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Stationary wave solutions of the perturbed Korteweg--de Vries equation are considered in 
the presence of external hamiltonian perturbations. Conditions of their chaotic behaviour are 
studied with the help of the Melnikov theory. For the homoclinic chaos the Poincar6 sections 
are constructed to demonstrate the complicated behaviour, and the Lyapunov exponents are 
also numerically calculated. 
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1. Introduction 

Recently one observes a significant interest in the chaotic behaviour of solu- 
tions to partial differential equations. For example, chaos was found for a perturbed 
sine-Gordon equation [1], the nonlinear Schrrdinger equation [2], and later for the 
Korteweg-de Vries-Burgers equation [3] and its generalization on high-order non- 
linearities, and to the case of Kadomtsev-Petviashvili equation [4]. It was shown 
how chaos can appear in such systems which were completely integrable without 
perturbation via the appearance of subharmonics and homoclinic tangles. For the 
KdV equation incorporating dissipation and instability [5] it was shown that for the 
strongly dissipative case the overall evolution of solutions is chaotic with irregular 
soliton interactions. 

In our previous paper [6] we have considered the influence of time-periodic 
hamiltonian external perturbations on a KdV system and showed how the stochastic 
layer can appear on a phase plane near the unperturbed separatrix. The width of this 
layer was calculated with the help of Chirikov criterion for the overlap of resonances. 
In this work we continue this study on an example of one-harmonic perturbation. 
The fact that this perturbation is taken explicitly provides the possibility to obtain 
an exact expression for the Melnikov function in order to determine the transition to 
a chaotic behaviour. To study the system in a near-separatrix region, we transform 
the governing ODE into a map for which the width of stochastic layer can be easily 
obtained. Finally, we plot Poincar6 sections of chaotic behaviour and calculate the 
corresponding Lyapunov exponents. 
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We start with the perturbed Korteweg-de Vries equation taken in the form 

ut + CUx + UUx + flUxxx = f ( u , x  - V t )x .  (1.1) 

Here f ( u , x -  V t )  is assumed to be periodic in its last argument and will be 
taken simply as f = f0cosw(x  - Vt) .  Transforming coordinates to a moving frame 
(x '  --+ x - V t ,  t' ~ t) and considering steady waves, ut = 0, one obtains (the 
primes are omitted) 

u 2 

flUxx = vu ~ + fo cos ogx + C, (1.2) 

where V = c + v (supercritical case) or V = c - v (subcritical case), v > 0, C is 
the integration constant which can be chosen equal to zero from the condition that 
the solution is bounded at infinity. Without loss of generality we consider here only 
the supercritical case. Therefore we have 

u 2 

flUxx = vu - ~ + f0 coswx, (1.3) 

or with z -- Ux, 

U x ~ Z ,  

1 (  U 2 ) (1.4) 
Zx = - ~  V u - - - f  + f o c o s c o x  . 

The outline of the rest of the paper is as follows. In the next section the unperturbed 
case of the Korteweg-de Vries equation is considered and the explicit expressions for 
the solutions are obtained. Later, in Section 3, the conditions for chaos are derived 
on the basis of studying subharmonic and homoclinic Melnikov functions. Then, in 
Section 4, we transform our ODE (1.3) into a mapping for which phase plots are 
presented together with the calculation of the width of the stochastic layer. Section 5 
contains Poincar6 plots found numerically in the vicinity of a saddle along with the 
Lyapunov exponents which prove to be positive, thereby supporting our conclusion 
about chaotic behaviour in the system. Finally, Section 6 contains a summary and 
conclusions. 

2. Unperturbed case 

For the unperturbed system (fo = O) we simply have 
//2 

~Uxx = vu - T "  (2.1) 

This is an equation of motion for a nonlinear oscillator in a potential field 
u 3 vu  2 

P ( u )  - (2.2) 
6 2 

with the Hamiltonian 
/~Z2 U3 /)U2 (2.3) 

H o ( u , z , x ) = - ~ - - +  6 2 

If we now look for the solutions of (2.1) in the form of elliptic Jacobi functions of 



modulus m um(x)=a+bcn2(kx Im), 0 < m  < 1, (2.4) 

where a, b and k are depending on m constants, then the following expressions 
can be easily obtained: 

v(1 - 2m) 3vm 
R m ( x )  = P + "q- cn2( kx I m ) ,  

~/m 2 - m + 1 ~/m 2 - m + 1 

6vmk 
zm(x) = cn(kx l m)sn(kx l m)dn(kx l m), 

~/m 2 - m + 1 
2K(m) 

T m _ 
k ' 

(2.5) 

a) z 

1 ~ 2 
k - ~ / ~ ( m  - m + l ) - a .  

Here T m is the period of oscillations and K(m) is the complete elliptic integral of 
the first kind. In the limit m--+ 1, Eqs. (2.5) yield the separatrix 

uo(x) = 3vsech2 (1- F f  x "] 
\ 2 V f l  } '  (2.6) 

zo(x)=-3v~fl  sinh(l~--x~\-~-~ / sech3 \ 2  V ( 1  ~-Vx~fl / 

Phase plot of (2.1) as well as the potential energy (2.2) is presented in Fig. 1. 
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Fig. 1. a) Phase plane of  the system (2.1). b) Plot of  the potential energy (2.2). Here v = 1 and fl = 1. 
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3. Melnikov chaos 

The source of chaotic motion in our system is the homoclinic orbit on a phase 
plane. In the unperturbed case this orbit is formed by coinciding stable and unstable 
manifolds of the saddle. When there is a perturbation, the homoclinic orbit can be 
broken to yield the transverse intersection of stable and unstable manifolds, which 
gives rise to chaotic behaviour near the separatrix. As far as one of the precursors 
of chaos is the appearance of subharmonics, we shall start with the subharmonic 
Melnikov function defined for the periodic orbits as 

~0 rT Mr/s(o) = f ( qm(x ) )  A g(qm(x + O))dx, (3.1) 

where f (qm)  is the unperturbed vector field corresponding to the solution qm(x) = 
(u m, zm) r with the period T m = r T / s ,  and where r, s are relatively prime integers, 
g is a small vector of perturbation, and the wedge product is defined by a /x  b = 
alb2 - azbl. 

Considering our problem, we substitute the term zm(x) for f and the term 
of perturbation fo cos wx for g into the subharmonic Melnikov function, therefore 
obtaining: 

f0 f0 rr  Z m (X) COS Co(x + O)dx. (3.2) Mr/s(o) = -~  

Calculations with the help of Fourier representation of elliptic functions [7] finally 
give 

Mr/s(o ) = 3zrrvmfo bn(m) sin o90, (3.3) 
fl~/m 2 - m + 1 

where 

bn(m) = 
7t2(n -+- 1/2) 

1/'9~ K'(m) ] ' mKZ(m)  sinh zr(n + . . _ ,  K(m) j 
K ' (m)  = K(1 - m). (3.4) 

As it is clearly seen from (3.3) Mr/s(o) has simple zeros, which proves the presence 
of subharmonic bifurcations [8]. 

To move further, the homoclinic Melnikov function M(O) can be introduced as 
a limit of Mr/s(O) when s = 1, r ---> o~, and m ~ 1: 

f0 f _ ~  12zrw2 f0 
M(O) = ---g- zo(x) cos [og(x + 0)] dx - ~ sin o90. (3.5) 

p oo sinh zro9 

This function also has simple zeros on 0 and therefore proves the existence of trans- 
verse homoclinic orbits. The presence of these orbits means, via Smale-Birkhoff 
theorem, the appearance of a Smale horseshoe in the vicinity of an unperturbed 
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saddle and thereby homoclinic chaos in this region of a phase space [8]. We note 
here that unlike the situation with dissipation (like in [3] or [4]), when the Melnikov 
theory resulted in some relation between the perturbation amplitude, the frequency 
and the dissipation coefficient, in our case there are no such restrictions. It should 
be also noted that although the presence of a stochastic layer near the separatrix 
can be stated for a rather generic hamiltonian perturbation making the system near- 
integrable [9], the transverse intersection of the stable and unstable manifolds is still 
a question which should be solved by the Melnikov theory in every particular case. 

4. Near-separatrix motion 
To study the chaotic motion near the separatrix we shall use the whisker map- 

ping (separatrix mapping) [10]. To derive it we note first that the change in the 
unperturbed energy is given by 

dHo OHoOV 
- -  -- -- f f o z ( x )  cos o)x, (4.1) 
dt Op Ox 

where p = flz is the momentum. Since the perturbation is a periodic function of 
time, we may introduce the phase of perturbation, 

4) = wx + const, (4.2) 

which is an equivalent of time. In order to obtain the desired separatrix mapping 
one has to consider the discretized time scale xn, and the mapping will involve 
4~n and En as variables. The change of phase after one period of oscillations is 
equal to wT'n(En+O, while the change energy is AEn+I  : En +AEn .  Now we can 
estimate the change in the unperturbed energy A En per period of motion in the 
proximity of separatrix at time xn, 

[xn+T/2 f o o  
Z(X) cos [w(x + xn)] dx  ,~ f f o  Zo(x) cos [o.) (x -q- Xn) ] dx.  /kEn = fifo ,I xn- T /2 -oo 

(4.3) 
Here we have approximated /kEn by evaluating the integral (4.3) on the unperturbed 
separatrix in accordance with the standard procedure [9]. As it is clearly seen 
from the comparison of (3.5) and (4.3), /kEn = fl2M(xn). Expansions of T 'n and 
E(m)  in the vicinity of m = 1 give finally the following correlation between them: 
T ( E )  ~ 2 ~ l n  [ 2 4 / ~ ] .  Using this approximate period we can write the 
separatrix mapping in the following form 

12rrf0w2f 2 
En+l ~- En -k- sinhzrw /- 7 sin4~n, 

(4.4) / - V  24 
4~,+1 = ~bn + 2 /--zwln ( mod 2rr ). 

V P  9/2 I En+l I 
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Fig. 2. The width of the stochastic layer as the function of  the perturbation frequency (4.5). Here /~ = 1, 

v = 1, f0 = 0.01. 
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Fig. 3. Separatrix mapping (4.4) with v = 1, fl = 1, co = 3. a) f0 = 1.83 • 10 -3 .  b) f0 = 9.1 10 -3 .  

If one measures the stretching of  a small phase interval with the parameter K ----- 
lSq~.+l/6q~n- 11 [9], one can detect the border of  chaotic motion as an appearance 
of  a local instability in phase: K > 1. For the mapping (4.4) this condition gives 
the following approximation for the width of  the stochastic layer Est 

= ~ 12:rffo°93f12 
[El ___ Est V /3 sinhrrcov~" 

(4.5) 
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Fig. 4. Separatrix mapping (4.4) with v = 1, /~ = 1, ~o = 3. a) f0 : 1 .83 .10  -2 .  b) f0 = 9 . 1 . 1 0  -2 .  

Typical form of this dependence is presented in Fig. 2. In Figs. 3 and 4 we 
have plotted the phase plane of the mapping (E, ~b) for different values of the 
perturbation amplitude f0. Fig. 3b shows how the stochastic layer arises around 
the unperturbed separatrix. Then the width of this layer increases together with f0, 
leading finally to a chaotic sea, as demonstrated in Fig. 4b. 

5. Numerical simulations 

In this section we present the Poincar6 sections of (1.3) in the vicinity of 
the saddle (0, 0), which show homoclinic crossings in this region. The meth- 
ods used were the Runge-Kutta-Fehlberg and Adams-Bashford-Moulton ("predictor- 
corrector") methods. 

The local chaotic behaviour is detected by numerical calculations of the dominant 
Lyapunov exponent. It was computed using the method due to [11]. The system 
of equations, which defines the value of this exponent, was integrated with the 
Runge-Kutta fourth-order algorithm, while Eq. (1.3) for a fiducial trajectory was 
run with the fourth-order symplectic scheme [12]. In Fig. 5-8, the Poincar6 sections 
are presented for (1.3) with the forcing amplitude f0 = 0.1 and different values of 
the frequency: 09 = 15, 20, 25 and 30. The values of the largest Lyapunov exponent 
in these cases are )~ = 0.107, )~ = 0.149, ~. = 0.169 and ~. = 0.188, respectively, 
and so we can state that we really have a chaotic motion in a close vicinity of a 
separatrix, as it was predicted. Numerical calculation of the Lyapunov exponent in 
the region of regular dynamics with initial conditions at (1.5, 0) yields 0.0001, and 
therefore our results can be taken as significant. 
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Fig. 5. a) Poincar6 section of  the system (1.3). b) The same near the saddle (0, 0). Here f0  = 0.1, to = 15, 
v = 1, ~ = 1, and initial conditions are taken in the point (0.0001,0).  
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Fig. 6. The same as in Fig. 5 with to = 20. 
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Fig. 7. The same as in Fig. 5 with to = 25. 
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Fig. 8. The same as in Fig. 5 with to = 30. 

6. Conclusions 

In this work we have considered the stationary wave reduction of the Korteweg- 
de Vries equation under small hamiltonian perturbations. On the basis of the Mel- 
nikov theory it was shown how chaos can occur in this situation via the appear- 
ance of subharmonics and a further homoclinic tangle. Theoretical predictions about 
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chaotic behaviour are supported numerically by plotting the Poincar6 sections and 
calculating the corresponding Lyapunov exponents. In a near-separatrix region, the 
governing ODE was transformed into a mapping which allowed one to find the 
width of the stochastic layer. 

Our future work will focus on the development of kinetic description of chaotic 
behaviour for the obtained mapping [9], and with the derivation of new methods 
for the symplectic integration of the KdV equation under hamiltonian perturbations 
following the framework of [13], where the same was done for the sine-Gordon 
equation. 
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