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This paper considers the properties of nonlinear waves and solitons of Korteweg-
de Vries equation in the presence of external perturbation. For time-periodic hamil-
tonian perturbation the width of the stochastic layer is calculated. The conclusions
about chaotic behaviour in long-period waves and solitons are inferred. Obtained
theoretical results find experimental confirmation in experiments with the propaga-
tion of ion-acoustic waves in plasma.

1. Introduction

Recently a significant attention is paid to the study of soliton equations under external
perturbations. Many of these equations are by themselves completely integrable nonlin-
ear partial differential equations, and hence cannot display chaotic behaviour. But the
addition of a perturbation to an integrable equation may lead to chaotic dynamics. The
nature of this external perturbation can be different and varies from one physical problem
to another. As for the KdV equation, perturbations appear in it to describe, for example,
solitons generated by moving pressure disturbances [1], resonant forcing in a tank of finite
length [2], or traveling steady pressure distribution on water of finite depth [3]. For the
case of Burgers friction and periodic forcing, steady and cyclic states were obtained in 2],
while the chaotic behaviour was studied in [4,5]. The KAV equation was also considered
under simultaneous action of dissipation and instability [6]. In’'such a form this equation
describes current-driven ion-acoustic instability in a collision-dominated plasma. For the
strongly dissipative case overall evolution demonstrated irregular behaviour, therefore
leading to nonstationary and irregular soliton interactions.

In this work we add periodic hamiltonian deterministic perturbation to the KdV
equation and study physical consequences of this. The reduction in the form of travel-
ing waves is made in order to turn the system into a second-order ordinary differential
equation. The existence of solutions to such an equation was studied in [7], while the
construction of periodic orbits can be found in [5] for nonresonant and primary resonant
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cases, and in [4] for secondary resonances. We will, however, perform the analysis of
chaotic properties in this situation. It is known, that for any hamiltonian perturbation,
which makes the system near-integrable, a stochastic layer around a separatrix appears.
This layer is bounded by unbroken KAM-surfaces, and within it the system evolves with
mixing. For dissipative perturbations, however, these KAM-surfaces are broken and spe-
cial ideas like Melnikov method should be used to determine the conditions for chaos to
appear, as it was done in [4,5]. So, we calculate the width of a stochastic layer, which
contains long-period waves and solitons. It is done on the basis of Chirikov criterion for
the overlap of resonances, which is widely used for investigation of chaotic properties
in hamiltonian systems (references to original papers in this field can be found in [8]).
Results we obtain are as follows: solitons and nonlinear waves prove to be chaotic in
the meaning that in a small distance from the peaks of solitons and long-period waves
there must be a region of chaotic dynamics, where these waves acquire small irregular
deviations from the smooth initial profile. This conclusion is confirmed in experiments
with ion-acoustic waves in plasma [9].

The outline of this paper is the following. In the next Section, KdV equation is
reduced to ODE and the unperturbed solutions of the latter are considered. In Section 3,
we introduce canonically conjugated action-angle variables and obtain general expressions
for the criterion of stochasticity. After that, in Section 4, this criterion is applied to KdV
waves directly. Section 5 contains conclusions and summary.

2. Stationary waves

Let us consider the perturbed KdV equation, taken in the following form:
Ui +U Uz + BUpge =V (U, Uy, Uz, — 0t), z € (—o0,00), te(0,00), (1)

where z and ¢ denote, respectively, a one-dimensional space coordinate and time; U(x, t)
is supposed to be differentiable with respect to z and ¢ sufficient number of times:
V(U, Uy, Uy, x—ut) is a small external perturbation. The nature of this perturbation, as it
was mentioned in Introduction lays in the external forces (moving pressure disturbances
and so on), acting on a unperturbed KdV system. The spatial and temporal dependence
in a perturbation has the form of the wave, propagating in a positive direction of the
z axis with the velocity v (as it was said, V is a periodic function of a combination
x —wt). As far as we restrict ourselves on the case of hamiltonian perturbation, it means
that within the class of functions V we will consider only those, which will not contain
derivatives after integration over (z — vt) = £. It is easy to check that the general form
of such perturbations can be represented as

V(Uv Ut,Uz,é) = fl(Uﬁf) ) Ug(ﬂ?,t) + f2(U7§) : Uz(xvt) + f3(Uy§)7 (2)

with the condition [f2(U,€) — v - fi(U,€)], = fa(U,é)v.

Let us search for a solution of Eq. (1) in the form of a nonlinear stationary wave
U(z,t) = f(£). Substitution of this expression in (1) gives the following ODE (prime
means differentiation with respect to ¢):

B =vf = f-f + V(£ [,8), (3)
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Fig. 1: (Left) Phase plane of the unperturbed system (5). (Right) Plot of the potential energy
(6). Herev=1and 8= 1.

which can be integrated once over £ to yield

2
Bf" =vf -5+ F(f,f,9). (4)

Here F(f,f’,£) denotes the primitive function of V(f, f/,£). Integration constant is
absent here because it can be turned into a zero by an appropriate choice of variables.
As a second-order ODE, (4) can be treated as a dynamical system, containing a point of
“mass” (3, whose position is described by “coordinate” f in “time” £. Eq. (4) without
perturbation (F(f, f/,£) = 0) has the form

2

Bf" =vf -, (5)
which can be treated as the motion in a potential field
2 uf?
= - 6
vin=%-4 ®)
Full mechanical energy of such a nonlinear oscillator is equal to
2 2 3
p°_uft f
= - =4 = 7
%2 T @)

where p = Bf' is the “momentum” of the point. Phase plane of this oscillator together
with the plot of the potential energy is presented in the Fig. 1.
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If H = —§v3, what corresponds to the bottom of the potential pit, then the phase
curve shrinks to a point. In the case -—%—'03 < H < 0 we have closed phase curves

representing conoidal waves of the form

F) =a+b-cn®(kE | s), (8)

where cn(z | s) denotes the Jacobi elliptic cosine function of modulus s (0 < s < 1), and
a, b and k are constants, which can be expressed through s. Substitution of (8) in (5)
allows one to calculate these constants and gives finally the following results:

f€)=v+v[(1—2s)+3s-cn®(kf | s)] /Vs? —s+1.
T® =4K(s)/k, (9)
k=1/v/B(s* —s+1)"1.

Here K(s) is the complete elliptic integral of the first kind, and T® is the period of the
corresponding solution. Under H = 0 (s = 1), which corresponds to a separatrix in the
phase plane, solution (9) yields the homoclinic orbit

f(&) = s (10)

cosh? (—%) 7
where A = 2\/g [10].

3. A criterion for chaotic motion

Let us transform variables (f, f’) to the canonical action-angle pair (I, ) using stan-
dard formulae

I:%%p(f,H)df:I(H), o= 950 S(f,f)=/p(f,H)df, (11)

ol
where S(f,I) is the reduced action and p is the momentum introduced in the previous
section. The Hamiltonian of the perturbed system can be then written in the form

H(1,60,8) = Ho(I) +V(I,6,&), (12)

where Hy(I) is the Hamiltonian of the unperturbed system from (7), and V(I, 8, {) corre-
sponds to the perturbation term in Eq. (4). An explicit expression for the perturbation in
terms of (I, 8) variables cannot be obtained due to impossibility to calculate the integrals
(11).

As far as V is periodic in time (as it is assumed) with frequency v, and taking
into consideration the fact that unperturbed motion is integrable, we may expand the
perturbation into the following Fourier series:

{ V(I,6,6)=4% kz; Vi (I) expli(kf — lv€],

(13)
Vie =V ;.



CHAOTIC BEHAVIOUR OF NONLINEAR WAVES AND SOLITONS 51

The perturbed equations of motion in (I, #) variables take now the form
I= ——szsz(I) expli(k8 — lvE],

= w(I) + 3i Zﬂ/ﬂ expli(kf — lwE)], (14)

where w(l) = ‘%ﬂ is the frequency of the unperturbed motion. Let us consider the
motion in the vicinity of one particular resonance,

mw(lyn) ~nv =0. (15)
The width of this resonance on frequency is 2 = \/4Vp|w’|, where Vy = |Viun(Imn )| and

w' = dw(Ip)/dI. The distance between two adjacent resonances is equal to

Awap = [wW(Imtants) — W(mn)l, (16)

where o =0,1; #=0,1. As a condition of chaotic motion, which means the appearance
of mixing, we will use the Chirikov criterion for the overlap of resonances [11],

K= (2\%)2 51, (17

where Aw is the minimal possible value of Aw,g from (16). For the cases (a, 3) = (1,0),
(0,1) and (1, 1) calculations similar to [11] give, respectively, the following conditions for
the border of stochasticity:

Kig = 4V|w'|m?/w? > 1, m>1, n>1,

KOl = 4‘/01“)/'”2/“}2 >1, n>»1, m2 1; (18)
K1 = 4Vy|w'|m?n?/w?(m — n)? > 1, m,n>1, |m-—n|l~1.

4. Chaos of Korteweg—de Vries waves

To apply these results to the system governed by KdV equation one must first evaluate
exact expressions for w and «’, which appear in the conditions (18). The frequency w is
equal to

2 7k
= = . 19
YT T T 2K (s) (19)

For convenience let us rewrite it as
512

T vsin
20
"%\ 2875 (20)

where we introduced ¢ by the correlation cos £ = 1+ 3%, and z = § — 12—5 cot £. To
evaluate ', one should represent it as
, dwdH  dw (dH)‘1

YT aE a1 " Ydp \dp
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Tedious calculations give finally

2
, MW 3 [ ]
= \f ~4cos LF (1.5;0.5;1; 2) +
“ 16v5/2sin pK?(z) \| 28sin 3 ( ?)

P © ko
n (\/§sm £+ cos 3) F (L5 1.5,2,2)] , (22)

where F(a, b, c, z) is the hypergeometric function. Substituting (20) and (22) in (18) one
can make sure that with approach to separatrix K — oo under arbitrary small V5. This
means that for any external perturbation, however small it is, Chirikov criterion is exe-
cuted starting with some energies, and this leads to the formation of the corresponding
stochastic layer. The transition from regular to chaotic motion can be found approxi-
mately from the condition K = 1. This bound on energy is defined by the inequality

3

Hmin < H S 07 Hmin = %(COS Pmin — 1) (23)

Here the value of @, is found from

403 8in Yimin ta0(Ymin/3) K (2min)
—4F (1.5;0.5; 1; Zmin) + (V3tan(@mn/3) + 1) F (1.5;1.5;2; zmin)

=7Vo( (m,n), (24)

in which zmin = 3 — @ cot £z and ((m,n) = m?, n?, (—;%2)7 for three cases in (18).
Certainly, there is only half-width of stochastic layer, but the phase curves, laying outside
separatrix are physically meaningless and thus uninteresting (they are unbounded at

infinity).

5. Summary and conclusions

We have calculated the width of the stochastic layer around a separatrix, corre-
sponding to a soliton solution of Korteweg—de Vries equation under small time-periodic
hamiltonian perturbations. As far as the motion in this stochastic layer is chaotic (in
the meaning of mixing), so nonlinear wave solutions corresponding to the phase curves
within this stochastic layer will also possess certain chaotic properties. Let us now con-
sider the question about the spatio-temporal region, where this chaotic behaviour can be
registered.

The time scale, after which stochasticity in a nonlinear oscillator can be found, is
defined by 7. < ¢, where 7. is the time of the decay of correlations. In [11] the following
estimation of 7. for a nonlinear oscillator is obtained:

1
InK'’

where K is the coefficient for the overlap of resonances (17). As far as in our consideration,
the variable £ plays the role of time ¢, so the region where chaotic regime can be detected
for the waves is 1

InK

Te

(25)

<¢ (26)
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or

fl? < (z —vt) (27)

in old denotions. Therefore, we can conclude that this region represents wave formation,
which outstrips nonlinear wave or soliton, and propagates in the same direction with the
same velocity. So, the chaos is not a spatial or temporal one, but their mixture, realized
in a wave. Under ¢t = 0 one obtains

1

nK L . (28)
As far as with approach to a separatrix K — oo, so for solitons the minimal distance
on which chaotic behaviour should appear z. — 0, and thus this effect is realized in the
close vicinity of a soliton peak. The chaotic behaviour we have found, is manifested in
the irregular small deflections from a smooth initial soliton profile. So, as a result of
this paper it can be inferred that long-period nonlinear waves, and especially solitons of
Korteweg—de Vries equation, obtain chaotic properties in the presence of time-periodic
hamiltonian external perturbations.

Exactly the same result was observed in an experiment with ion-acoustic and Lang-
muir waves in a nonmagnetized plasma [9]. There was registered a faint splash directly
before the soliton peak. From the concepts developed in this paper this phenomenon
can be explained in the following way. Together with a soliton, a wave generator also
produces a group of waves of small amplitude and almost zero frequencies. These waves
are produced constantly with the generator on, and therefore can be considered as a
small deterministic periodic external perturbation. Stochastic destruction of soliton due
to these waves must realize itself, as it was described above, just before the soliton peak,
exactly as it was registered in the experiment.
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