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Abstract

We derive and study a time-delayed SIR model with a general incidence rate. The time delay
represents temporary immunity period, i.e. time from recovery to becoming susceptible again. Both
trivial and endemic equilibria are found, and their stability is investigated. Using Lyapunov functional
approach, the global stability of an endemic equilibrium is shown. Numerical simulations support our
analytical conclusions and illustrate possible behaviour scenarios of the model.
� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

In recent years there has been made a significant progress in understanding different
scenarios for disease transmissions and behaviour of epidemics. Many models in the liter-
ature represent dynamics of diseases by systems of ordinary differential equations without
delay. However, inclusion of temporal delays in such models makes them more realistic by
allowing to describe the effects of disease latency or immunity[1–4].
One of the main issues in the study of behaviour of epidemics is the analysis of steady

states of themodel and their stability. Generally, amodel contains a disease-free equilibrium
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and one or more endemic equilibria. The stability of a disease-free steady state as well as
the existence of other non-trivial equilibria can be determined using the so-called basic
reproduction ratio, which quantifies how many secondary infections appear from a single
infected put in a population of susceptibles[5].When the basic reproduction number is less
that unity, the disease-free equilibrium is locally asymptotically stable, and, therefore, the
disease dies out after some period of time. Similarly, when the endemic equilibrium is a
global attractor, epidemiologically this means that the disease will prevail and persist in a
population.
It has been suggested by several authors that the disease transmission process may have

a nonlinear incidence rate. This allows one to include behavioural changes and prevent
unbounded contact rates[8–10]. A particular example of such an incidence rate is given by
�I s/(1+ �I k), with s, k, �,�>0. Another type of a nonlinear incidence rate,�I sSk, with
�, k, s >0 ork, s near 1, represents saturation or multiple exposures before infection.
In this paper we derive a model which includes a general nonlinear incidence rate and

a temporary immunity from a disease. This means, that after recovery an individual has a
temporary immunity against a disease, and, therefore, it moves into the susceptible class
after some period of time. This can be observed in the case of influenza, when after recovery
there is a long (but not lifelong) immunity to the same strain of the disease but no immunity
against other strains. Other cases of temporary immunity includeChlamydia trachomatis
with very short temporal immunity and very high rates of reinfection;Salmonellainfection
with partial immunity; non-plague yersiniosis where the actual time of the immunity is
unclear; respiratory syncytial virus after which immunity is incomplete and short-lived.
The temporary immunity is incorporated in our model by introducing the termI (t −

�)e−��, where� is the length of immunity period.This term reflects the fact that an individual
has survived from natural death in a recovery pool before becoming susceptible again. We
analyse existence and linear stability of the infection-free and endemic equilibria. Using
the basic reproduction ratioR0 we deduce that when the infection-free steady state is
linearly asymptotically stable the model has no other equilibria. Moreover, we prove that
under the condition thatR0<1 the infection-free equilibrium is globally asymptotically
stable, which means that after some period of time the disease will die out. After the
infection-free equilibrium becomes unstable there appears a non-trivial steady state. We
study linear stability of this state and also prove its global stability assuming incidence
rate to be linear. Furthermore, numerical simulations are carried out to illustrate possible
behaviour of solutions for different values of the immunity time�. In particular, for some
values of� a sustainable oscillatory dynamics can be observed.

2. Derivation of the model

A delayed SIR model which incorporates temporary immunity and a general nonlinear
incidence rate has the following form:

dS(t)

dt
= � − �S − �f (I (t))S(t) + �I (t − �)e−��,
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dI (t)

dt
= �f (I (t))S(t) − (� + �)I (t),

dR(t)

dt
= �I (t) − �I (t − �)e−�� − �R(t), (1)

where it is assumed that

(i) there is a nonlinear incidence rate which is governed by the functionf (I);
(ii) there is a temporary immunity period of the fixed length�, after which recovered

infectives revert to the susceptible class;
(iii) there are no disease-caused deaths.

The functionf (I) is assumed to have the following properties[10]:

• f (0) = 0,
• f ′(I ) >0,
• f ′′(I ) <0,
• limI→∞ f (I) = c < ∞.
Parameters in the system are as follows:� is a natural death rate;� is a recovery rate, i.e. rate
with which individualsmove from the infected class to the recovered, and� is a recruitment
rate from susceptibles to the infected class. Under the assumption that birth and death rates
are the same, the total populationN(t) evolves according to dN/dt = �(1− N(t)), and
N(t) → 1 ast → ∞. The first two equations in system (1) do not depend on the third
equation, and therefore this equation can be omitted without loss of generality. Hence,
system (1) can be rewritten as

dS(t)

dt
= � − �S − �f (I (t))S(t) + �I (t − �)e−��,

dI (t)

dt
= �f (I (t))S(t) − (� + �)I (t). (2)

3. Positivity of solutions

Model (1) describes a human population, and, therefore, it is very important to prove that
all quantities (susceptibles, infectives and recovered) will be positive for all time. In other
words, wewant to prove that all solutions of system (2) with positive initial data will remain
positive for all timest >0. The idea of the proof was introduced by Li and Kuang[7].

Theorem 1. Let the initial data beS(0) = S0>0 andI (s) = I0(s)�0 for all s ∈ [−�;0)
with I0(0) >0.Then solutionsS(t) andI (t) of system(2) are positive for allt >0.

Proof. To see this, we assume for contradiction that there exists the first timet1 such that
I (t1)S(t1)=0.Assume thatI (t1)=0. ThenS(t)�0 for all t ∈ [0; t1]. Noticing thatf (0)=0
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and the quantityf (I (t)) always has a factor ofI (t) in it, one can define

A = min
0� t � t1

{
�

f (I (t))S(t)

I (t)
− � − �

}
.

Then, fort ∈ [0; t1], dI (t)/dt �AI(t). Therefore,I (t1)�I (0)eAt1 >0, which is a con-
tradiction. Thus,I (t) >0 for all t >0. By the same argument it can be proved thatS(t)

is positive. Suppose not. Lett1 be the first time when againS(t)I (t) = 0. Assume that
S(t1) = 0. ThenI (t)�0 for all t ∈ [0; t1]. Then, from the first equation of system (2) we
have

dS(t)

dt

∣∣∣∣
t=t1

= �︸︷︷︸
>0

−�S(t1)︸ ︷︷ ︸
=0

−�f (I (t1))S(t1)︸ ︷︷ ︸
=0

+ �I (t1− �)e−��︸ ︷︷ ︸
�0

>0.

SinceS(0) >0, for S(t1) = 0 we must have dS(t)/dt |t=t1�0, which is a contradiction.
Next, we show the positivity ofR(t). Equation forR(t) from system (1) can be readily

solved to give

R(t) = �
∫ t

t−�
e−�(t−s)I (s)ds.

Since it was established thatI (t) is positive for allt >0, therefore,R(t) is also positive for
all t >0. This completes the proof.�

In this section we have proved that all solutions of system (2) will remain positive for all
time, i.e.S(t) >0, I (t) >0 andR(t) >0 for all t >0.

4. Infection-free steady state and its stability

Now we analyse system (2) by finding its equilibria and studying their linear stability.
Steady states of system (2) satisfy the following system of equations:{

� − �S − �f (I)S + �Ie−�� = 0,
�f (I)S − (� + �)I = 0. (3)

It is easy to check that system (3) has the disease-free equilibriumE0= (1,0) and onemore
non-zero steady state for certain parameter values. We start with analysing the behaviour
of the original system (2) nearE0. The eigenvalues of the linearisation of system (2) near
the steady stateE0 are�1 = −� and�2 = �f ′(0) − � − �. All parameters of the model
are assumed to be positive and from the properties of the functionf (I) it follows that
f ′(I ) >0. Therefore, for�1, �2 to be negative, i.e. for a disease-free equilibrium to be
locally asymptotically stable, the following condition has to be required:

�f ′(0) <� + �. (4)

As long as condition (4) holds, the disease-free steady state of system (2) stays locally
asymptotically stable and no other equilibrium is feasible, as we will show later. Let us
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define thebasic reproduction numberof the infection as

R0 = �f ′(0)
� + �

.

UsingR0 we can state the following lemma indicating the stability ofE0 = (1,0).

Lemma 1. The uninfected equilibriumE0 is locally asymptotically stable ifR0<1 and
unstable ifR0>1.

5. Global stability of the trivial steady state

We have seen that the equilibrium point(1,0) is unstable whenR0>1. In this section
we shall prove the global stability of this steady state under the conditionR0<1. Returning
to system (2) we make the following transformation:

Ŝ = 1− S, and Î = I.

With this transformation, system (2) becomes

dŜ(t)

dt
= −�Ŝ + �f (Î (t))(1− Ŝ(t)) + �Î (t − �)e−��,

dÎ (t)

dt
= �f (Î (t))(1− Ŝ(t)) − (� + �)Î (t). (5)

Now, this system has an equilibrium(0,0) and proving global stability of this point means
proving global stability ofE0 = (1,0) for system (2).
Fromf (0) = 0 and the concavity off, we can conclude that for allI >0

�f (I) < (� + �)I. (6)

Using the above-mentioned argument, the equation forÎ can be rewritten as follows:

dÎ

dt
= �f (Î (t))(1− Ŝ(t)) − (� + �)Î (t)��f (Î (t)) − (� + �)Î .

Now, with the help of (6) we obtain

dÎ

dt
��f (Î (t)) − (� + �)Î <0,

i.e. there exists a positive constantc such that

dÎ

dt
� − c. (7)

The solutions of this differential inequality are bounded above by the solutions of the
corresponding differential equation. Therefore, we obtain the following result:

Î �I (0)e−ct

and ast → ∞ it follows that Î → 0, and so does the originalI (t).
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Now, we need to prove thatŜ(t) → 0 ast → ∞. In order to do it we rewrite the equation
for Ŝ(t) as

dŜ(t)

dt
= − �Ŝ + �f (Î (t))(1− Ŝ(t)) + �Î (t − �)e−��

� − �Ŝ + (� + �)Î + �Î (t − �)e−��

� − �Ŝ +
[
� + �(1+ e(c−�)�)

]
I (0)e−ct . (8)

From the solution of the corresponding differential equation

Ŝ(t) = c1e
−�t + � + �(1+ e(c−�)�)

� − c
I (0)e−ct

with c1 being a constant determined by initial conditions, it can be seen that the solutions
of (8) are bounded above by the exponentially decaying function ast → ∞. Thus, we have
proved that the solutionE0 = (1,0) is globally asymptotically stable.

6. Existence of a non-trivial equilibrium and its stability analysis

From the previous section it is follows that when the trivial steady stateE0 of system (2) is
locally asymptotically stable, then non-trivial, or endemic equilibrium is not feasible. This
situation is controlled by condition (4). When condition (4) violates, besides the disease-
free equilibrium, system (2) has a non-trivial equilibriumE∗

� = (S∗
� , I ∗

� ). System (2) is a
nonlinear delayed system, so it is very complicated task to find an explicit expression for
E∗

� = (S∗
� , I ∗

� ). Therefore, rather than look for an explicit form of it, we shall prove that an
endemic equilibrium exists, and then perform its stability analysis.
From the second equation of system (3) it follows that

S = (� + �)I
�f (I)

.

After substituting thisexpression into thefirst equationof system(3),weobtain the following
equation forI:

H(I) = � − �(� + �)I
�f (I)

− (� + �)I + �Ie−�� = 0.

It canbeeasily seen that the functionH(I) is negative for largepositiveI.Next,wedetermine
the sign of its derivative:

H ′(I ) = −�(� + �)
f (I ) − If ′(I )

�f 2(I )
− (� + �) + �e−��.

From the properties of the functionf (I), in particular, fromf (0) = 0 andf ′′(I ) <0 it
follows thatf (I) − If ′(I ) >0, and consequently,H ′(I ) <0 for all I >0. Therefore, for a
positive root ofH(I) = 0 to exist,H(I) has to satisfyH(0) >0, i.e.

H(0) = �
[
1− � + �

�f ′(0)

]
= �

[
1− 1

R0

]
.
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Hence, one needs to requireR0>1 to ensure the existence of an endemic equilibrium.
Therefore, we have proved the existence and uniqueness of the endemic equilibriumE∗

� =
(S∗

� , I ∗
� ) for system (2). This result is summarized below:

Theorem 2. Assume that all conditions imposed on the functionf (I) hold. Then, isR0>1
then system(2) has a unique equilibriumE∗

� .

The linearisationmatrix of system (2) near the steady stateE∗
� =(S∗

� , I ∗
� )has the following

characteristic equation:

�1(�) = �2+ (2� + �f (I ∗
� ) − �f ′(I ∗

� )S∗
� + �)� − ��f ′(I ∗

� )S∗
� + �2+ ��

+ �f (I ∗
� )� + ��f (I ∗

� ) − ��f (I ∗
� )e−�(�+�). (9)

First, we look at the situation when there is no temporal immunity from a disease, i.e.�=0.
With � = 0, system (3) reduces to{

� − �S∗
0 − �f (I ∗

0 )S
∗
0 + �I ∗

0 = 0,
�f (I ∗

0 )S
∗
0 − (� + �)I ∗

0 = 0.
Let the solution of this system beE∗

0 = (S∗
0, I

∗
0 ). From Eq. (9) with� = 0 it follows, that

this steady state is locally asymptotically stable if the following condition holds:

� + � + �f (I ∗
0 ) >�f ′(I ∗

0 )S
∗
0 . (10)

Returning to Eq. (9), we choose�>0, and introduce the following notation:

A� = 2� + �f (I ∗
� ) − �f ′(I ∗

� )S∗
� + �

and

B� = −��f ′(I ∗
� )S∗ + �2+ �� + �f (I ∗

� )� + ��f (I ∗
� ).

With this notation Eq. (9) becomes

�2+ A�� + B� − ��f (I ∗
� )e−�(�+�) = 0. (11)

Suppose,�= iv with v >0 is a root of Eq. (11) for some�. Then, after substituting this into
(11) we obtain

−v2+ A�iv + B� − ��f (I ∗
� )e−�(�+�) = 0.

Then, after separating it into real and imaginary parts, we obtain{−v2+ B� = ��f (I ∗
� )e−�� cos�v,

A�v = −��f (I ∗
� )e−�� sin �v.

Thus, upon squaring and adding the last two equations, it gives us the following equation:

v4+ (A2� − 2B�)v
2+ B2� − �2�2f 2(I ∗

� )e−2�� = 0. (12)
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Theorem 3. Suppose that the conditions

A2� >2B�, and B� > �2�2f 2(I ∗
� )e−2�� (13)

hold for all ��0. Then the infected steady stateE∗
� = (S∗

� , I ∗
� ) of system(2) is locally

asymptotically stable.

In terms of the parameters of system (2), the two conditions in (13) can be explicitly
written as

�(� + 2�f (I ∗
� )) + (� + �)2+ �2(f ′(I ∗

� )S∗
� − f (I ∗

� ))2>2�f ′(I ∗
� )S∗

� (� + �)

and

[�2+ ��]2+ [��f ′(I ∗
� )S∗

� + ��f (I ∗
� )]2+ �2�2f 2(I ∗

� )(1− e−2��)

+ 2�2�f (I ∗
� )[2� − �f (I ∗

� )S∗
� ] + 2���[�f 2(I ∗

� ) − �f ′(I ∗
� )S∗

� ]
+ 2�3�[f (I ∗

� ) − f ′(I ∗
� )S∗

� ] + 2�2��f 2(I ∗
� ) >0.

We have proved that when an endemic steady state is feasible, then under condition (13)
it is locally asymptotically stable.

7. Global stability of the endemic steady state

Choosing a linear incidence ratef (I) = I , we return to system (1) and center it at the
endemic equilibriumE∗

� = (S∗
� , I ∗

� , R∗
� ) by introducing new variables as

u1= S − S∗
� , u2= I − I ∗

� and u3= R − R∗
� .

After substituting these variables, system (1) can be rewritten in the following form:

du1
dt

= −�u1− �Su2− �u1I
∗
� + �u2(t − �)e−��,

du2
dt

= �Su2+ �u1I
∗
� − (� + �)u2,

du3
dt

= �u2− �u2(t − �)e−�� − �u3. (14)

Now, proving that a trivial solution of system (14) is globally asymptotically stable, will
immediately prove the fact that the endemic equilibriumE∗

� of system (1) is globally
asymptotically stable. We shall employ Lyapunov functional technique to prove it (see, for
example[1]). Before embarking on the analysis, we prove the following lemma which will
be used in our further calculations.

Lemma 2. Let the initial data for system(1) be S(0) = S0>0, I (s) = I0(s)�0 for all
s ∈ [−�,0) with I0(0) >0 andR(0) = R0>0.ThenS(t)� max{1, S0+ I0+ R0} = M for
all t >0.

Proof. FromSection 2 we know thatN(t)=S(t)+I (t)+R(t) is a monotone function and
N(t) → 1 ast → ∞. Suppose thatN(0)�1. Then,N(t)�1 for all t >0. From positivity
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of solutions of system (1) it follows thatS(t)�1 for all t >0. On the contrary, ifN(0) >1
thenN(t) < N(0) and, hence,S(t) < N(0) for all t >0. The proof is complete.�

Now, let us introduce the following functional:

V (u) = 1
2w(u1+ u2)

2+ 1
2(u

2
2+ u23),

wherew >0 is an arbitrary real constant. The derivative ofV is

V ′(u) = u3[�u2− �u2(t − �)e−�� − �u3] + w[−�u1− �Su2− �u1I
∗
�

+ �u2(t − �)e−�� + �Su2+ �u1I
∗
� − (� + �)u2](u1+ u2)

+ u2(�Su2+ �u1I
∗
� − (� + �)u2)

or, equivalently,

V ′(u)� − �u23− w�u21− w�u22− w�u22+ u1u2[−w(� + �) − w� + �I ∗
� ]

+ �u2u3+ �Su22− �u3u2(t − �)e−�� + w�u1u2(t − �)e−��

+ w�u2u2(t − �)e−�� − (� + �)u22.

Choosingw as follows:

w = �I ∗
�

2� + �

and applying Cauchy–Schwartz inequality to alluiuj -type terms, we arrive at the following
expression:

V ′(u)� − �u23− w�u21− [w� − �M + (� + �) + w�]u22+ �
2

(u22+ u23)

+ �
2

u23e
−�� + �

2
u22(t − �)e−�� + w�

2
u21e

−�� + w�
2

u22(t − �)e−��

+ w�
2

u22e
−�� + w�

2
u22(t − �)e−��.

Arranging similar terms in the last inequality gives

V ′(u)� −
(
� − �

2

)
u23− w�u21−

[
(w + 1)(� + �) − �M − �

2

]
u22+ w�

2
u21e

−��

+ �
2

u23e
−�� + �

(
w + 1

2

)
u22(t − �)e−��. (15)

Assuming that�> � and�+�/2+�I ∗
� − (�I ∗

� �/(2�+�))−�M >0 for sufficiently large
time, e.g.,t > t1+ �, leads us to the following:

V ′(u)� − w�u21−
[
(w + 1)(� + �) − �M − �

2

]
u22−

(
� − �

2

)
u23+ w�

2
u21e

−��

+ �
(

w + 1

2

)
u22(t − �)e−�� + �

2
u23e

−��. (16)
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We choose Lyapunov functional to be of the form:

U(ut ) = V (u) + �
(

w + 1

2

)
e−��

∫ t

t−�
u22(	)d	

and, hence,

U ′(ut ) = V ′(u) + �(w + 1
2)e

−��u22(t) − �(w + 1
2)e

−��u22(t − �).

Substituting inequality forV ′(u), we get

U ′(ut )� −
(
� − �

2

)
u23− w�u21−

[
(w + 1)(� + �) − �M − �

2

]
u22+ w�

2
u21e

−��

+ �
(

w + 1

2

)
u22(t − �)e−�� + �

2
u23e

−�� + �
(

w + 1

2

)
e−��u22

− �
(

w + 1

2

)
e−��u22(t − �). (17)

Therefore,

U ′(ut )� −
(
� − �

2
− �
2
e−��

)
u23−

(
w� − w�

2
e−��

)
u21

−
[
(w + 1)(� + �) − �M − �

2
− �

(
w + 1

2

)
e−��

]
u22. (18)

The last expression is negative definite provided that

�>max
{
1

�
log

[
�

2�−�

]
,
1

�
log

[
�
2�

]
,
1

�
log

[
�(w+1/2)

(w+1)(�+�)−�M−�/2

]}
.

A direct application of the Lyapunov–LaSalle type theorem (Theorem 2.5.3 of Kuang[6,
p. 30]) shows that limt→∞ ui(t) = 0, i = 1,2,3. We have proved the following theorem.

Theorem 4. Let the initial conditions for system(1) beS(0) = S0>0, I (s) = I0(s)�0,
s ∈ [−�,0)withI0(0) >0andR(0)=R0>0.Assume further that the parameters of system
(1) satisfy

�> �, � + �
2

+ �I ∗ >
�I ∗�
2� + �

+ �M, and �f ′(0) >� + �,

whereM = S0 + I0 + R0. Then, for any immunity time� satisfying

�>max
{
1

�
log

[
�

2�−�

]
,
1

�
log

[
�
2�

]
,
1

�
log

[
�(w+1/2)

(w+1)(�+�)−�M−�/2

]}
,

the endemic equilibriumE∗ is globally asymptotically stable.

8. Numerical simulations

In this section we study model (1) numerically. All simulations were performed using
the Delay Differential Equations (DDE) suite in Matlab[11].
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Fig. 1. A solution of model (1) withf (I) = I , S(s) = I (s) = R(s) = 0.5, s ∈ [−�,0]. Parameter values are� = 1,
� = 0.5, � = 0.1, and� varies from 1 to 100.

We begin by considering a case of small time delay�. Fig. 1represents two different pos-
sibilities which can be realised in this situation. For sufficiently small disease transmission
rate� (such thatR0<1) the disease dies out of the population, and the solutions approach
the globally stable disease-free steady stateE0. On the other hand, for larger� (i.e.R0>1)
the endemic equilibriumE∗

� is feasible and stable whileE0 loses its stability.
In the remainder of this section we concentrate on the case whenf (I) = I/(1+ I ) and

R0>1. In this case, the endemic equilibrium is given explicitly by

E∗
� = (S∗

� , I ∗
� , R∗

� ) =




S∗
� = (� + �)(2� + � − �e−��)

�(� + � + �) − ��(1− e−��)
,

I ∗
� = �(� − � − �)

�(� + � + �) − ��(1− e−��)
,

R∗
� = �(� − � − �)(1− e−��)

�(� + � + �) − ��(1− e−��)
.

As � increases, this steady state can undergo Hopf bifurcation and give rise to a stable
periodic solution. In the beginning (�=1), the amplitude of these oscillations is very small,
and, therefore, this periodic orbit is hardly distinguishable from the steady stateE∗

� itself.
As it is shown inFig. 2, for larger delays the amplitude of the oscillations increases. For
sufficiently large�, stability ofE∗

� is regained, and initial oscillations aroundE∗
� are quickly

damped. In the case of linear incidence rate, dynamics of solutions is qualitatively the same
as inFig. 2.

9. Conclusions

This paper has been concerned with modelling of a disease dynamics with temporary
immunity period, which is an important feature of many diseases. Previous efforts on incor-
porating delays in epidemic models have been mainly concentrated on inclusion of latency
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Fig. 2. A solution of model (1) withf (I) = I/(1+ I ), S(s) = I (s) = R(s) = 0.5, s ∈ [−�,0]. Parameter values
are� = 0.1, � = 5,� = 10, and� varies from 1 to 10.

periods (this assumes that the forceof infectionat a present time is determinedby thenumber
of infectives in the past). However, it is epidemiologically reasonable to allow individuals
to have immunity for some time after they recover from infection.
We have analytically studied model (1) with a general (possibly, nonlinear) incidence

rate as far as possible, and restricted ourselves to the case off (I)= I andf (I)= I/(1+ I )

later to enable further analytic progress and for the purposes of numerical simulations.
WhenR0<1, the disease-free steady stateE0 is globally asymptotically stable, and no
other equilibria exist. WhenR0>1, the steady stateE0 loses its stability, and an endemic
equilibriumE∗

� appears. Using Lyapunov functional technique, we have been able to show
that under certain restrictions on the parameter values and the delay time, this equilibrium
is globally asymptotically stable.
To further investigate our model we resorted to numerical simulations. They show that

for R0>1 and a small immunity time�, the solutions are represented by small amplitude
oscillations near the steady stateE∗

� . As the immunity period� increases, the amplitude of
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these oscillations increases correspondingly. Further increase of� returns the oscillatory
dynamics to the globally attractive steady-state form. This shows the dependence of a long-
term dynamics of solutions on the immunity period�.A realistic extension of this work is to
assume that the immunity time may depend on the particular characteristics of individuals
(such as age, general state of health, loss of immunity due to waning of vaccine, etc.), and
this is currently a work in progress.
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