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A B S T R A C T

The unprecedented scale and rapidity of dissemination of re-emerging and emerging infectious diseases impose
new challenges for regulators and health authorities. To curb the dispersal of such diseases, proper management
of healthcare facilities and vaccines are core drivers. In the present work, we assess the unified impact of
healthcare facilities and vaccination on the control of an infectious disease by formulating a mathematical
model. To formulate the model for any region, we consider four classes of human population; namely,
susceptible, infected, hospitalized, and vaccinated. It is assumed that the increment in number of beds in
hospitals is continuously made in proportion to the number of infected individuals. To ensure the occurrence
of transcritical, saddle–node and Hopf bifurcations, the conditions are derived. The normal form is obtained
to show the existence of Bogdanov–Takens bifurcation. To validate the analytically obtained results, we have
conducted some numerical simulations. These results will be useful to public health authorities for planning
appropriate health care resources and vaccination programs to diminish prevalence of infectious diseases.
1. Introduction

In the pre-modern era, the global spread of infectious diseases
caused high mortality and morbidity with devastating consequences.
However, medical advances, improved access to healthcare, and the de-
velopment of vaccines have contributed to a decline in overall mortality
and morbidity linked to infectious diseases [1]. Nevertheless the burden
of death linked with infectious diseases remains substantial in lower-
and middle-income countries [2]. The ability to minimize the impact
of these possible disease threats depends on appropriate healthcare
services including number of hospital beds. It is impossible to give a
one-size-fits-all answer to the question of how many hospital beds a
country should have per 10,000 people, as it depends on a variety
of factors, such as immunity, fooding habits and environment of that
particular region. However, the World Health Organization (WHO) pro-
vides guidance that this Hospital-beds-population-ratio (HBPR) should
lie between 21 to 165 [3]. By way of example, for Asian countries,
HBPR, per 10,000 inhabitants and mortality linked to infectious dis-
eases (for year 2019), per 10,000 inhabitants is shown in Fig. 1.
Concatenating the aforementioned data, we observe that the countries
with HBPR 29 and higher have low mortality, whereas countries with
HBPR under 10 experienced a high rate of mortality linked to infectious
diseases, Fig. 2. Although mortality related to infectious diseases also
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depends on some other factors (such as lifestyle and seasonal fluctua-
tions) and circumstances, HBPR nevertheless is a core driver to control
of their prevalence.

As we say ‘‘prevention is always better than cure’’, the vaccine has
been proved to be the strongest footprint in this regard as it has shown
positive results in fighting against infectious diseases [5]. It would be
impossible to predict the effects of vaccines in a counterfactual world
in which vaccines had not been developed. For example, smallpox was
once a widespread and deadly disease, but vaccination against it in
1977 is a monumental leap, that rooted out the disease completely.
From the history of polio and smallpox to the present day of COVID-19,
vaccines have been proven as the savviest way to tackle the deadliest
diseases and have been the shining hope whenever diseases have almost
devastated economies and people’s life. Vaccines have the potential to
root out infectious diseases locally without global eradication and along
with the proper management of healthcare facilities are milestones for
public health interventions.

The relationship between healthcare and vaccines is bidirectional,
as healthcare impacts the dynamics of infectious diseases in the early
stage of their encounter, while vaccines include long-term goals. In this
regard, some mathematical modelers have put their efforts to study the
impact of healthcare facilities or vaccination on disease dynamics [6–
24]. In particular, Abdelrazec et al. [6] proposed a deterministic model
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Fig. 1. (a) HBPR of Asian countries, per 10,000 people (most recent data available at [4]) (b) Number of deaths in Asian countries due to infectious diseases, per 10,00,000
people [2].
Fig. 2. Bar plot for HBPR per 10,000 and number of deaths in Asian countries due to infectious diseases, per 1000000 people [2,4].
for the study of dengue fever transmission dynamics as well as the
impact of available healthcare resources on the spread and control
of disease. They concluded that only the basic reproduction number
is not enough for the understanding of disease transmission dynam-
ics, other epidemiological parameters, such as HBPR also drastically
affects disease transmission dynamics. Zhou and Fan [25] have stud-
ied an SIR epidemic model to show the impact of limited medical
resources on the transmission dynamics of infectious diseases. Accord-
ing to their study, the availability and supply efficiency of medical
resources have a powerful impact on the control of infectious dis-
eases. Arino and Milliken [26] studied the effect of vaccination on the
disease prevalence, by adding a compartment for vaccinated individ-
uals to their SLIARS (susceptible-latent-infected-asymptotic-recovered-
susceptible) model and contemplating disease-induced death, waning
infection-acquired immunity, and imperfect and waning vaccination
protection.

The normal questions asked by people in the midst of an epidemic
outbreak are: Can the diseases be rooted out or persist? If the disease
persists, how will the healthcare facilities be managed? How will
vaccination programs be implemented effectively? To answer all these
questions and study the unified effect of healthcare facilities (in terms
of hospital beds) and vaccines on infectious disease dynamics, we de-
vise a mathematical model. Additionally, we consider that the number
of hospital beds is made continuously proportional to the number of
infected individuals.

2. The mathematical model

For the region under consideration, we divide the total human
population into four sub-populations: susceptible (𝑆), infected (𝐼),
2

hospitalized (𝐻) and vaccinated (𝑉 ). We consider that recruitment
of individuals in susceptible class occurs at a rate 𝐴. In the absence
of vaccines and healthcare facilities (more precisely, the number of
hospital beds), there is a probability that some susceptible individuals
may acquire the infection when they get in physical touch with infected
individuals. This transmission of individuals from 𝑆 class to 𝐼 class
occurs at a rate 𝛽. The disease-induced mortality is represented by
𝛼. Also, some infected individuals recover on their own and join the
susceptible class, with a self-recovery rate 𝜈. The parameter 𝑑, repre-
sents natural mortality. The time evolution of the infectious disease
can be modeled mathematically with the help of following system of
non-linear differential equations.

⎧

⎪

⎨

⎪

⎩

𝑑𝑆
𝑑𝑡

= 𝐴 − 𝛽𝑆𝐼 − 𝑑𝑆 + 𝜈𝐼,

𝑑𝐼
𝑑𝑡

= 𝛽𝑆𝐼 − (𝜈 + 𝛼 + 𝑑)𝐼.
(1)

To study the impact of hospital beds and vaccination, we introduce
two new dynamical variables for human population 𝐻(𝑡) and 𝑉 (𝑡), that
represent hospitalized and vaccinated individuals, respectively at time
𝑡 ≥ 0. The sudden increase in the infected population increases the
congregation in hospitals. To fulfill this demand, an increase in hospital
beds is necessary. Thus, we introduce a state variable 𝐻𝑏, representing
the increment in hospital beds, that occurs at a rate 𝜙 proportional to
the number of infected individuals. Due to some financial reservations
and manufacturing errors, some newly created hospital beds do not
contribute and thus decrease at a rate 𝜙0. The total number of pre-
existing hospital beds is 𝐻𝑎. Thus, (𝐻𝑎 +𝐻𝑏 −𝐻) represents available
number of hospital beds for the use of infected individuals at time
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𝑡 > 0. Note that maximum (𝐻𝑎 + 𝐻𝑏) individuals can be admitted to
hospitals at any time 𝑡, therefore (𝐻𝑎 + 𝐻𝑏 − 𝐻) ≥ 0, and 𝑘1 is the
hospitalization rate coefficient. Furthermore, we assume vaccination of
the susceptible population transpires at a rate 𝜎. Due to some inefficacy
of vaccination, a few vaccinated individuals may acquire infection and
join the infected class with transmission rate 𝛽1. The constant 𝜃 and
𝜈1 represent extra disease-induced mortality recovery rate of infected
individuals in hospitals, respectively. Using these assumptions, model
system (1) modifies to

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

𝑑𝑆
𝑑𝑡

= 𝐴 − 𝛽𝑆𝐼 − 𝑑𝑆 − 𝜎𝑆 + 𝜈𝐼 + 𝜈1𝐻,

𝑑𝐼
𝑑𝑡

= 𝛽𝑆𝐼 + 𝛽1𝑉 𝐼 − (𝜈 + 𝛼 + 𝑑)𝐼 − 𝑘1(𝐻𝑎 +𝐻𝑏 −𝐻)𝐼,

𝑑𝐻
𝑑𝑡

= 𝑘1(𝐻𝑎 +𝐻𝑏 −𝐻)𝐼 − (𝑑 + 𝜃𝛼 + 𝜈1)𝐻,

𝑑𝑉
𝑑𝑡

= 𝜎𝑆 − 𝑑𝑉 − 𝛽1𝑉 𝐼,

𝑑𝐻𝑏
𝑑𝑡

= 𝜙𝐼 − 𝜙0𝐻𝑏.

(2)

Here, 𝑆(0) > 0, 𝐼(0) ≥ 0, 𝐻(0) ≥ 0, 𝑉 (0) > 0, and 𝐻𝑏(0) ≥ 0. Also, all
the considered parameters are non-negative.

3. Basic properties

3.1. Disease-free equilibrium and basic reproduction number

We can see that system (2) always exhibits a unique disease-free
equilibrium 𝐸0

(

𝐴
𝑑 + 𝜎

, 0, 0, 𝜎𝐴
𝑑(𝑑 + 𝜎)

, 0
)

. Now, we calculate the ba-
sic reproduction number for the proposed model system (2) using
next-generation matrix method [27]. The transmission and transition
matrices in the model system (2) are respectively given as

𝐹 =
[

𝛽𝑆𝐼 + 𝛽1𝑉 𝐼
]

, and 𝑀 =
[

(𝜈 + 𝛼 + 𝑑)𝐼 + 𝑘1(𝐻𝑎 +𝐻𝑏 −𝐻)𝐼
]

.

The transmission (new infection) and transition matrices at equilibrium
𝐸0 are respectively

𝑇𝐹 =
[

𝛽𝐴
(𝑑+𝜎) +

𝛽1𝜎𝐴
𝑑(𝑑+𝜎)

]

, and 𝑇𝑀 =
[

𝜈 + 𝛼 + 𝑑 + 𝑘1𝐻𝑎
]

.

hus,

𝐹 (𝑇𝑀 )−1 =
[ (

𝛽𝐴
(𝑑+𝜎) +

𝛽1𝜎𝐴
𝑑(𝑑+𝜎)

)

×
(

1
𝜈+𝛼+𝑑+𝑘1𝐻𝑎

) ]

.

As model system (2) has only one infected class, i.e., 𝐼 ; thus, the
entry in matrix 𝑇𝐹 indicates that the rate at which number of infected
individuals are produced in class 𝐼 , whereas the entry in 𝑇𝑀 represents
the expected time an individual spends in class 𝐼 . Furthermore, the
entry in 𝑇𝐹 (𝑇𝑀 )−1 is the expected number of secondary infection in
class 𝐼 produced by a typically infected individuals during his/ her
whole infectious period in a totally susceptible population. Thus, the
basic reproduction number for model system (2) can be written as

𝑅0 =
𝛽𝐴

(𝑑 + 𝜎)(𝜈 + 𝛼 + 𝑑 + 𝑘1𝐻𝑎)
+

𝛽1𝐴
(𝑑 + 𝜎)(𝜈 + 𝛼 + 𝑑 + 𝑘1𝐻𝑎)

𝜎
𝑑
.

3.2. Endemic equilibrium

Now, for any endemic equilibrium 𝐸(𝑆, 𝐼,𝐻, 𝑉 ,𝐻𝑏), the compo-
nents 𝑆, 𝐻 , 𝑉 , and 𝐻𝑏 can be expressed in terms of 𝐼 as follows

𝑆(𝐼) =
𝜙0(𝑑 + 𝜃𝛼 + 𝜈1 + 𝑘1𝐼)(𝜈 + 𝛼 + 𝑑) + 𝑘1

(

(𝜙0𝐻𝑎 + 𝜙𝐼)(𝑑 + 𝜃𝛼 + 𝜈1)
)

𝜙0(𝑑 + 𝜃𝛼 + 𝜈1 + 𝑘1𝐼)
(

𝛽 + 𝛽1𝜎
𝛽1𝐼+𝑑

) ,

𝐻(𝐼) =
𝑘1(𝜙0𝐻𝑎 + 𝜙𝐼)𝐼

𝜙0(𝑑 + 𝜃𝛼 + 𝜈1 + 𝑘1𝐼)
,

𝑉 (𝐼) = 𝜎
(𝑑 + 𝛽1𝐼)

𝑆(𝐼), and 𝐻𝑏(𝐼) =
𝜙
𝜙0

𝐼.
3

Table 1
The case 𝑅0 > 1.
▵0 2 3 Number of positive

solutions of (𝐼) = 0

▵0> 0 – < 0 1
▵0> 0 > 0 > 0 1
▵0> 0 < 0 > 0 1 if (𝐼−)(𝐼+) > 0

3 if (𝐼−)(𝐼+) < 0
▵0< 0 – − 1

Table 2
The case 𝑅0 < 1.
▵0 2 3 Number of positive

solutions of (𝐼) = 0

▵0> 0 – < 0 0 if (𝐼+) > 0
2 if (𝐼+) < 0

▵0> 0 < 0 > 0 0 if (𝐼+) > 0
2 if (𝐼+) < 0

▵0> 0 > 0 > 0 0
▵0< 0 – − 0

In the above expressions, the coordinate 𝐼 is a positive root of the
following cubic equation

(𝐼) = 1𝐼
3 +2𝐼

2 +3𝐼 +4 = 0, (3)

where

1 = 𝛽𝛽1𝑘1
[

𝜙0(𝛼 + 𝑑) + 𝜙(𝑑 + 𝜃𝛼)
]

,

2 = −𝛽𝛽1𝜙0𝑘1𝐴 + 𝜙0(𝛼 + 𝑑)[𝑘1(𝛽𝑑 + 𝛽1𝜎) + 𝛽𝛽1(𝑑 + 𝜃𝛼 + 𝜈1)]

+ 𝑘1(𝑑 + 𝜃𝛼)[𝛽𝛽1𝜙0𝐻𝑎 + 𝜙(𝛽𝑑 + 𝛽1𝜎)]

+ 𝛽1𝜙0𝑘1𝑑(𝜈 + 𝛼 + 𝑑 + 𝑘1𝐻𝑎) + 𝛽1𝑘1𝑑[𝜙(𝑑 + 𝜃𝛼 + 𝜈1) − 𝑘1𝜙0𝐻𝑎],

3 = −𝜙0𝑘1𝑑(𝑅0 − 1)(𝑑 + 𝜎)(𝜈 + 𝛼 + 𝑑 + 𝑘1𝐻𝑎)

− 𝛽𝛽1𝜙0𝐴(𝑑 + 𝜃𝛼 + 𝜈1) + 𝑑𝑘1(𝑑 + 𝜎)[𝜙(𝑑 + 𝜃𝛼 + 𝜈1) − 𝑘1𝜙0𝐻𝑎]

+ 𝜙0(𝛼 + 𝑑)(𝑑 + 𝜃𝛼 + 𝜈1)(𝛽𝑑 + 𝛽1𝜎) + 𝜙0𝐻𝑎𝑘1(𝑑 + 𝜃𝛼)(𝛽𝑑 + 𝛽1𝜎)

+ 𝛽𝜙0𝑑(𝑑 + 𝜃𝛼 + 𝜈1)(𝜈 + 𝛼 + 𝑑 + 𝑘1𝐻𝑎),

4 = −𝑑𝜙0(𝑅0 − 1)(𝑑 + 𝜎)(𝑑 + 𝜃𝛼 + 𝜈1)(𝜈 + 𝛼 + 𝑑 + 𝑘1𝐻𝑎).

From equation (𝐼) = 0, we observe that 1 is always positive, and
4 > 0 if 𝑅0 < 1, and 4 < 0 for 𝑅0 > 1. Thus, to get a qualitative

analysis of positive solutions of (𝐼) = 0, we look at the derivative
(𝑑∕𝑑𝐼) = 31𝐼2 +22𝐼 +3 and set ▵0= 2

2 −313. Then, we have
wo cases according to the value of 𝑅0.

(i) When 𝑅0 > 1.
In this case 4 < 0. Now, second degree polynomial (𝑑∕𝑑𝐼) has
two real solutions 𝐼+ and 𝐼− when ▵0> 0, which determines the
existence of one or three positive solutions of equation (𝐼) = 0.
Thus, we have two cases: (a) if 𝐼− < 0 < 𝐼+ or 𝐼− < 𝐼+ < 0,
then equation (𝐼) = 0 has one positive solution, and (b) if
0 < 𝐼− < 𝐼+, then equation (𝐼)=0 gives three positive solutions
when (𝐼−)(𝐼+) < 0 and one positive solution otherwise. Also,
when ▵0< 0, the equation () = 0 gives one positive solution.
These results are summarized in Table 1.

(ii) When 𝑅0 < 1.
In this case 4 > 0. If ▵0> 0, then second degree polynomial
𝑑∕𝑑𝐼 has two solutions 𝐼− and 𝐼+, which determines the exis-
tence of zero or two positive solutions for the equation (𝐼) = 0.
Thus, we have two cases: (a) if 𝐼− < 0 < 𝐼+ or 0 < 𝐼− < 𝐼+,
then equation (𝐼) = 0 has two positive solutions if (𝐼+) < 0
or no positive solution otherwise. (b) If 𝐼− < 𝐼+ < 0, then
(𝐼) = 0 will always return to no positive solution. These results
are summarized in Table 2.
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We also observe that if 3 < 0, then ▵0> 0. Thus, for 𝑅0 < 1, the
value of (𝐼+) = 0 gives a threshold value (𝑅∗

0) of 𝑅0 for saddle–node
bifurcation. Thus, we establish the following theorem.

Theorem 1. The system (2) may admits

(i) Two endemic equilibria 𝐸∗
1 (with high endemicity) and 𝐸∗

2 (with low
endemicity) when 𝑅∗

0 < 𝑅0 < 1, coalesce into 𝐸∗
3 at 𝑅0 = 𝑅∗

0, and
ceases to appear when 𝑅0 < 𝑅∗

0.
(ii) A unique endemic equilibrium 𝐸∗

1 when 𝑅0 > 1.

3.3. Stability analysis of obtained equilibria

3.3.1. Disease-free equilibrium
The Jacobian matrix for model system (2) computed at

𝐸0

(

𝐴
𝑑 + 𝜎

, 0, 0, 𝜎𝐴
𝑑(𝑑 + 𝜎)

, 0
)

is given by

𝐽0 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

−(𝑑 + 𝜎) −𝛽
( 𝐴
𝑑+𝜎

)

+ 𝜈 𝜈1 0 0
0 (𝑅0 − 1)(𝜈 + 𝛼 + 𝑑 + 𝑘1𝐻𝑎) 0 0 0
0 𝑘1𝐻𝑎 −(𝑑 + 𝜃𝛼 + 𝜈1) 0 0
𝜎 − 𝛽1𝜎𝐴

𝑑(𝑑+𝜎) 0 −𝑑 0
0 𝜙 0 0 −𝜙0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

The eigenvalues of above matrix are

−(𝑑 + 𝜎), (𝑅0 − 1)(𝜈 + 𝛼 + 𝑑 + 𝑘1𝐻𝑎), − (𝑑 + 𝜃𝛼 + 𝜈1), − 𝑑, − 𝜙0.

ere, the four eigenvalues of matrix 𝐽0 are always negative and the
econd eigenvalue is negative for 𝑅0 < 1 and positive for 𝑅0 > 1. Thus,
e establish the following theorem.

heorem 2. The equilibrium 𝐸0 is locally asymptotically stable for 𝑅0 < 1
and unstable for 𝑅0 > 1.

.3.2. Endemic equilibrium
The Jacobian matrix for model system (2) evaluated at endemic

quilibrium 𝐸 (either 𝐸∗
1 or 𝐸∗

2 ) is given by

∗ =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

−(𝑑 + 𝜎 + 𝛽𝐼) −(𝛽𝑆 − 𝜈) 𝜈1 0 0
𝛽𝐼 0 𝑘1𝐼 𝛽1𝐼 −𝑘1𝐼
0 𝑘1(𝐻𝑎 +𝐻𝑏 −𝐻) −(𝑑 + 𝜃𝛼 + 𝜈1 + 𝑘1𝐼) 0 𝑘1𝐼
𝜎 −𝛽1𝑉 0 −(𝑑 + 𝛽1𝐼) 0
0 𝜙 0 0 −𝜙0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

The characteristic polynomial of matrix 𝐽 ∗ is obtained as

5 + 1𝛷4 + 2𝛷3 + 3𝛷2 + 4𝛷 + 5 = 0, (4)

where

1 = 3𝑑 + 𝜃𝛼 + 𝜈1 + 𝜎 + 𝜙0 + 𝑘1𝐼 + 𝛽𝐼 + 𝛽1𝐼,

2 = −𝑘21𝐼(𝐻𝑎 +𝐻𝑏 −𝐻) + 𝑘1𝜙𝐼 + (𝑑 + 𝜎 + 𝛽𝐼)(𝑑 + 𝛽1𝐼) + 𝛽21𝑉 𝐼

+ (𝑑 + 𝜃𝛼 + 𝜈1 + 𝜙0 + 𝑘1𝐼)(2𝑑 + 𝜎 + 𝛽𝐼 + 𝛽1𝐼)

+ 𝜙0(𝑑 + 𝜃𝛼 + 𝜈1 + 𝑘1𝐼) + 𝛽𝐼(𝛽𝑆 − 𝜈),

3 = −𝑘21𝐼(𝐻𝑎 +𝐻𝑏 −𝐻)(2𝑑 + 𝜎 + 𝜙0 + 𝛽𝐼 + 𝛽1𝐼)

− 𝜈1𝑘1𝛽𝐼(𝐻𝑎 +𝐻𝑏 −𝐻) + 𝑘1𝜙𝐼(3𝑑 + 𝜃𝛼 + 𝜈1 + 𝜎 + 𝛽𝐼 + 𝛽1𝐼)

+ 𝛽21𝑉 𝐼(𝑑 + 𝜎 + 𝛽𝐼) + (𝑑 + 𝜃𝛼 + 𝜈1 + 𝜙0 + 𝑘1𝐼)
[

(𝑑 + 𝜎 + 𝛽𝐼)(𝑑
+ 𝛽1𝐼) + 𝛽21𝑉 𝐼

]

+ 𝜙0(𝑑 + 𝜃𝛼 + 𝜈1 + 𝑘1𝐼)(2𝑑 + 𝜎 + 𝛽𝐼 + 𝛽1𝐼)
[ ]
4

+ (𝛽𝑆 − 𝜈) 𝛽𝐼(2𝑑 + 𝜃𝛼 + 𝜈1 + 𝜙0 + 𝑘1𝐼 + 𝛽1𝐼) + 𝜎𝛽1𝐼 ,
4 = 𝑘1𝜙𝐼
[

(𝑑 + 𝜃𝛼 + 𝜈1)(2𝑑 + 𝜎 + 𝛽𝐼 + 𝛽1𝐼) + (𝑑 + 𝛽1𝐼)(𝑑 + 𝜎 + 𝛽𝐼)
]

− 𝜙𝜈1𝛽𝑘1𝐼
2

− 𝑘21𝐼(𝐻𝑎 +𝐻𝑏 −𝐻)
[

(𝜙0 + 𝑑 + 𝜎 + 𝛽𝐼)(𝑑 + 𝛽1𝐼) + 𝜙0(𝑑 + 𝜎 + 𝛽𝐼)
]

− 𝜈1𝑘1(𝐻𝑎 +𝐻𝑏 −𝐻)
[

𝛽𝐼𝜙0 + 𝛽𝐼(𝑑 + 𝛽1𝐼)
]

+ 𝛽21𝑉 𝐼(𝑑 + 𝜎 + 𝛽𝐼)(𝑑 + 𝜃𝛼 + 𝜈1 + 𝜙0 + 𝑘1𝐼)

+ 𝜙0(𝑑 + 𝜃𝛼 + 𝜈1 + 𝑘1𝐼)
[

(𝑑 + 𝜎 + 𝛽𝐼)(𝑑 + 𝛽1𝐼) + 𝛽21𝑉 𝐼
]

+ (𝛽𝑆 − 𝜈)(𝑑 + 𝜃𝛼 + 𝜈1 + 𝜙0 + 𝑘1𝐼)
[

𝛽𝐼(𝑑 + 𝛽1𝐼) + 𝜎𝛽1𝐼
]

+ 𝜙0𝛽𝐼(𝛽𝑆 − 𝜈)(𝑑 + 𝜃𝛼 + 𝜈1 + 𝑘1𝐼),

5 = 𝑘1𝜙𝐼(𝑑 + 𝜃𝛼 + 𝜈1)(𝑑 + 𝛽1𝐼)(𝑑 + 𝜎 + 𝛽𝐼)

− 𝜙𝜈1𝑘1𝐼
[

𝛽𝐼(𝑑 + 𝛽1𝐼) + 𝛽1𝜎𝐼
]

− 𝜙0𝑘
2
1𝐼(𝐻𝑎 +𝐻𝑏 −𝐻)(𝑑 + 𝜎 + 𝛽𝐼)(𝑑 + 𝛽1𝐼)

− 𝜙0𝜈1𝑘1(𝐻𝑎 +𝐻𝑏 −𝐻)
[

𝛽𝐼(𝑑 + 𝛽1𝐼) + 𝛽1𝜎𝐼
]

+ 𝛽21𝜙0𝑉 𝐼(𝑑 + 𝜃𝛼 + 𝜈1 + 𝑘1𝐼)(𝑑 + 𝜎 + 𝛽𝐼)

+ 𝜙0(𝛽𝑆 − 𝜈)(𝑑 + 𝜃𝛼 + 𝜈1 + 𝑘1𝐼)
[

𝛽𝐼(𝑑 + 𝛽1𝐼) + 𝜎𝛽1𝐼
]

.
From the above expressions, it is clear that 1 > 0. Thus, using
Routh–Hurwitz criterion, we establish the following theorem.

Theorem 3. The equilibrium 𝐸 (𝐸∗
1 or 𝐸∗

2 ) is locally asymptotically stable
if and only if all the principle minors of Routh–Hurwitz matrix of Eq. (4)
(evaluated at 𝐸∗

1 or 𝐸∗
2 ) are positive.

4. Bifurcation analysis

4.1. Transcritical bifurcation

To determine possibility of the occurrence of transcritical bifurca-
tion at 𝑅0 = 1, we take the advantage of center manifold theory [28].
We consider 𝑆 = 𝑦1, 𝐼 = 𝑦2, 𝐻 = 𝑦3, 𝑉 = 𝑦4 and 𝐻𝑏 = 𝑦5; thus, the
model system (2) can be written as

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

𝑑𝑦1
𝑑𝑡

= 𝐴 − 𝛽𝑦1𝑦2 − 𝑑𝑦1 − 𝜎𝑦1 + 𝜈𝑦2 + 𝜈1𝑦3 ∶= 𝑓1,

𝑑𝑦2
𝑑𝑡

= 𝛽𝑦1𝑦2 + 𝛽1𝑦2𝑦4 − (𝜈 + 𝛼 + 𝑑)𝑦2 − 𝑘1(𝐻𝑎 + 𝑦5 − 𝑦3)𝑦2 ∶= 𝑓2,

𝑑𝑦3
𝑑𝑡

= 𝑘1(𝐻𝑎 + 𝑦5 − 𝑦3)𝑦2 − (𝑑 + 𝜃𝛼 + 𝜈1)𝑦3 ∶= 𝑓3,

𝑑𝑦4
𝑑𝑡

= 𝜎𝑦1 − 𝑑𝑦4 − 𝛽1𝑦2𝑦4 ∶= 𝑓4,

𝑑𝑦5
𝑑𝑡

= 𝜙𝑦2 − 𝜙0𝑦5 ∶= 𝑓5.

(5)

Here, we choose 𝛽 as bifurcation parameter. Thus, the Jacobian matrix
for model system (5) around 𝐸0 at 𝛽 = 𝛽∗ (or equivalently at 𝑅0 = 1)
can be expressed as

𝐽0 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

−(𝑑 + 𝜎) −𝛽∗
( 𝐴
𝑑+𝜎

)

+ 𝜈 𝜈1 0 0
0 0 0 0 0
0 𝑘1𝐻𝑎 −(𝑑 + 𝜃𝛼 + 𝜈1) 0 0
𝜎 − 𝛽1𝜎𝐴

𝑑(𝑑+𝜎) 0 −𝑑 0
0 𝜙 0 0 −𝜙0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

he above matrix 𝐽0 has a 0 eigenvalue and other four eigenvalues
(𝑑 + 𝜎), −(𝑑 + 𝜃𝛼 + 𝜈1), −𝑑, and −𝜙0 are negative.

Further, the right and left eigenvectors (respectively, 𝑉 and �̃� ) of
atrix 𝐽0 associated with eigenvalue 0 are obtained as

𝑉 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

�̃�1
�̃�2
�̃�3
�̃�4
�̃�5

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

𝑑
[

−
(

𝛽∗𝐴
(𝑑+𝜎)

− 𝜈
)

(𝑑 + 𝜃𝛼 + 𝜈1) + 𝜈1𝑘1𝐻𝑎

]

𝑑(𝑑 + 𝜎)(𝑑 + 𝜃𝛼 + 𝜈1)
𝑑𝑘1𝐻𝑎(𝑑 + 𝜎)

𝜎
(

−
(

𝛽∗𝐴
(𝑑+𝜎)

− 𝜈
)

(𝑑 + 𝜃𝛼 + 𝜈1) + 𝜈1𝑘1𝐻𝑎

)

− 𝛽1𝜎𝐴
𝑑

(𝑑 + 𝜃𝛼 + 𝜈1)
𝜙 𝑑(𝑑 + 𝜎)(𝑑 + 𝜃𝛼 + 𝜈 )

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

,

⎣ 𝜙0 1
⎦
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⎡

⎢

⎢

⎣

a
f

�̃� =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

�̃�1

�̃�2

�̃�3

�̃�4

�̃�5

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

𝑇

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0
1
0
0
0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

𝑇

.

Now, we compute the quantities 𝑎 and 𝑏, mentioned in Theorem 4.1
of [28] for model system (2), that are obtained as follows

𝑎 =
5
∑

𝑖,𝑗,𝑘=1
�̃�𝑘�̃�𝑖�̃�𝑗

𝜕2𝑓𝑘
𝜕𝑦𝑖𝜕𝑦𝑗

, and 𝑏 =
5
∑

𝑖,𝑘=1
�̃�𝑘�̃�𝑖

𝜕2𝑓𝑘
𝜕𝑦𝑖𝜕𝛽

.

Thus, we have

𝑎 = 2𝑑(𝑑 + 𝜎)(𝑑 + 𝜃𝛼 + 𝜈1)
{

(𝛽∗𝑑 + 𝛽1𝜎)
[

−
( 𝛽∗𝐴
(𝑑 + 𝜎)

− 𝜈
)

(𝑑 + 𝜃𝛼 + 𝜈1) + 𝜈1𝑘1𝐻𝑎

]

−
𝛽21𝜎𝐴
𝑑

(𝑑 + 𝜃𝛼 + 𝜈1) + 𝑘21𝑑𝐻𝑎(𝑑 + 𝜎) −
𝜙
𝜙0

𝑘1𝑑(𝑑 + 𝜎)(𝑑 + 𝜃𝛼 + 𝜈1)

}

,

nd 𝑏 = 𝐴(𝑑 + 𝜃𝛼 + 𝜈1) > 0. Now, if we put 𝑎 = 0, we get

∗
1 =

−�̃�1 +
√

�̃�2
1 + 4𝑑𝐻𝑎(𝑑 + 𝜎)�̃�2

2𝑑𝐻𝑎(𝑑 + 𝜎)
,

where �̃�1 = 𝜈1𝐻𝑎(𝛽∗𝑑 + 𝛽1𝜎) −
𝜙
𝜙0

𝑘1(𝑑 + 𝜎)(𝑑 + 𝜃𝛼 + 𝜈1), and

�̃�2 = (𝑑 + 𝜃𝛼 + 𝜈1)

[

(𝛽∗𝑑 + 𝛽1𝜎)
(

𝛽∗𝐴
(𝑑 + 𝜎)

− 𝜈
)

+
𝛽21𝜎𝐴
𝑑

]

. Thus, we establish

the following theorem.

Theorem 4. For 𝑅0 = 1, the system (2) exhibits backward transcritical
bifurcation if 𝑘1 > 𝑘∗1 and forward transcritical bifurcation if 𝑘1 < 𝑘∗1.

4.2. Saddle–node bifurcation

Our aim here is to demonstrate the existence of saddle–node bifurca-
tion for model system (2), for which we use Sotomayor’s theorem [29].
Since 𝑅0 is a function of 𝛽, we take 𝛽 as a bifurcation parameter.
From the above analysis, it is evident that model system (2) has a
unique equilibrium 𝐸∗

3 at 𝑅0 = 𝑅∗
0 (or equitably 𝛽 = 𝛽𝑙). Therefore,

acobian matrix 𝐽 ∗
3 (Jacobian matrix for model system (2) computed

t 𝐸∗
3 ) has a eigenvalue 0, if 5(𝛽𝑙) = 0. Let 𝑈1 = (𝑢11, 𝑢21, 𝑢31, 𝑢41, 𝑢51)𝑇

and 𝑈2 = (𝑢12, 𝑢22, 𝑢32, 𝑢42, 𝑢52), sequentially represent the left and right
eigenvectors of matrix 𝐽 ∗

3 associated with eigenvalue 0, where

𝑢11 = (𝑑 + 𝛽1𝐼
∗
3 )

[

−(𝛽𝑙𝑆∗
3 − 𝜈)(𝑑 + 𝜃𝛼 + 𝜈1 + 𝑘1𝐼

∗
3 )

+ 𝜈1𝑘1

(

𝐻𝑎 +𝐻𝑏
∗
3 −𝐻∗

3 +
𝜙
𝜙0

𝐼∗3

)]

,

𝑢21 = (𝑑 + 𝛽1𝐼
∗
3 )(𝑑 + 𝜎 + 𝛽𝑙𝐼

∗
3 )(𝑑 + 𝜃𝛼 + 𝜈1 + 𝑘1𝐼

∗
3 ),

𝑢31 = 𝑘1(𝑑 + 𝛽1𝐼
∗
3 )(𝑑 + 𝜎 + 𝛽𝑙𝐼

∗
3 )

(

𝐻𝑎 +𝐻𝑏
∗
3 −𝐻∗

3 +
𝜙
𝜙0

𝐼∗3

)

,

𝑢41 = 𝜎
[

−(𝛽𝑙𝑆∗
3 − 𝜈)(𝑑 + 𝜃𝛼 + 𝜈1 + 𝑘1𝐼

∗
3 ) + 𝜈1𝑘1

(

𝐻𝑎 +𝐻𝑏
∗
3 −𝐻∗

3

+
𝜙
𝜙0

𝐼∗3

)]

− 𝛽1𝑉
∗
3 (𝑑 + 𝜎 + 𝛽𝑙𝐼

∗
3 )(𝑑 + 𝜃𝛼 + 𝜈1 + 𝑘1𝐼

∗
3 )

51 =
𝜙
𝜙0

(𝑑 + 𝛽1𝐼
∗
3 )(𝑑 + 𝜎 + 𝛽𝑙𝐼

∗
3 )(𝑑 + 𝜃𝛼 + 𝜈1 + 𝑘1𝐼

∗
3 ),

12 = 𝜙0(𝑑 + 𝜃𝛼 + 𝜈1 + 𝑘1𝐼
∗
3 )

[

𝛽𝑙𝐼
∗
3 (𝑑 + 𝛽1𝐼

∗
3 ) + 𝜎𝛽1𝐼

∗
3
]

,

𝑢22 = 𝜙0(𝑑 + 𝛽1𝐼
∗
3 )(𝑑 + 𝜎 + 𝛽𝑙𝐼

∗
3 )(𝑑 + 𝜃𝛼 + 𝜈1 + 𝑘1𝐼

∗
3 ),

𝑢32 = 𝜙0
[

𝜈1
(

𝛽𝑙𝐼
∗
3 (𝑑 + 𝛽1𝐼

∗
3 ) + 𝜎𝛽1𝐼

∗
3
)

+ 𝑘1𝐼
∗
3 (𝑑 + 𝛽1𝐼

∗
3 )(𝑑 + 𝜎 + 𝛽𝑙𝐼

∗
3 )
]

,

𝑢42 = 𝛽1𝜙0𝐼
∗
3 (𝑑 + 𝜎 + 𝛽𝑙𝐼

∗
3 )(𝑑 + 𝜃𝛼 + 𝜈1 + 𝑘1𝐼

∗
3 ),

𝑢52 = −𝑘1𝐼∗3 (𝑑 + 𝛽1𝐼
∗
3 )(𝑑 + 𝜎 + 𝛽𝑙𝐼

∗
3 )(𝑑 + 𝜃𝛼 + 𝜈1 + 𝑘1𝐼

∗
3 )

+ 𝑘1𝐼
∗
3
[

𝜈1
(

𝛽𝑙𝐼
∗
3 (𝑑 + 𝛽1𝐼

∗
3 ) + 𝜎𝛽1𝐼

∗
3
)

+ 𝑘1𝐼
∗
3 (𝑑 + 𝛽1𝐼

∗
3 )(𝑑 + 𝜎 + 𝛽𝑙𝐼

∗
3 )
]

.

Let Ĝ =
(

Ĝ1, Ĝ2, Ĝ3, Ĝ4, Ĝ5

)

, where Ĝ1, Ĝ2, Ĝ3, Ĝ4 and Ĝ5 are right

hand sides of 𝑑𝑆 , 𝑑𝐼 , 𝑑𝐻 , 𝑑𝑉 , and 𝑑𝐻𝑏 , respectively in model
5

𝑑𝑡 𝑑𝑡 𝑑𝑡 𝑑𝑡 𝑑𝑡 
system (2). Then

B1 = 𝑈2.
𝑑Ĝ
𝑑𝛽

|

|

|

|(𝐸∗
3 ,𝛽𝑙)

= 𝜙0𝑑𝑆
∗
3 𝐼

∗
3 (𝑑 + 𝜎 + 𝛽1𝐼

∗
3 )(𝑑 + 𝜃𝛼 + 𝜈1 + 𝑘1𝐼

∗
3 ) > 0,

nd

2 = 𝑈2.
[

𝐷2
(𝑆,𝐼,𝐻,𝑉 ,𝐻𝑏)

Ĝ(𝑈1, 𝑈1)
]

|

|

|

|(𝐸∗
3 ,𝛽𝑙 )

= 2𝑢21[𝛽𝑙𝑢11(𝑢32 − 𝑢12) + 𝛽1𝑢41(𝑢32 − 𝑢42)].

herefore, if B2 ≠ 0, then the conditions of Sotomayor’s theorem are
et for the existence of saddle–node bifurcation. Thus, we state the

ollowing theorem.

heorem 5. For 𝑅0 = 𝑅∗
0, the model system (2) undergoes a saddle–node

ifurcation at equilibrium 𝐸∗
3 , provided B2 ≠ 0.

.3. Existence of Hopf bifurcation

To show that model system (2) experiences Hopf bifurcation at
quilibrium 𝐸∗

1 , we choose 𝛽 as a bifurcation parameter. Since all the
oefficients of characteristic Eq. (4) can be expressed as a function of
; therefore, we have
5 + 1(𝛽)𝛷4 + 2(𝛽)𝛷3 + 3(𝛽)𝛷2 + 4(𝛽)𝛷 + 5(𝛽) = 0. (6)

he Eq. (6) has a pair of purely imaginary solutions 𝛷1,2 = ±𝑖
√

𝜉0,
𝜉0 > 0 if and only if it can be written as

(𝛷) = (𝛷2 + 𝜉0)(𝛷), where (𝛷) = 𝛷3 + 1𝛷
2 + 2𝛷 + 3.

hus, we have

(𝛷) = 𝛷5 + 1𝛷
4 + (2 + 𝜉0)𝛷3 + (3 + 1𝜉0)𝛷2 + 2𝜉0𝛷 + 3𝜉0. (7)

quating the coefficients of Eqs. (6) and (7), we have

1 = 1, 2 = 2 + 𝜉0, 3 = 3 + 1𝜉0, 4 = 2𝜉0, and 5 = 3𝜉0.

or the consistence of above relations, we have
2
0 − 2𝜉0 + 4 = 0, 1𝜉20 − 3𝜉0 + 5 = 0.

he elimination of 𝜉20 gives

3 − 12)𝜉0 = 5 − 14. (8)

hus, Eq. (6) can be written as

(𝛷) = 𝛷5 + 1𝛷4 + 2𝛷3 + 3𝛷2 + 𝜉0(2 − 𝜉0)𝛷 + 𝜉0(3 − 1𝜉0). (9)

If (3 − 12)(5 − 14) > 0, then from Eq. (8), we have

𝜉0 = 𝜉∗0 =
5 − 14
3 − 12

> 0.

ubstituting 𝜉0 = 𝜉∗0 in Eq. (9), we find that Eqs. (6) and (9) are identical
f and only if

= (3 − 12)(52 − 34) − (5 − 14)2 = 0.

hus, the necessary and sufficient conditions under which the polyno-
ial (𝛷) = 𝛷3 + 1𝛷

2 + (2 − 𝜉0)𝛷 + 3 − 1𝜉0 does not have zero solution
s

3 − 1𝜉0 ≠ 0.

he polynomial (𝜙) has all solutions with negative real parts if and
nly if all leading principal minors of the matrix

1 3 0
1 2 0
0 1 3

⎤

⎥

⎥

⎦

=
⎡

⎢

⎢

⎣

1 3 − 1𝜉0 0
1 2 − 𝜉0 0
0 1 3 − 1𝜉0

⎤

⎥

⎥

⎦

re positive (i.e., the conditions of Routh–Hurwitz criterion are satis-
ied). The positivity of the determinants leads to the conditions
1 > 0, 12 − 3 > 0, 3 − 1𝜉0 > 0.
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Fig. 3. Bifurcation plots in 𝑅0 − 𝐼∗ plane for (a) 𝑘1 = 0.00085 (b) 𝑘1 = 0.001.
𝑣

𝑣

o complete the discussion, it remains to verify the transversality
ondition. The function 𝜑(𝛽) can be expressed in the form of Orlando’s
ormula as

(𝛽) = (𝛷1 +𝛷2)(𝛷1 +𝛷3)(𝛷1 +𝛷4)(𝛷1 +𝛷5)(𝛷2 +𝛷3)

(𝛷2 +𝛷4)(𝛷2 +𝛷5)(𝛷3 +𝛷4)(𝛷3 +𝛷5)(𝛷4 +𝛷5).

s 𝜑(𝛽𝑙) is a continuous function of all its solutions, there exists an
pen interval X𝛽𝑙 = (𝛽𝑙 − 𝛿, 𝛽𝑙 + 𝛿), where 𝛷1 and 𝛷2 are complex
onjugates for all 𝛽 ∈ X𝛽𝑙 . Let there general form in this neighborhood
e 𝛷1(𝛽) = 𝜉1(𝛽) + 𝑖𝜉2(𝛽), 𝛷2(𝛽) = 𝜉1(𝛽) − 𝑖𝜉2(𝛽) with 𝜉1(𝛽𝑙) = 0, and

𝜉2(𝛽𝑙) =
√

𝜉0 > 0, while 𝑅𝑒{𝛷3,4,5(𝛽𝑙)} ≠ 0. Then, we have

(𝛽) = 2𝜉1
{

(𝛷3 + 𝜉1)2 + 𝜉22
}{

(𝛷4 + 𝜉1)2 + 𝜉22
}{

(𝛷5 + 𝜉1)2 + 𝜉22
}

(𝛷3 +𝛷4)(𝛷3 +𝛷4)(𝛷4 +𝛷5), 𝜑(𝛽𝑙) = 0.

Differentiating with respect to 𝛽 and putting 𝛽 = 𝛽𝑙, we obtain
[

𝑑𝜑(𝛽)
𝑑𝛽

]

𝛽=𝛽𝑙
=
[

2(𝜉22 +𝛷2
3)(𝜉

2
2 +𝛷2

4)(𝜉
2
2 +𝛷2

5)(𝛷3 +𝛷4)

(𝛷3 +𝛷5)(𝛷4 +𝛷5)
𝑑𝜉1(𝛽)
𝑑𝛽

]

𝛽=𝛽𝑙 .

Since the solutions 𝛷3,4,5 have negative real parts at 𝛽 = 𝛽𝑙, therefore
[

𝑑𝜉1(𝛽)
𝑑𝛽

]

𝛽=𝛽𝑙
≠ 0 ⟺

[

𝑑𝜑(𝛽)
𝑑𝛽

]

𝛽=𝛽𝑙
≠ 0.

hus, the transversality condition holds and we establish the following
heorem.

heorem 6. When the disease transmission rate 𝛽 exceeds the critical
alue 𝛽𝑙, the proposed system (2) enters into Hopf bifurcation around the
ndemic equilibrium 𝐸∗

1 if the following necessary and sufficient conditions
re satisfied.

(𝑎) 𝜑(𝛽𝑙) =
[

3(𝛽𝑙) − 1(𝛽𝑙)2(𝛽𝑙)
] [

5(𝛽𝑙)2(𝛽𝑙) − 3(𝛽𝑙)4(𝛽𝑙)
]

−
[

5(𝛽𝑙) − 1(𝛽𝑙)4(𝛽𝑙)
]

= 0,

(𝑏) 1(𝛽𝑙) > 0, 1(𝛽𝑙)2(𝛽𝑙) − 3(𝛽𝑙) > 0, 3(𝛽𝑙) − 1(𝛽𝑙)𝜉∗0 > 0,

𝜉∗0 =
5(𝛽𝑙) − 1(𝛽𝑙)4(𝛽𝑙)
3(𝛽𝑙) − 1(𝛽𝑙)2(𝛽𝑙)

> 0,

(𝑐)
[

𝑑𝜑(𝛽)
𝑑𝛽

]

𝛽=𝛽𝑙
≠ 0.

.4. Bogdanov–Takens bifurcation

From Theorem 2, it is clear that endemic equilibria 𝐸∗
1 (𝑆

∗
1 , 𝐼

∗
1 ,𝐻

∗
1 ,

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
6

𝑉1 ,𝐻𝑏 1) and 𝐸2 (𝑆2 , 𝐼2 ,𝐻2 , 𝑉2 ,𝐻𝑏 2) collide and unite into equilibrium
𝐸∗
3 (𝑆

∗
3 , 𝐼

∗
3 ,𝐻

∗
3 , 𝑉

∗
3 ,𝐻

∗
𝑏 3) at 𝑅0 = 𝑅∗

0. Thus, there is a possibility for the
existence of Bogdanov–Takens (BT) bifurcation of co-dimension 2 at
equilibrium 𝐸∗

3 . Therefore, to determine the conditions under which
proposed system experiences BT bifurcation of co-dimension 2, we use
the transformation �̂� = 𝑆 − 𝑆∗

3 , 𝐼 = 𝐼 − 𝐼∗3 , �̂� = 𝐻 −𝐻∗
3 , 𝑉 = 𝑉 − 𝑉 ∗

3
and �̂�𝑏 = 𝐻𝑏 −𝐻𝑏

∗
3. Thus, we get

⎡

⎢

⎢

⎢

⎢

⎢

⎣

�̂�
𝐼
�̂�
𝑉
�̂�𝑏

⎤

⎥

⎥

⎥

⎥

⎥

⎦

′

= 𝐽 ∗
3

⎡

⎢

⎢

⎢

⎢

⎢

⎣

�̂�
𝐼
�̂�
𝑉
�̂�𝑏

⎤

⎥

⎥

⎥

⎥

⎥

⎦

+

⎡

⎢

⎢

⎢

⎢

⎢

⎣

−𝛽�̂�𝐼
𝛽�̂�𝐼 + 𝛽1𝑉 𝐼 − 𝑘1

(

�̃�𝑏 − �̂�
)

𝐼
𝑘1

(

�̃�𝑏 − �̂�
)

𝐼
−𝛽1𝑉 𝐼

0

⎤

⎥

⎥

⎥

⎥

⎥

⎦

. (10)

If 4(𝐸∗
3 ) = 5(𝐸∗

3 ) = 0, then the matrix 𝐽 ∗
3 (Jacobian matrix for

model system (2) evaluated at 𝐸∗
3 ) has zero eigenvalue with algebraic

multiplicity 2. For this analysis, we use 𝑎1 = 𝑑+𝜃𝛼+ 𝜈1 +𝑘1𝐼∗3 and 𝑎2 =
𝑑+𝛽1𝐼∗3 . Now, the generalized eigenvectors associated with eigenvalues
𝛷1,2 = 0 are V̂1 =

[

�̂�11, �̂�21, �̂�31, �̂�41, �̂�51
]𝑇 and V̂2 =

[

�̂�12, �̂�22, �̂�32, �̂�42, 0
]𝑇 ,

where

̂11 = 𝑎2

[

−𝑎1(𝛽𝑆∗
3 − 𝜈) + 𝜈1

(

𝑘1(𝐻𝑎 +𝐻𝑏
∗
3 −𝐻∗

3 ) + 𝑘1
𝜙
𝜙0

𝐼∗
3

)]

,

�̂�21 = 𝑎1𝑎2(𝑑 + 𝜎 + 𝛽𝐼∗
3 ), �̂�31 = 𝑎2(𝑑 + 𝜎 + 𝛽𝐼∗

3 )
[

𝑘1(𝐻𝑎 +𝐻𝑏
∗
3 −𝐻∗

3 ) + 𝑘1
𝜙
𝜙0

𝐼∗
3

]

,

�̂�41 = −𝛽𝑎1𝑉 ∗
3 (𝑑 + 𝜎 + 𝛽𝐼∗

3 ) + 𝜎
[

−𝑎1(𝛽𝑆∗
3 − 𝜈)

+ 𝜈1

(

𝑘1(𝐻𝑎 +𝐻𝑏
∗
3 −𝐻∗

3 ) + 𝑘1
𝜙
𝜙0

𝐼∗
3

)]

, �̂�51 = 𝑎1𝑎2
𝜙
𝜙0

(𝑑 + 𝜎 + 𝛽𝐼∗
3 ),

̂12 = 𝑎2
[

−𝑎1(𝛽𝑆∗
3 − 𝜈)�̂�51 + 𝜈1

(

𝑘1(𝐻𝑎 +𝐻𝑏
∗
3 −𝐻∗

3 )�̂�51 − 𝜙�̂�31
)

− 𝜙𝑎1�̂�11
]

,

�̂�22 = 𝑎1𝑎2(𝑑 + 𝜎 + 𝛽𝐼∗
3 )�̂�51,

�̂�32 = 𝑎2(𝑑 + 𝜎 + 𝛽𝐼∗
3 )

[

𝑘1(𝐻𝑎 +𝐻𝑏
∗
3 −𝐻∗

3 )�̂�51 − 𝜙�̂�31
]

,

�̂�42 = 𝜎
[

−𝑎1(𝛽𝑆∗
3 − 𝜈)�̂�51 + 𝜈1

(

𝑘1(𝐻𝑎 +𝐻𝑏
∗
3 −𝐻∗

3 )�̂�51 − 𝜙�̂�31
)

− 𝜙𝑎1�̂�11
]

− 𝛽1𝑉
∗
3 𝑎1(𝑑 + 𝜎 + 𝛽𝐼∗

3 )�̂�51.

Now, the eigenvectors corresponding to the eigenvalues 𝛷3, 𝛷4 and
𝛷5 are V̂3 =

[

�̂�13, �̂�23, �̂�33, �̂�43, �̂�53
]𝑇 , V̂4 =

[

�̂�14, �̂�24, �̂�34, �̂�44, �̂�54
]𝑇 , and

Ṽ5 =
[

�̂�15, �̂�25, �̂�35, �̂�45, �̂�55
]𝑇 , where

�̂�13 = (𝑎2 +𝛷3)
[

−(𝑎1 +𝛷3)(𝜙0 +𝛷3)(𝛽𝑆∗
3 − 𝜈)

+ 𝜈1
(

𝑘1(𝐻𝑎 +𝐻𝑏
∗
3 −𝐻∗

3 )(𝜙0 +𝛷3) + 𝑘1𝜙𝐼
∗
3
)]

,

�̂�23 = (𝑎1 +𝛷3)(𝑎2 +𝛷3)(𝜙0 +𝛷3)(𝑑 + 𝜎 +𝛷3 + 𝛽𝐼∗
3 ),

�̂�33 = (𝑎2 +𝛷3)(𝑑 + 𝜎 +𝛷3 + 𝛽𝐼∗
3 )

[

𝑘1(𝐻𝑎 +𝐻𝑏
∗
3 −𝐻∗

3 )(𝜙0 +𝛷3) + 𝑘1𝜙𝐼
∗
3
]

,

�̂�43 = −𝛽𝑉 ∗
3 (𝑎1 +𝛷3)(𝜙0 +𝛷3)(𝑑 + 𝜎 +𝛷3 + 𝛽𝐼∗

3 )

+ 𝜎
[

−(𝑎1 +𝛷3)(𝜙0 +𝛷3)(𝛽𝑆∗
3 − 𝜈) + 𝜈1

(

𝑘1(𝐻𝑎 +𝐻𝑏
∗
3 −𝐻∗

3 )(𝜙0 +𝛷3) + 𝑘1𝜙𝐼
∗
3
)]

,
∗
�̂�53 = 𝜙(𝑎1 +𝛷3)(𝑎2 +𝛷3)(𝑑 + 𝜎 +𝛷3 + 𝛽𝐼3 ),
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𝑣

𝑣

𝑣

𝑣

𝑣

𝑣

a

⎧

⎪

⎨

⎪

⎩

H
t

T
2

5

t
a

𝑆

e
t
c

c
i
p

�̂�14 = (𝑎2 +𝛷4)
[

−(𝑎1 +𝛷4)(𝜙0 +𝛷4)(𝛽𝑆∗
3 − 𝜈)

+ 𝜈1
(

𝑘1(𝐻𝑎 +𝐻𝑏
∗
3 −𝐻∗

3 )(𝜙0 +𝛷4) + 𝑘1𝜙𝐼
∗
3
)]

,

�̂�24 = (𝑎1 +𝛷4)(𝑎2 +𝛷4)(𝜙0 +𝛷4)(𝑑 + 𝜎 +𝛷4 + 𝛽𝐼∗
3 ),

�̂�34 = (𝑎2 +𝛷4)(𝑑 + 𝜎 +𝛷4 + 𝛽𝐼∗
3 )

[

𝑘1(𝐻𝑎 +𝐻𝑏
∗
3 −𝐻∗

3 )(𝜙0 +𝛷4) + 𝑘1𝜙𝐼
∗
3
]

,

�̂�44 = −𝛽𝑉 ∗
3 (𝑎1 +𝛷4)(𝜙0 +𝛷4)(𝑑 + 𝜎 +𝛷4 + 𝛽𝐼∗

3 )

+ 𝜎
[

−(𝑎1 +𝛷4)(𝜙0 +𝛷4)(𝛽𝑆∗
3 − 𝜈) + 𝜈1

(

𝑘1(𝐻𝑎 +𝐻𝑏
∗
3 −𝐻∗

3 )(𝜙0 +𝛷4) + 𝑘1𝜙𝐼
∗
3
)]

,

̂54 = 𝜙(𝑎1 +𝛷4)(𝑎2 +𝛷4)(𝑑 + 𝜎 +𝛷4 + 𝛽𝐼∗
3 ),

̂15 = (𝑎2 + 𝜙5)
[

−(𝑎1 +𝛷5)(𝜙0 +𝛷5)(𝛽𝑆∗
3 − 𝜈)

+ 𝜈1
(

𝑘1(𝐻𝑎 +𝐻𝑏
∗
3 −𝐻∗

3 )(𝜙0 +𝛷5) + 𝑘1𝜙𝐼
∗
3
)]

,

̂25 = (𝑎1 + 𝜙5)(𝑎2 +𝛷5)(𝜙0 +𝛷5)(𝑑 + 𝜎 +𝛷5 + 𝛽𝐼∗
3 ),

̂35 = (𝑎2 +𝛷5)(𝑑 + 𝜎 +𝛷5 + 𝛽𝐼∗
3 )

[

𝑘1(𝐻𝑎 +𝐻𝑏
∗
3 −𝐻∗

3 )(𝜙0 +𝛷5) + 𝑘1𝜙𝐼
∗
3
]

,

̂45 = −𝛽𝑉 ∗
3 (𝑎1 +𝛷5)(𝜙0 +𝛷5)(𝑑 + 𝜎 +𝛷5 + 𝛽𝐼∗

3 )

+ 𝜎
[

−(𝑎1 +𝛷5)(𝜙0 +𝛷5)(𝛽𝑆∗
3 − 𝜈) + 𝜈1

(

𝑘1(𝐻𝑎 +𝐻𝑏
∗
3 −𝐻∗

3 )(𝜙0 +𝛷5) + 𝑘1𝜙𝐼
∗
3
)]

,

̂55 = 𝜙(𝑎1 +𝛷5)(𝑎2 +𝛷5)(𝑑 + 𝜎 +𝛷5 + 𝛽𝐼∗
3 ).

Now, we consider �̂� =
[

V̂1, V̂2, V̂3, V̂4, V̂5
]

and use the following
non-singular transformation to reduce the system (10)

⎡

⎢

⎢

⎢

⎢

⎢

⎣

�̂�
𝐼
�̂�
𝑉
�̂�𝑏

⎤

⎥

⎥

⎥

⎥

⎥

⎦

= �̂�

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝑌1
𝑌2
𝑌3
𝑌4
𝑌5

⎤

⎥

⎥

⎥

⎥

⎥

⎦

.

Let the inverse of matrix �̂� is given by

�̂�−1 =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

�̂�11 �̂�12 �̂�13 �̂�14 �̂�15
�̂�21 �̂�22 �̂�23 �̂�24 �̂�25
�̂�31 �̂�32 �̂�33 �̂�34 �̂�35
�̂�41 �̂�42 �̂�43 �̂�44 �̂�45
�̂�51 �̂�52 �̂�53 �̂�54 �̂�55

⎤

⎥

⎥

⎥

⎥

⎥

⎦

. Then, the system (10) be-

comes

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

𝑌 ′
1 = 𝑌2 + 𝑃20𝑌

2
1 + 𝑃11𝑌1𝑌2 + 𝑃02𝑌

2
2 + 

(

|

|

|

𝑌1, 𝑌2, 𝑌3, 𝑌4, 𝑌5
|

|

|

2
)

,

𝑌 ′
2 = �̂�20𝑌

2
1 + �̂�11𝑌1𝑌2 + �̂�02𝑌

2
2 + 

(

|

|

|

𝑌1, 𝑌2, 𝑌3, 𝑌4, 𝑌5
|

|

|

2
)

,

𝑌 ′
3 = 𝜙3𝑌3 + 

(

|

|

|

𝑌1, 𝑌2, 𝑌3, 𝑌4, 𝑌5
|

|

|

2
)

,

𝑌 ′
4 = 𝜙4𝑌4 + 

(

|

|

|

𝑌1, 𝑌2, 𝑌3, 𝑌4, 𝑌5
|

|

|

2
)

,

𝑌 ′
5 = 𝜙5𝑌5 + 

(

|

|

|

𝑌1, 𝑌2, 𝑌3, 𝑌4, 𝑌5
|

|

|

2
)

,

(11)

where

𝑃20 = −𝛽�̂�11�̂�11�̂�21 + 𝑘1�̂�13�̂�21(�̂�51 − �̂�31) − 𝛽1�̂�14�̂�41�̂�21,

𝑃11 = −𝛽�̂�11(�̂�11�̂�22 + �̂�12�̂�21) + �̂�12�̂�21(𝛽�̂�12 + 𝛽1�̂�42 + 𝑘1�̂�32)

+ �̂�13
[

𝑘1�̂�22(�̂�51 − �̂�31) − 𝑘1�̂�32�̂�21
]

− 𝛽1�̂�14(�̂�41�̂�22 + �̂�41�̂�21),

𝑃02 = −𝛽�̂�11�̂�12�̂�22 + �̂�12�̂�22(𝛽�̂�12 + 𝛽1�̂�42 + 𝑘1�̂�32)

− 𝑘1�̂�13�̂�22�̂�32 − 𝛽1�̂�14�̂�42�̂�22,

�̂�20 = −𝛽�̂�21�̂�11�̂�21 + 𝑘1�̂�23�̂�21(�̂�51 − �̂�31) − 𝛽1�̂�24�̂�41�̂�21,

�̂�11 = −𝛽�̂�21(�̂�11�̂�22 + �̂�12�̂�21) + �̂�22�̂�21(𝛽�̂�12 + 𝛽1�̂�42 + 𝑘1�̂�32)

+ �̂�23
[

𝑘1�̂�22(�̂�51 − �̂�31) − 𝑘1�̂�32�̂�21
]

− 𝛽1�̂�24(�̂�41�̂�22 + �̂�41�̂�21),

�̂�02 = −𝛽�̂�21�̂�12�̂�22 + �̂�22�̂�22(𝛽�̂�12 + 𝛽1�̂�42 + 𝑘1�̂�32)

− 𝑘1�̂�23�̂�22�̂�21 − 𝛽1�̂�24�̂�42�̂�22.

The system (11) confined to the center manifold.

⎧

⎪

⎨

⎪

𝑌 ′
1 = 𝑌2 + 𝑃20𝑌

2
1 + 𝑃11𝑌1𝑌2 + 𝑃02𝑌

2
2 + 

(

|

|

|

𝑌1, 𝑌2
|

|

|

2
)

,

𝑌 ′
2 = �̂�20𝑌

2
1 + �̂�11𝑌1𝑌2 + �̂�02𝑌

2
2 + 

(

|

|𝑌1, 𝑌2
|

|

2
)

.
(12)
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⎩

| |
Considering the near-identity transformation

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑌1 = ̂ + 1
2
(

𝑃11 + �̂�02
)

̂2 + 𝑃02̃̂ + 
(

|

|

|

̃ , ̂||
|

2
)

,

𝑌2 = ̂ − 𝑃20̂2 + �̂�02̃̂ + 
(

|

|

|

̂ , ̂||
|

2
)

,

nd re-write the system (12) in 𝑌1 and 𝑌2, we obtain

𝑌 ′
1 = 𝑌2,

𝑌 ′
2 = Q̂20𝑌

2
1 + Q̂11𝑌1𝑌2 + 

(

|

|

|

𝑌1, 𝑌2
|

|

|

2
)

.

ere, Q̂20 = �̂�20 and Q̂11 = 𝑃11+2𝑃20. Thus, we establish the following
heorem.

heorem 7. The model system (2) exhibits BT bifurcation of co-dimension
around the equilibrium 𝐸∗

3 provided Q̂20 ≠ 0 and Q̂11 ≠ 0.

. Numerical simulations

To conduct the numerical simulations for the model system (2), we
ake a set of parameter values, given in Table 3, for which 𝑅0 ≈ 1.2967
nd the components of unique endemic equilibrium 𝐸∗

1 are
∗
1 ≈ 382, 𝐼∗1 ≈ 32, 𝐻∗

1 ≈ 123, 𝑉 ∗
1 ≈ 745, and 𝐻𝑏

∗
1 ≈ 72.

The eigenvalues of Jacobian matrix 𝐽 ∗ are obtained as

−0.0092, −0.0095−0.033𝑖,−0.0095+0.033𝑖, −0.047−0.010𝑖, and −0.047+0.010𝑖.

We note that one eigenvalue is negative and other four eigenvalues
have negative real parts, which guarantees the local stability of unique
endemic equilibrium 𝐸∗

1 .

5.1. Bifurcation results

In this section, we provide the bifurcation diagrams in Figs. 3–10
to substantiate the analytically obtained bifurcation results. At point
‘BP’, transcritical bifurcation occurs, where disease-free equilibrium
changes its stability to endemic equilibrium. Point ‘SN’ represents the
occurrence of saddle–node bifurcation. This phenomenon of saddle–
node bifurcation represents the collision and disappearance of two
endemic equilibria. The Hopf bifurcation point is represented by ‘H’,
where limit cycle (stable or unstable) originates from or ceases at
the Hopf bifurcation point. Further, point ‘LPC’ represents limit cycle
bifurcation, where two limit cycles (one stable and one unstable) collide
and annihilate each other. The point ‘BT’ denotes the BT bifurcation of
co-dimension 2. Around this point, three co-dimension 1 bifurcations
occur: saddle–node, Hopf and homoclinic bifurcation. The homoclinic
bifurcation is represented by ‘Hom’. This is the point, where limit
cycle (stable or unstable) collides with a saddle equilibrium and ceases
to appear. The point ‘GH’, represents generalized Hopf bifurcation.
This point separates the branches of supercritical and subcritical Hopf
bifurcations in the parametric plane. For nearby parameter values,
model system (2) demonstrates two limit cycles that come into collision
and annihilate each other via saddle–node bifurcation.

(a) Transcritical bifurcation: We first study the effect of hospitaliza-
tion rate coefficient 𝑘1 on model system (2) with bifurcation parameter
𝑅0 (obtained by varying 𝛽). For this, we have plotted the equilibrium
curve in 𝑅0 − 𝐼∗ plane for different values of 𝑘1. For 𝑘1 = 0.00085,
quilibrium curve shows the transcritical bifurcation in forward direc-
ion at 𝑅0 = 1, Fig. 3(a), which insinuates that disease-free equilibrium
hanges its stability at 𝑅0 = 1.

Biologically, for 𝑘1 = 0.00085, we can infer that if 𝑅0 < 1 (which
an be achieved either by increasing the number of hospital beds or by
ncreasing the vaccination rate), the disease can be rooted out from the
opulation. The increase in hospital beds reduces the waiting time of
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Table 3
Parameters’ description of proposed system (2) and their values used in numerical simulations.

Parameter Description Value

𝐴 Immigration rate 20 person day−1

𝑑 Natural mortality rate 0.0105 day−1

𝑘1 Hospitalization rate coefficient 0.001 day−1

𝛽 Transferral rate of individuals from susceptible to infected class 0.000392 person−1 day−1

𝛽1 Transferral rate of individuals from vaccinated to infected class 0.00015 person−1 day−1

𝜈1 Hospital recovery rate 0.0025 day−1

𝐻𝑎 Number of hospital beds 100
𝛼 Disease induced death rate 0.2 day−1

𝜎 Vaccination rate 0.03 day−1

𝜈 Self recovery rate 0.002 day−1

𝜃 Disease induced mortality coefficient of hospitalized individuals 0.0001
𝜙 Rate of increasing new hospital beds 0.02 day−1

𝜙0 Rate at which new hospital beds reduces 0.009 day−1
Fig. 4. Bifurcation plot in 𝑅0 − 𝐼∗ plane for (a) 𝑘1 = 0.001215 (b) 𝑘1 = 0.00125.
u
t
𝑅
f
a
f
d
s
w
𝑆

nfected individuals to get the treatment, also increase in vaccination
ate drives more susceptible population to vaccinated class, which can
educe the transmission rate and hence the disease prevalence. Further,
or 𝑘1 = 0.001, the transcritical bifurcation changes its direction to
ackward, Fig. 3(b), which indicates that 𝑅0 < 1 is not enough to elim-
nate the disease. Thus, to eradicate the disease from the population,
ore efforts are needed to push 𝑅0 less than threshold 𝑅∗

0 = 0.9965.
oreover, if 𝑅0 ∈ (0.9965, 1), the eradication or prevalence of the

isease depends on the initial size of the infected population, which is
hown through variation plot with respect to time ‘𝑡’ for 𝑅0 = 0.997 ∈
0.9965, 1).

(b) Supercritical Hopf bifurcation: For 𝑘1 = 0.001215, the model
ystem (2) exhibits two Hopf-points 𝐻1 (𝑅0 ≈ 0.9778) and 𝐻2 (𝑅0 ≈
.9926). Between these two critical values of 𝑅0, the model system
2) demonstrates a self-excited stable oscillatory solution, which means
hat there will be a periodic outbreak of epidemic whenever 𝑅0 ∈
0.9778, 0.9926), Fig. 4(a). We observed that due to the presence of

stable limit cycle, the number of infected individuals oscillates in
range dependent on the amplitude of the stable limit cycle. Since

he number of infected individuals fluctuates continuously, healthcare
anagers and policymakers will have difficulties in making strategies

o diminish its prevalence. Further, for 𝑘1 = 0.00125, the model system
2) again exhibits a stable limit cycle via supercritical Hopf bifurcation
t 𝑅0 ≈ 0.9996, which ceases to appear through homoclinic bifurcation,
ig. 4(b).

(c) Subcritical Hopf bifurcation and limit cycle bifurcation: For 𝑘1 =
.0016, the proposed model system (2) enters into limit cycle oscilla-
ions via subcritical Hopf bifurcation, Fig. 5(a). From this figure, we
bserve that when 𝑅0 ∈ (0.9882, 0.9902), the unstable endemic equilib-
ium surrounds itself with a stable limit cycle. Further, this unstable
ndemic equilibrium turns into stable focus and covers itself with one
8

nstable and one stable limit cycle when 𝑅0 ∈ (0.9902, 0.9938). These
wo limit cycles dissipate by colliding each other at 𝑅0 ≈ 0.9938. For
0 ∈ (0.9882, 0.9938), the solution trajectories either approach to stable

ocus or stable disease-free equilibrium or the periodic fluctuations
rise, according to the initial values of infected population. Therefore,
or 𝑅0 ∈ (0.9882, 0.9938), this complex behavior depicts that either the
isease persists or dies out from the community depends on the initial
ize of infected population. To understand this complicated dynamics
hen 𝑅0 ∈ (0.9882, 0.9938), we sequentially plot phase portraits in
− 𝐼 − 𝑉 space for 𝑅0 = 0.989 and 𝑅0 = 0.991 in Figs. 5(b) and 5(c).

From Fig. 5(b), one can note that the solution trajectory (green curve)
approaches to disease-free equilibrium and the solution trajectory (blue
curve) spiral outward to the stable limit cycle (black curve) as 𝑡 →
∞. Moreover, for 𝑅0 = 0.991, system (2) generates one stable limit
cycle (black curve) and one unstable limit cycle (between red and blue
curves), Fig. 5(c).

Further, for 𝑘1 = 0.00169, the model system (2) again enters into
oscillatory fluctuations via subcritical Hopf bifurcation, Fig. 6(a). This
figure depicts that for 𝑅0 ∈ (0.9814, 0.9857), around a stable focus an
unstable limit cycle appears. Further, when 𝑅0 ∈ (0.9857, 0.9886), this
stable focus covers itself with two limit cycles (one stable and one
unstable) and these two limit cycles collide and annihilates each other
at 𝑅0 ≈ 0.9886. We also generate the phase portrait in 𝑆 − 𝐼 − 𝑉 space
for 𝑅0 = 0.983 ∈ (0.9814, 0.9857) and 𝑅0 = 0.0987 ∈ (0.9857, 0.9886) in
Figs. 6(b) and 6(c), respectively to understand this complex dynamical
behavior. From Fig. 6(b), it is clear that as 𝑡 → ∞, solution trajec-
tories either approach to disease-free equilibrium or stable endemic
equilibrium.

For 𝑘1 = 0.00186, the model system (2) enters into subcritical
Hopf bifurcation at 𝑅0 = 0.9624 and the stable endemic equilibrium

covers itself with an unstable limit cycle. The generated unstable limit
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Fig. 5. (a) Bifurcation plot in 𝑅0 − 𝐼∗ plane for 𝑘1 = 0.0016 (b) Phase portrait in 𝑆 − 𝐼 −𝑉 space for 𝑘1 = 0.0016 and 𝑅0 = 0.989 (c) Phase portrait in 𝑆 − 𝐼 −𝑉 space for 𝑘1 = 0.0016
and 𝑅0 = 0.991.
cycle ceases to appear through homoclinic bifurcation at 𝑅0 ≈ 0.9775,
Fig. 7(a). In this case, the solution trajectories either approach to stable
focus or disease-free equilibrium. The phase portrait in 𝑆 − 𝐼 −𝑉 space
for 𝑅0 = 0.965 is shown in Fig. 7(b).

Further, when we plot equilibrium curve in 𝑅0 − 𝐼 plane for 𝛽1 =
0.0058, 𝜈1 = 0.39, 𝛼 = 0.065, 𝑘1 = 0.02296, 𝐻𝑎 = 418 and 𝜙0 =
0.09, it is observed that the equilibrium curve comprises of two SN
points (at 𝑅0 ≈ 0.0.93 and 𝑅0 ≈ 1.0105) and two Hopf points H1 (at
𝑅0 ≈ 1.043) and H2 (at 𝑅0 ≈ 1.0056), Fig. 8. The existence of two
saddle–node points indicates that the equilibrium curve displays three
distinct branches. Consequently, the system exhibits three endemic
equilibria for 𝑅0 ∈ (1, 1.0105). Also, the presence of Hopf points results
in the destabilization of all three branches of the equilibrium curve.
Moreover, the Hopf point H1 is of subcritical in nature, resulting in
the stable endemic equilibrium being surrounded by two limit cycles.
Among these, the inner limit cycle is unstable, while the outer one is
stable. A collision between these two limit cycles occurs, followed by
their disappearance through a limit cycle bifurcation at approximately
𝑅0 ≈ 1.045. The stable limit cycle further experiences a homoclinic
bifurcation at 𝑅0 ≈ 1.00158. Furthermore, Hopf point H2 exhibits a
supercritical nature. This means that an unstable endemic equilibrium
is encircled by a stable limit cycle, which, in turn, is covered by
an unstable limit cycle. These two limit cycles undergo a limit cycle
bifurcation at approximately 𝑅0 ≈ 1.002, and the unstable limit cycle
experiences a homoclinic bifurcation at 𝑅0 ≈ 1.0015.

(d) Bogdanov–Takens bifurcation:
To show appearance of BT bifurcation of co-dimension 2, we choose

𝑅0 and 𝑘1 as bifurcation parameters. In Fig. 9(a), homoclinic (Hom),
saddle–node (SN), and Hopf (H) curves join at the ‘BT’ point and dispart
9

the 𝑅0−𝑘1 plane into four regions. In these regions, system (2) exhibits
four different dynamical behaviors.

(i) At BT point (𝑅0, 𝑘1), the proposed model system (2) has a saddle
endemic equilibrium and a disease-free equilibrium. In this case,
all the solution trajectories approach to disease-free equilibrium,
Fig. 9(b).

(ii) For the values of 𝑅0 and 𝑘1 from Region I, model system (2)
has only disease-free equilibrium. Therefore, solution trajecto-
ries move towards disease-free equilibrium irrespective of their
initial start. The phase portrait in 𝑆 − 𝐼 −𝐻 space for (𝑅0, 𝑘1) ≈
(0.974, 0.0012) ∈ Region I is shown in Fig. 9(c).

(iii) The model system (2) exhibits two endemic equilibrium and
both are saddle in nature for the value of 𝑅0 and 𝑘1 from Region
II. In this case also, all the solution trajectories approach towards
disease-free equilibrium. The phase portrait in 𝑆−𝐼−𝐻 space for
(𝑅0, 𝑘1) ≈ (0.979, 0.0012) ∈ Region II is represented in Fig. 9(d).

(iv) In Region III, model system (2) exhibits two saddle endemic
equilibria. Saddle equilibrium with high endemicity surrounds
itself with a stable limit cycle and hence all the solution tra-
jectories either spiral towards stable limit cycle or approach to
disease-free equilibrium. The phase portrait in 𝑆 − 𝐼 −𝐻 space
for (𝑅0, 𝑘1) ≈ (0.979, 0.00121) ∈ Region III is shown in Fig. 9(e).

(v) For the values of 𝑅0 and 𝑘1 belonging to Region IV, model
system (2) has a saddle and a non-saddle endemic equilibrium.
Thus, the solution trajectories either move towards disease-free
equilibrium or stable endemic equilibrium. The phase portrait
in 𝑆 − 𝐼 −𝐻 space for (𝑅0, 𝑘1) ≈ (0.975, 0.00123) ∈ Region IV is
shown in Fig. 9(f).



Mathematical Biosciences 368 (2024) 109133J. Maurya et al.
Fig. 6. (a) Bifurcation plot in 𝑅0 − 𝐼∗ plane for 𝑘1 = 0.00169 (b) Phase portrait in 𝑆 − 𝐼 − 𝑉 space for 𝑘1 = 0.00169 and 𝑅0 = 0.983 (c) Phase portrait in 𝑆 − 𝐼 − 𝑉 space for
𝑘1 = 0.00169 and 𝑅0 = 0.987.
Fig. 7. (a) Bifurcation plot in 𝑅0 − 𝐼∗ plane for 𝑘1 = 0.00186 (b) Phase portrait in 𝑆 − 𝐼 − 𝑉 space for 𝑘1 = 0.00186 and 𝑅0 = 0.965.
(e) Generalized Hopf bifurcation: We choose 𝑘1 = 0.0013 and 𝜎 = 0.05
to show the occurrence of generalized Hopf bifurcation. The curve in
𝛽 − 𝛼 plane comprises two points (GH and BT) and three curves (blue,
green and red), Fig. 10(a). Model system (2) exhibits subcritical Hopf
bifurcation at red curve and supercritical Hopf bifurcation at green
curve. At the blue curve, system (2) undergoes saddle–node bifurcation.
The homoclinic orbit at BT point in 𝑆 − 𝐼 − 𝐻 space is shown in
Fig. 10(b). The purple point below the red curve in Fig. 10(a) is the
point, we choose to plot the phase portrait in Fig. 10(c). Fig. 10(c)
10
shows that two limit cycles bifurcate from the stable focus. The trajec-
tory (red curve) spiral inward to the stable focus and the trajectories
(green and blue curves) spiral toward stable limit cycle.

5.2. Impact of vaccination and healthcare facilities

To recognize the impact of hospital beds and vaccination on the
infectious disease prevalence, we have plotted variation in the value
of 𝑅0 by varying hospitalization rate coefficient 𝑘1 and vaccination
rate 𝜎, Fig. 11. Here, it can be easily noted that for small values of
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Fig. 8. Bifurcation plot in 𝑅0 − 𝐼 plane for 𝛽1 = 0.0058, 𝜈1 = 0.39, 𝛼 = 0.065, 𝑘1 = 0.02296, 𝐻𝑎 = 418 and 𝜙0 = 0.09.
𝑘1 and 𝜎, value of 𝑅0 is higher, whereas on increasing the value of 𝑘1
and 𝜎, value of 𝑅0 decreases. This figure depicts that for the higher
values of these parameters, 𝑅0 becomes less than unity, which may
ceases the feasibility of endemic equilibrium. Thus, from this figure, it
is possible to obtain the required values of 𝑘1 and 𝜎 in order to achieve
a disease-free equilibrium.

Further, we generate the bar diagram for percentage of equilib-
rium level of infected individuals, hospitalized individuals, vaccinated
individuals and disease-related deaths for 50%, 60%, 70%, 80% and
90% effectiveness of the vaccine, Fig. 12. To generate this bar plot,
we choose 𝛽 = 0.0013 and 𝑘1 = 0.00006. This figure depicts that as
the effectiveness of vaccine increases, the percentage of individuals
in the infected class decreases. The vaccine with high effectiveness
also reduces the surge of patients in hospitals and disease-related
deaths. As we increase the effectiveness of vaccine from 50% to 90%,
the percentage of individuals in the infected class and disease-related
deaths decrease by 8.09% and 1.619%, respectively

In Fig. 13, we have made graphs by varying hospital bed increment
rate (𝜙) and vaccination rate (𝜎) for a fixed equilibrium number of
infected individuals. In this figure, each curve provides different com-
binations of 𝜙 and 𝜎, which will determinate a particular number of
infected individuals for the chosen set of parameter values. From this
figure, we can obtain the possible set of values for 𝜙 and 𝜎 to maintain
a particular level of infected individuals’ equilibrium value.

Moreover, we have generated the bifurcation plot in 𝜙 − 𝐼∗ plane,
Fig. 14. From Fig. 14(a), we observe that if we start increasing the
parameter 𝜙, the equilibrium level of infected individuals starts de-
creasing till 𝜙 = 0.02671. Further, the system enters into stable limit
cycle oscillations via supercritical Hopf bifurcation, and these oscil-
lations ceases to appear at 𝜙 = 0.06395. Between these two points,
the number of infected individuals fluctuates depending upon the am-
plitude of the stable limit cycle. Afterwards, the equilibrium level
of infected individuals eventually declines to zero. In Fig. 14(b), the
system enters into limit cycle oscillation via subcritical Hopf bifurcation
at 𝜙 = 0.01517 (marked with H1). In the left side of H1, the stable equi-
librium covers up itself with two limit cycles (inner one is unstable and
outer one is stable). These two limit cycles collide and cease to appear
limit cycle bifurcation at 𝜙 = 0.01502. Thus, 𝜙 ∈ (0.01502, 0.01517), all
the solution trajectories approach to either stable equilibrium or stable
limit cycle. Further, in the right side of point H1, stable focus becomes
unstable and covers itself with stable limit cycle and the limit cycle
11

ceases to appear via supercritical Hopf bifurcation at 𝜙 = 0.05769. Thus,
𝜙 ∈ (0.01517, 0.05769), all the solution trajectories approach stable limit
cycle. This implies that, the number of infected individuals fluctuates
depending on the amplitude of the limit cycle.

6. Conclusion

In epidemiology, healthcare facilities (more precisely number of
hospital beds) and vaccines are cornerstones in the management of in-
fectious diseases outbreak and the surest mean to decline the epidemic
risk. In the present work, we have proposed and studied a mathematical
model to stimulate the impact of healthcare facilities in terms of
number of hospital beds with vaccination. We considered that with
the increase in infected population, the number of beds in hospitals
is also increased. We have provided a detailed study regarding the
stability of endemic and disease-free equilibria and the possibility of the
existence of different kinds of bifurcations. The proposed model system
can have two endemic equilibria when the basic reproductive number is
below unity. The dynamical properties of the proposed model system
include the co-existence of two limit cycles, bi-stability (disease-free
equilibrium and endemic equilibrium or endemic equilibrium and limit
cycle) and tri-stability (disease-free equilibrium, endemic equilibrium,
and limit cycle).

Using the center manifold theorem for transcritical bifurcation, we
obtained a threshold quantity for hospitalization rate coefficient. The
direction of transcritical bifurcation is forward when the hospitalization
rate coefficient is lower than the threshold quantity, which implies
the disease can be rooted out if the basic reproduction number is
less than 1, and persists if greater than 1. For hospitalization rate
coefficient above the threshold value, the disease-free zone can be
increased, but at the same time, the surge of patients in hospitals
may take place, which causes a complex situation through backward
bifurcation. The development of policies to diminish the prevalence of
an infectious disease will require some additional precautions in this
scenario. Since a stable endemic equilibrium co-exists with the disease-
free equilibrium; thus, the basic reproduction number below unity is
a sufficient condition to root out the disease from the population only
when the number of infected individuals is small enough.

Further increase in hospitalization rate coefficient, large-amplitude
oscillations are observed in our model, which provide a more rea-
sonable explanation for disease recurrence. Through the numerical
simulations, we have shown that the system is stable for the small

values of disease transmission rate (or equivalently basic reproduction
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Fig. 9. (a) Bifurcation plot in 𝑅0 − 𝑘1 plane for 𝜙 = 0.05. Phase portrait in 𝑆 − 𝐼 −𝐻 space for (b) 𝑅0 = 0.9718, 𝑘1 = 0.00124 (BT point) (c) 𝑅0 = 0.974, 𝑘1 = 0.0012 (Region I) (d)
0 = 0.979, 𝑘1 = 0.0012 (Region II) (e) 𝑅0 = 0.979, 𝑘1 = 0.00121 (Region III) (f) 𝑅0 = 0.975, 𝑘1 = 0.00123 (Region IV).
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umber) and enters into limit cycle oscillations after a certain thresh-
ld. Thus, on increasing the value of disease transmission rate, the
umber of infected individuals fluctuates in a range depending on the
mplitude of the limit cycle. Since the number of infected individuals
scillates continuously, healthcare managers and policy-makers will
ave difficulties in making strategies to diminish the prevalence of
nfectious disease. Further, it is shown that the proposed system experi-
nces saddle–node bifurcation with respect to the disease transmission
12

t

ate as well as BT bifurcation of co-dimension 2. The scenario of BT
ifurcation depicts that, for the nearby parameter values of ‘BT’’ point,
he formulated system exhibits two limit cycles, which is not requisite
rom the public health standpoint.

The simulation of the proposed model depicts interesting results. We
ound that for the higher rate of vaccination and hospitalization, basic
eproduction number becomes less than unity, which ceases the exis-

ence of endemic equilibrium. Also, by increasing vaccine effectiveness
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𝛼

Fig. 10. (a) Bifurcation plot in 𝛽 − 𝛼 plane for 𝑘1 = 0.0013, and 𝜎 = 0.05 (b) Homoclinic curve in 𝑆 − 𝐼 −𝐻 space (c) Phase portrait in 𝑆 − 𝐼 −𝐻 space for 𝛽 = 0.0002075 and
= 0.141.
Fig. 11. Effect of changing values of 𝑘1 and 𝜎 on 𝑅0. All the parameter values are same as in Table 3 except 𝛽 = 0.0005.
from 50% to 90%, we can reduce the number of infected individuals
as well as mobs in hospitals. Also, based on the numerical results,
for the selected set of parameter values, it is possible to calculate the
required values of increment rate of hospital beds and vaccination rate
to maintain a particular number of infected individuals.
13
Our study shows that the disease transmission dynamics depends
on more than just the basic reproduction number. The dynamics of
disease transmission is also greatly influenced by other epidemiolog-
ical parameters (such as hospital beds and vaccines). Moreover, the
outcomes of our study might be helpful to public health authorities
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Fig. 12. Bar graph showing the change in percentage of infected individuals (magenta), hospitalized individuals (green), vaccinated individuals (blue) and disease-related deaths
(red) with the change in effectiveness of vaccine. All the parameter values are same except 𝛽 = 0.0013 and 𝑘1 = 0.00006.

Fig. 13. Effect of changing values of 𝜙 and 𝜎 on the number infected individuals. All the parameter values are same except 𝛽 = 0.0016 and 𝑘1 = 0.0013.

Fig. 14. Bifurcation plot in 𝜙 − 𝐼∗ plane for (a) 𝛽 = 0.000267, 𝑑 = 0.01, and 𝜎 = 0.027, (b) 𝛽 = 0.000267, 𝑑 = 0.01, and 𝜎 = 0.033.
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in developing their plans for allocating resources in order to diminish
infectious disease transmission in the future.
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