ1,2 denote the amplitudes and phases of the two oscillators, respectively.
Substituting this representation into the system (1.1) yields the following system of equations
for the amplitude and phase variables:

Ṙ1 = (1 − R2
1)R1 + K

[∫∞

0
g(t′)R2(t − t′) cos[φ2(t − t′) − φ1(t) + θ ] dt′ − R1 cos θ

]
,

Ṙ2 = (1 − R2
2)R2 + K

[∫∞

0
g(t′)R1(t − t′) cos[φ1(t − t′) − φ2(t) + θ ] dt′ − R2 cos θ

]
,

R1φ̇1 = R1ω1 + K
[∫∞

0
g(t′)R2(t − t′) sin[φ2(t − t′) − φ1(t) + θ ] dt′ − R1 sin θ

]

and R2φ̇2 = R2ω2 + K
[∫∞

0
g(t′)R1(t − t′) sin[φ1(t − t′) − φ2(t) + θ ] dt′ − R2 sin θ

]
.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.1)

A significant amount of work has been carried out on the analysis of this system for the
case of instantaneous coupling g(s) = δ(s) or discrete time delay g(s) = δ(s − τ ). In both of these
cases, it has been shown that, besides amplitude death, the system can exhibit a number of
other interesting solutions, such as phase-locked (also known as frequency-locked) and phase
drift solutions [81–84]. In this section, we consider effects of distributed-delay coupling on the
dynamics of such solutions, which have so far remained unexplored.

(a) Constant amplitude dynamics
As a first step in the analysis of system (3.1), we assume that the amplitudes of both oscillators
are equal to each other and constant: R1(t) = R2(t) = const for all times. In this case, neglecting
amplitude dynamics, the system (3.1) reduces to a system of two Kuramoto oscillators with
distributed-delay coupling:

φ̇1 =ω1 + K
[∫∞

0
g(t′) sin[φ2(t − t′) − φ1(t) + θ ] dt′ − sin θ

]

and φ̇2 =ω2 + K
[∫∞

0
g(t′) sin[φ1(t − t′) − φ2(t) + θ ] dt′ − sin θ

]
.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(3.2)

It is instructive to consider this system using the variables of the phase differenceψ = φ1 − φ2 and
the mean phase ϕ = (φ1 + φ2)/2:

ϕ̇ = ω̄ + K
[∫∞

0
g(t′) sin[ϕ(t − t′) − ϕ(t) + θ ] cos

ψ(t) + ψ(t − t′)
2

dt′ − sin θ
]

and ψ̇ =Δ− 2K
∫∞

0
g(t′) cos[ϕ(t − t′) − ϕ(t) + θ ] sin

ψ(t) + ψ(t − t′)
2

dt′.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(3.3)

The last equation suggests that, when Δ> 2K, this system exhibits phase drift (i.e. unbounded
growth of the difference between the phases of two oscillators) independently of the delay
distribution kernel, and hence phase locking can occur only for Δ< 2K. Following Schuster &
Wagner [24], we look for solutions of the system (3.3) in the form

(ϕ∗,ψ∗) = (Ωt + const,β), (3.4)
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Δ= 1 and K = 0.8 (solid), K = 1.2 (dashed) and K = 1.5 (dashed-dotted). (b) Function f±(Ω ) from (3.6) for uniform
distribution kernel (2.3) with ω̄= 10, τ = 4,ρ = 0.2, θ = 0, K = 1.5 andΔ= 0 (solid),Δ= 0.4 (dashed) andΔ= 0.8
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τ = 4 and (c) Δ= 0, (d) Δ= 0.4, (e) Δ= 0.8, Δ= 1.2. Solid lines denote stable branches, dashed lines denote
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where Ω is the ensemble frequency of oscillations, and β is the constant phase shift between the
two oscillators. Substituting this into the system (3.3) yields the value of the phase shift as

β =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

arcsin
[
Δ

2K
Fc(−Ω , θ )−1

]
,

π − arcsin
[
Δ

2K
Fc(−Ω , θ )−1

]
,

(3.5)

where we have introduced the notation

Fc(a, b) =
∫∞

0
g(t′) cos(at′ + b) dt′ and Fs(a, b) =

∫∞

0
g(t′) sin(at′ + b) dt′.

The new common frequency Ω satisfies the transcendental equation

f±(Ω) = ω̄ −Ω − K sin θ ± Fs(−Ω , θ )
Fc(−Ω , θ )

√
K2F2

c (−Ω , θ ) − Δ2

4
= 0, (3.6)

where the plus and minus sign correspond to the first and second value of β in (3.5), respectively.
It follows from this equation that possible solutions for Ω can only lie in the admissible range

Fc(−Ω , θ )2 ≥ Δ2

4K2 .
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Stability of the phase-locked solution (3.4) is determined by the roots of the corresponding
characteristic equation

λ2 + 2K cosβFc(−Ω , θ ) + K2[Fc(−Ω , θ − β)Fc(−Ω , θ + β)

− FL
c (−Ω , θ − β, λ)Fc(−Ω , θ + β, λ)] = 0, (3.7)

where

FL
c (a, b, z) =

∫∞

0
g(t′) cos(at′ + b) e−zt′ dt′,

and the superscript L refers to this integral representing the Laplace transform of a modified
kernel g(s) cos(as + b).

To make further analytical progress and derive results relevant for applications, one has to
specify the form of the delay distribution kernel, which is taken to be the same as in the analysis
of amplitude death in the previous section. For the uniform distribution (2.3), functions Fc and Fs

can be computed as

Fc(a, b) = 1
ρa

sin(aρ) cos(aτ + b) and Fs(a, b) = 1
ρa

sin(aρ) sin(aτ + b),
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Figure 10. (a) Function f±(Ω ) from (3.6) for the strong distribution kernel (2.14) with p= 2, ω̄= 10, α = 1, θ = 0,
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p= 2,α= 1, θ = 0 and (c)Δ= 0, (d)Δ= 3, (e)Δ= 6,Δ= 9. Solid lines denote stable branches, dashed lines denote
unstable branches.

and the case of a discrete time delay can be recovered by setting ρ = 0. For the weak distribution
kernel (2.14) with p = 1, we have

Fc(a, b) = α
α cos b − a sin b

α2 + a2 and Fs(a, b) = α
α sin b + a cos b

α2 + a2 ,

and similarly, for the strong delay kernel (2.14) with p = 2, we have

Fc(a, b) = α2 (α2 − a2) cos b − 2αa sin b
(α2 + a2)2 and Fs(a, b) = α2 (α2 − a2) sin b + 2αa cos b

(α2 + a2)2 .

Figure 8 illustrates how the function f±(Ω), whose roots determine the values of the collective
frequency Ω of phase-locked branches, depends on frequency detuning Δ and the coupling
strength K. Computation of the stability of the branches shown in this figure indicates that, as
the frequency detuning increases, branches of phase-locked solutions start to appear for higher
values of the coupling strength.

A similar computation for the weak delay distribution kernel, shown in figure 9, suggests that
in this case all branches of phase-locked solutions are unstable for any value of Δ. In the case
of the strong distribution kernel, which is illustrated in figure 10, the branches of phase-locked
solutions are stable for a very narrow range of K near the lowest tip of the branch for sufficiently
small detuning (see insets). As the detuning increases, this causes the branches of phase-locked
solutions to appear for higher values of the coupling strength in a manner similar to the case of
uniform delay distribution kernel, and all these branches are unstable.
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(b) General phase-locked solutions
In the more general case, when R1 and R2 are not required to be equal to each other, one can still
look for phase-locked solutions of the system (3.1) in the form

(R1(t), R2(t),φ1(t),φ2(t)) =
(

R̂1, R̂2,Ωt + β

2
,Ωt − β

2

)
,

where R̂1,2 are unknown constants, Ω is the new common frequency of oscillations and β is the
phase shift between the two oscillators. These solutions can be found as the roots of the following
system of equations:

(1 − R̂2
1)R̂1 + K

[
R̂2

∫∞

0
g(t′) cos(−β −Ωt′ + θ ) dt′ − R̂1 cos θ

]
= 0,

(1 − R̂2
2)R̂2 + K

[
R̂1

∫∞

0
g(t′) cos(β −Ωt′ + θ ) dt′ − R̂2 cos θ

]
= 0,

R̂1Ω = R̂1ω1 + K
[

R̂2

∫∞

0
g(t′) sin(−β −Ωt′ + θ ) dt′ − R̂1 sin θ

]

and R̂2Ω = R̂2ω2 + K
[

R̂1

∫∞

0
g(t′) sin(β −Ωt′ + θ ) dt′ − R̂2 sin θ

]
.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.8)

It is easy to check that the constant amplitude phase-locked solutions (3.4) are the only solutions
of the full system (3.8) for the case of identical oscillators ω1 =ω2, which implies Δ= 0 and the
phase shift β of either zero or π (describing in-phase or anti-phase solutions, respectively).

Although it is not possible to find solutions of the system (3.8) analytically, the phase-locked
solutions can be computed numerically for each particular choice of delay kernel. Figure 11 shows
the branches of phase-locked solutions (3.8) for the uniform delay distribution kernel. For Δ= 0,
we identify both the branch of equal amplitude phase-locked solution and also an unstable branch
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with unequal amplitudes. As the frequency detuning increases, stable branches of phase-locked
solutions are observed for higher values of the coupling strength. For all values of detuning, as
K tends to zero, the ensemble frequency of branches of phase-locked solutions approaches the
values of Ω =ω1,2, which should be expected from the fact that for K = 0 the system (3.8) admits
solutions (R1, R2,Ω) = (1, 0,ω1) and (R1, R2,Ω) = (0, 1,ω2).

Figure 12 illustrates the branches of phase-locked solutions for the weak distribution kernel.
Similar to the case of uniform delay distribution kernel, for Δ= 0, we find the branches of
solutions with both equal and different amplitudes, and both of these branches are unstable. For
higher values of frequency detuning, we have two unstable branches of phase-locked solutions
located symmetrically around the average frequency ω̄. The distance between these branches in
terms of their ensemble frequency is increasing with increasing Δ. For the strong distribution
kernel, the situation is similar, as shown in figure 13. Once again, we observe two unstable
branches of phase-locked solutions, whose frequencies are centred around ω̄, and the distance
between the branches grows with Δ.

4. Discussion
In this paper, we have analysed amplitude death, as well as the existence and stability of
phase-locked oscillatory solutions in a generic model of Stuart–Landau oscillators with delay-
distributed coupling. Regions of amplitude death have been identified for uniform and gamma
distributions depending on the intrinsic system parameters (average frequency and detuning), as
well as coupling strength, phase and the distribution parameters. Computation of the boundaries
of amplitude death regions, as well as the stability eigenvalues for the trivial steady state, suggests
that the more disparate the oscillators are (i.e. the higher the frequency detuning), the larger are
the regions of amplitude death in the case of uniform and weak delay distributions. However, for
the strong delay distribution kernel, higher detuning corresponds to a smaller region of amplitude
death. Special attention has been paid to the analysis of the effects of the coupling phase on
amplitude death. While for uniform delay distribution, the maximum range of coupling strengths
giving amplitude death is achieved for zero phase, in the case of gamma distribution, the non-zero
coupling phase increases the range of such coupling strengths.

To understand the dynamics beyond amplitude death, we have analysed the appearance
and stability of phase-locked solutions, characterized by both oscillators performing oscillations
with the same common frequency and having a constant phase shift. When the amplitudes of
both oscillators are constant and equal to each other, phase approximation results in a system
of Kuramoto oscillators with distributed-delay coupling, in which case it is possible to find
the range of admissible collective frequencies and the phase shift analytically. For a uniform
delay distribution, the system of coupled Kuramoto oscillators exhibits both stable and unstable
branches of phase-locked solutions, which appear for higher values of the coupling strength as
the frequency detuning increases. For weak (exponential) delay distribution, all the branches
of phase-locked solutions are unstable, and for the strong (gamma function) delay distribution
kernel, they are stable for small detuning and sufficiently small coupling strength. We have also
computed numerically branches of phase-locked solutions for uniform and gamma distributions
for the full system. For a uniform delay distribution, there is coexistence of stable and unstable
phase-locked branches, with branches being stable for higher values of K as the detuning
increases. In the case of gamma distribution, there are two branches of phase-locked solutions,
which are both unstable, and their frequency difference from the average frequency ω̄ increases
with increasing Δ.

So far, we have investigated phase-locked solutions in the system of Stuart–Landau oscillators
with distributed-delay coupling. One possible extension of this work would be the analysis of
a phase-flip transition [49,85], where in-phase and anti-phase phase-locked branches exchange
stability. This phenomenon has been observed in systems with discrete time delays, and it has
even been observed in the transient dynamics preceding amplitude death. Another possibility
would be to consider whether coupled systems with delay-distributed coupling are able to exhibit
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other types of phase dynamics and synchronization. One such scenario, which is useful in laser
applications, is the case when the sum of the phases of the two oscillators is constant [29,86].
Phase approximation in this case results in a delayed Adler equation, and it would be both
theoretically and practically important to consider possible solutions of this model for different
delay distributions. Other more complex locking scenarios have been found in quantum-dot
lasers under optical injection [87,88].
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Appendix A
A convenient way to derive the characteristic equation in the case of a gamma distributed-delay
kernel is to use the linear chain trick [89], which allows one to replace the original equation by
an equivalent system of (p + 1) ordinary differential equations. To illustrate this, we consider
a particular case of system (1.1) with a weak delay kernel given by (2.14) with p = 1, which is
equivalent to a low-pass filter [44]:

gw(u) = α e−αu. (A 1)

Introducing new variables

Y1(t) =
∫∞

0
α e−αsz1(t − s) ds

and Y2(t) =
∫∞

0
α e−αsz2(t − s) ds

allows us to rewrite the system (1.1) as

ż1(t) = (1 + iω1)z1(t) − |z1(t)|2z1(t) + K eiθ [Y2(t) − z1(t)],

ż2(t) = (1 + iω2)z2(t) − |z2(t)|2z2(t) + K eiθ [Y1(t) − z2(t)],

Ẏ1(t) = αz1(t) − αY1(t)

and Ẏ2(t) = αz2(t) − αY2(t),

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(A 2)

where the distribution parameter α is related to the mean time delay as α= 1/τm. The trivial
equilibrium z1 = z2 = 0 of the original system (1.1) corresponds to a steady state z1 = z2 = Y1 =
Y2 = 0 of the modified system (A 2). The characteristic equation for the linearization of system
(A 2) near this trivial steady state is given by

(α + λ)2(1 + iω1 − K eiθ − λ)(1 + iω2 − K eiθ − λ) = K2α2e2iθ , (A 3)

which is the same as equation (2.16). For larger values of p, one would have to introduce a larger
number of additional variables in a similar fashion (two additional variables for each increase of
p by 1).
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