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ARTICLE INFO ABSTRACT

In this paper we study interactions between stochasticity and time delays in the dynamics of immune response to
viral infections, with particular interest in the onset and development of autoimmune response. Starting with a
deterministic time-delayed model of immune response to infection, which includes cytokines and T cells with
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St_OCthtlidty different activation thresholds, we derive an exact delayed chemical master equation for the probability density.
Tlme' eays We use system size expansion and linear noise approximation to explore how variance and coherence of sto-
Autoimmunity

chastic oscillations depend on parameters, and to show that stochastic oscillations become more regular when
regulatory T cells become more effective at clearing autoreactive T cells. Reformulating the model as an It6
stochastic delay differential equation, we perform numerical simulations to illustrate the dynamics of the model
and associated probability distributions in different parameter regimes. The results suggest that even in cases
where the deterministic model has stable steady states, in individual stochastic realisations, the model can
exhibit sustained stochastic oscillations, whose variance increases as one gets closer to the deterministic stability
boundary. Furthermore, in the regime of bi-stability, whereas deterministically the system would approach one
of the steady states (or periodic solutions) depending on the initial conditions, due to the presence of stochas-
ticity, it is now possible for the system to reach both of those dynamical states with certain probability.
Biological significance of this result lies in highlighting the fact that since normally in a laboratory or clinical
setting one would observe a single individual realisation of the course of the disease, even for all parameters
characterising the immune system and the strength of infection being the same, there is a proportion of cases
where a spontaneous recovery can be observed, and similarly, where a disease can develop in a situation that
otherwise would result in a normal disease clearance.

1. Introduction

A functioning immune system is characterised by its ability to ef-
fectively recognise and then successfully destroy cells infected by for-
eign pathogens. This can only be achieved, provided the immune
system has the property of self-tolerance, which means that it is able to
robustly distinguish healthy cells from infected cells by discriminating
between self- and foreign antigens expressed on the cell surface [1].
Autoimmunity is a condition that is associated with the breakdown of
self-tolerance, and it is known to cause debilitating, often life-long
diseases, such as type-1 diabetes mellitus, multiple sclerosis, rheuma-
toid arthritis, and systemic lupus erythematosus (SLE) [2].

Due to the complexity of interactions between different branches of
the immune system, it is often very difficult to identify one specific
cause for the onset of autoimmune disease in a particular patient, as it is
usually a combination of a number of factors, including genetic pre-
disposition, previous exposure to pathogens, age, gender and many

* Corresponding author.

others [3-6]. In light of a prominent role often played by pathogenic
infections in the onset and progress of autoimmunity, several me-
chanisms have been identified that explain pathogen-induced auto-
immunity. One of them is molecular mimicry, where immune response
against an infection can lead to a breakdown of immune tolerance due
to cross-reaction with one or more self-antigens that share some of their
immunological characteristics with a pathogen [7,8]. This is particu-
larly relevant for autoimmune diseases associated with viral infections,
such as Coxsackie virus for type-1 diabetes [9], and Epstein-Barr virus
for multiple sclerosis [2,10,11]. Other possible mechanisms of pa-
thogen-induced autoimmunity are bystander activation, where T cells
specific for an antigen X are activated during immune response against
antigen Y as mediated by cytokines [12], epitope spreading, where self-
antigens released either as a result of direct lysis of self-tissue due to a
persisting pathogen, or as part of immune response to a persisting pa-
thogen, result in a secondary immune response against self-antigens,
and cryptic antigens that are normally not recognised by the immune
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system, but as a result of the inflammatory environment following an
infection, there can be an increase in protease production and differ-
ential processing of released self-epitopes by antigen presenting cells
[8]. Very recent murine and human experiments have shown how a
single gut bacterium can trigger autoimmune disease in different organs
by migrating into them [13]. This lends further credence to the im-
portance of pathogens in mediating autoimmune dynamics.

A number of mathematical models have looked at various aspects of
immune dynamics, and in particular, at onset and development of au-
toimmune response. They have investigated interactions between ef-
fector and regulatory T cells (Tregs) [14-16], the role of T cells in co-
ordinating an effective immune response [17-20], control of
autoimmunity through suppression by Tregs [21], the role of inter-
leukin-2 (IL-2) in mediating T cell interactions [22-25], and the effects
of viral population and the growth function of susceptible host cells on
the dynamics of immune response [26,27]. Grossman et al. [28-30]
proposed an alternative framework of so-called tunable activation
thresholds (TAT) for modelling the behaviour of T cells in the context of
autoimmunity. This approach assumes that the same T cells can per-
form different immune functions, and they can also adjust their re-
sponse to stimulation by autoantigens, and this idea that activation of T
cells can change during their circulation has been confirmed in murine
and human experiments [31-34]. The importance of tuning lies in the
fact that it provides an effective mechanism for improving sensitivity
and specificity of T cell signalling in a noisy environment [35,36], and
Scherer et al. [37] and van den Berg and Rand [38] developed and
analysed stochastic models for the tuning of activation thresholds.

In the context of autoimmunity arising through a mechanism of
molecular mimicry, Blyuss and Nicholson [39,40] developed a mathe-
matical model of immune response to a viral infection with accounting
for T cells with tunable activation thresholds. This model has demon-
strated how depending on parameter values, the system can exhibit
either normal viral clearance, a sustained chronic infection, or en-
dogenous periodic oscillations that can be interpreted as periods of
relapses and remissions often observed in clinical manifestations of
autoimmune diseases [41-43]. These periodic oscillations, however,
could only be exhibited by the model, provided the viral population and
the population of infected cells are positive, which does not correspond
to clinical observations, which rather suggest that progression to an
autoimmune disease occurs after the initial viral infection has been
fully cleared by the immune system. To overcome this limitation, Fatehi
et al. [44] put forward a more realistic version of the same model,
which also includes IL-2 and regulatory T cells. This modified model
was able to capture all of the above-mentioned dynamical regimes, as
well as oscillations in the numbers of autoreactive T cells following
clearance of infection. Importantly, this model also exhibited a regime
of bi-stability between a disease-free steady state and periodic oscilla-
tions corresponding to autoimmune response, suggesting a clinically
important observation that it is not only the parameters of the immune
system, but also the initial level of infection and the state of the immune
system that determine ultimate outcome of the immune response. To
account for the intrinsically stochastic nature of many aspects of the
immune response [45], Fatehi et al. [46] have explored the effects of
stochasticity on the dynamics of immune response in the model and
determined for the same parameter regions probability distribution of
different immune outcomes. This has also provided practically im-
portant insights into how variance of stochastic oscillations depends on
different parameters, which is very important for comparison with
clinical observations of individual realisations of progression of auto-
immune disease. A complementary analysis has been performed by
Fatehi et al. [47,48] to investigate the role played by time delays as-
sociated with different aspects of immune response and virus cycle
dynamics.

Since both stochasticity and time delays are essential features of the
immune system, it is important to consider how their interactions affect
immune dynamics. One of the first computational approaches to
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modelling stochastic systems with time delays was proposed by Bratsun
et al. [49] in the context of modelling gene regulation. Subsequently, a
number of other delay stochastic simulation algorithms (DSSAs) were
proposed, such as ‘rejection method’ [50], next reaction method [51],
‘direct algorithm’ [52]. An important point about these more advanced
methods is that they are able to effectively simulate two types of de-
layed reactions, namely, non-consuming delayed reactions where the re-
actants of an unfinished reaction can participate in another reaction, as
well as consuming delayed reactions where the reactants of an unfinished
reaction cannot participate in a new reaction. This distinction proved
important in models of gene regulatory networks, but applies to a wider
range of stochastic delayed models. Besides DSSAs, another approach to
analysis of stochastic delayed systems is based on the Delay Chemical
Master Equations (DCMEs) that describe the exact probability dis-
tribution of finding the system in a particular state [49,50]. Leier and
Marquez-Lago [53] have presented the most general formulation of
DCMEs, which allows one to consider both consuming and non-con-
suming delayed reactions, and for simple reaction schemes it proved
possible to obtain closed form solutions of the DCME. In most cases,
however, solving DCME analytically is impossible, while DSSAs are
computationally demanding [54,55], and in such cases one can use
stochastic delay differential equations (SDDEs) to obtain good approx-
imations of probability distributions in stochastic delayed model, which
can be obtained in a much more computationally efficient manner. Tian
et al. [54] have developed a method for deriving SDDEs directly from
DCME models, and showed how these SDDEs can be solved using the
Euler-Maruyama method for discrete, as well as distributed time de-
lays. As an alternative, Niu et al. [56,57] have introduced a strong
predictor-corrector method for the numerical solution of SDDEs. Fatehi
et al. [58] have recently proposed a new method for deriving SDDE
models from DCMEs, which significantly reduces computational com-
plexity.

In this paper, we focus on a fundamental question of how interac-
tion of stochasticity with time delays affects the dynamics of immune
response and autoimmunity. Due to a significant role played by the
cytokines in mediating the proliferation of T cells during immune re-
sponse, we will pay particular attention to the time delay associated
with this process. As a first step, in the next Section we will briefly
review a time-delayed deterministic model of immune response, sum-
marising main biological assumptions, as well discussing conditions for
stability of various steady states. In Section 3, we will use this de-
terministic model as a foundation to derive a delay chemical master
equation (DCME) that exactly describes the probability density function
of the model, when all cell compartment are represented by discrete
random variables. In Section 4, we will develop a system-size expansion
of this DCME to obtain a linear-noise approximation (LNA) for fluc-
tuations around deterministic trajectories. This will allow us to de-
termine the magnitude of stochastic fluctuations, as well as the co-
herence of stochastic oscillations around deterministically stable steady
states depending on parameters. Section 5 contains a derivation of an
equivalent It6 SDDE model from the DCME, which will then be used in
Section 6 for numerical simulations. The paper concludes in Section 7
with a discussion of results and open questions.

2. Deterministic model

In order to understand how stochasticity interacts with time-de-
layed effects in immune dynamics, we use a model proposed recently by
Fatehi et al. [48] to study the dynamics of immune response to viral
infection, which is illustrated in Fig. 1. In this model, A(t) denotes a
population of healthy host cells that is assumed to grow logistically
with a linear growth rate s and a carrying capacity N. These cells be-
come infected at rate f and move to the compartment F(t) of infected
cells. In agreement with other models of viral dynamics [59-61], it is
assumed that infected cells cannot themselves proliferate due to in-
fection, which takes over their cellular machinery for the purpose of
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Fig. 1. A diagram of immune response to an infection.
Blue circles indicate host cells (uninfected and infected
cells), red circles denote different T cells (naive, reg-
ulatory, normal activated, and autoreactive T cells),
yellow circle show cytokines (interleukin-2). z;’s inside
each of the subnetworks indicate the time delay in the
respective processes. Curves with single arrows or bars
indicate, respectively, up-regulation or down-regulation.
Lines with double arrows indicate natural clearance/
death.

(v, 73)

producing new virus particles that are subsequently released from such
cells upon their lysis. It is, however, possible to make a straightforward
modification of our model that would allow infected cells to also re-
produce logistically in a manner similar to healthy cells [62,63]. Unlike
an earlier model in [48], we do not explicitly model the population of
free virus particles, but instead include a time delay 7, to represent the
viral lag phase [64], as well as the actual process of infection. In
principle, one could also include in the infection term
BA(t — q)F (t — 5) an additional factor e™""1 to represent the fraction of
already infected cells that survive during the lag period, where m is the
death rate of cells that are already infectious but are not yet producing
new virions. This was proposed by Herz et al. [65], and subsequently
used in a number of other models of virus dynamics [66-68]. However,
to simplify the model we will assume that m is sufficiently small, so that
this factor does not have to be explicitly included, as has been effec-
tively done in a number of virus models [69-71].

In terms of immune response, due to the major role played by T cells in
autoimmune dynamics, we focus primarily on their dynamics and do not
include B cells, since autoimmune response can develop even in their
absence [72]. It is known that stimulation of naive T cells by antigens
results in their proliferation and differentiation into activated T cells that
then migrate to the infected tissue [1]. Following activation, T cells that
bear CD8* receptors would become cytotoxic T cells able to destroy in-
fected cells by triggering their apoptosis. Similarly, T cells with CD4* re-
ceptors would become helper T cells [1], some of which, CD4*CD25" T
cells, are regulatory T cells that perform a very important role of sup-
pressing autoreactive T cells [73,74]. In order to model autoimmunity
arising from a failure of self/non-self discrimination in the immune re-
sponse, we consider four distinct populations of T cells, naive/inactive T
cells Ti,(t), CD4*CD25* regulatory T cells T,(t), and two populations of
activated CD8" T cells, namely, normal activated T cells T, (t), and au-
toreactive T cells Tq,(t). The distinction between normal activated and
autoreactive T cells is that the autoreactive T cells have a lower activation
threshold, and, as a result of cross-reactivity between some of the epitopes
in foreign and self-antigens, they destroy not only infected cells, but also
the healthy host cells. Since normal activated T cells are specific to re-
cognising infected cells only, they will be assumed not to be removed or
affected by the regulatory T cells. It is assumed that both inactive and
regulatory T cells are maintained in a homeostasis, i.e. at some steady
levels, in the absence of infection [75]. There are a number of mechanisms
involved in this process, including post-thymic tuning of T cell receptors
and anti-apoptotic signals from cytokines, such as IL-7 and IL-15 in the
case of CD8* cytotoxic T cells [76-78], and IL-2 in the case of CD4*
regulatory T cells [79,80]. Iwami et al. [26,27] have earlier noted that a

functional form of the term representing homeostasis can also play a role
in determining the dynamics of immune response, and for both naive and
regulatory T cells we choose this function in the form of a constant pro-
duction, as well as constant degradation rate. Once the cells become in-
fected and recognised as such by the immune system, naive T cells expand
and differentiate, and it is assumed that after some time delay z3 a pro-
portion p; of them differentiate into further regulatory T cells, a proportion
P2 become normal activated T cells T, (t), and the remaining proportion
(1 = p, — p,) become autoreactive T cells T (t). Choosing p, = 0 would
mean that Tj, only contains the pool of inactive CD8* cytotoxic T cells
(CTLs), from which T,, and T, are produced through activation, while
regulatory T cells are maintained by a separate mechanism. The model
also includes a cytokine interleukin-2 (IL-2), which is known to enhance
the proliferation of all types of T cells, though it is only secreted by the
cytotoxic T cells, and not by the regulatory T cells [1,81]. Hence, in the
model we consider that proliferation of T cells Ty Tror and Ty is en-
hanced by IL-2 I(t) at rates p;, p2 and ps, respectively, and this process is
characterised by a time delay z,, while IL-2 is produced by T, and T, at
rates 07 and 0,. While regulatory T cells may block the expression of IL-2
by T cells by suppressing IL-2 mRNA, thus restricting T cell proliferation
[82-84], similarly to other studies that analysed the role of IL-2 in T cell
dynamics [85-87], we do not explicitly include this mechanism in our
model not to increase its complexity. This effect can, however, be included
as an additional term (—yTgI) in the equation for IL-2 [24,25], though
our earlier analysis of an analogous model has shown that this effect may
be smaller compared to other contributions, such as the suppressive effect
of regulatory T cells on autoreactive T cells [47].
With these assumptions, the model has the form

% = sA(l - %) — PAF — u, T A,

Z—f =BA(t — 5)F(t — 1) — dpF — ptpTyor F — pt, Tt F,

ddlti = Ain — dinTin — aTinF,

dZeg =4 = dTieg + p1aTlin(t = B)F (U — 1) + o1 (1 — ) Teg(t — ),
Boor oyt = 5)F (¢ = ) — duToor + poT (£ — ) Tror (¢ — ),
AT

dt =Q1- p - pz)“T;n([ —n)F( —5) — doTou — aTrL‘g Tout

+ 01 (t = ) T (t — ),

dI
E = 01 Tnor + 02 Tour — dil. 6))
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This model has been analysed earlier in Fatehi et al. [47,48], who have
shown that it has at most four biologically feasible steady states. The
first one, a disease-free steady state, is given by
¢ = (N, 0, 2 X g0, 0),

din dr
and it is stable if dr > BN and unstable if dr < N, irrespective of the
values of time delays. The second and third steady states can be found
as

st=0,0, 4 yz o, dildat ) dot o)
din P302 P3

and

* (N[ch'zs - Madi(da + 5X:)]
SF = 0

Ain e o Gilda+ 850 do+ 5x:]
s Uy s A4 Yy g
P3028 din

P30 Toop

where x; satisfies the following quadratic equation

P80 + (oyda — p3d)xi + p3A, = 0. ®)
These steady states are stable, provided

scrzK< d, + 6x; <ﬂ

Mot Ps P

where K =1 for S5, and K = (BN — dr)/(s + BN) for S, and the fol-
lowing equation

A, A) = p,(De 2 + p, (De~*2 + py (1) = 0, 3)
where
p,(dq + 6x))?
p,( D)= —————(4 + 2dy),
3
—(dg + &xf
pya)= —at ) {(pl TR
3

+ [o1(da + 85 + dip, + 2dip, + dipy]
+ di(oyda + 2d,p,)),
Po)= 2+ (d; + dy + dg + )22
+ [di(dg + 8x5) + dr(dg + 8x5) + did, |24
+ did, (dy + 8x)),

only has roots with negative real part. Biologically, the steady state S5
represents the death of host cells, while S5 corresponds to an auto-
immune state. Depending on parameters, the steady state S5 can lose its
stability through a Hopf bifurcation, which occurs when a pair of
characteristics roots of Eq. (3) crosses the imaginary axis. In this case,
one would observe periodic oscillations around S5 that can be inter-
preted from immunological perspective as an autoimmune state, char-
acterised by the clearance of the initial infection, followed by sustained
endogenous oscillations in the numbers of autoreactive T -cells
[44,47,48]. The final steady state S; has all of its components positive,
and it corresponds to the state of chronic infection. Having established
conditions for stability of various steady states, we can now consider
how the dynamics of the system is influenced by stochasticity, and how
the stochasticity interacts with different time delays present in the
system.

3. Stochastic model: a delayed chemical master equation

To develop a stochastic version of the model (1), we introduce
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variables as discrete random variables representing, respectively, the
numbers of uninfected cells, infected cells, naive T cells, regulatory T
cells, normal activated T cells, autoreactive T cells, and interleukin 2
(IL-2) at time t, with the initial condition X(¢t) = ¢(¢t) for t € [—1, 0],
where 7 = max{g, B, B}. It is assumed that all these cells interact within
some fixed volume Q. The state change vector characterising each
specific interaction between different cells R; is denoted by vj, and its
propensity function is given by a;(X(¢)) in any given state
X(t) = X)), X%(t), ....X7(t)). The propensity functions corresponding
to interactions and transitions illustrated in Fig. 1 are given in the
system (12) in Appendix A.

As already mentioned in the Introduction, when deriving the delay
chemical master equation (DCME), one has to carefully account for de-
layed transitions/interactions. Following an approach proposed by
Barrio et al. [50] and subsequently elaborated by Cai [52] for chemical
reactions (within our model, individual cell populations can be inter-
preted and chemical reactants, and interactions between them as re-
action), we will divide all reactions into three types: non-delayed re-
actions, non-consuming delayed reactions, and consuming delayed
reactions. The distinction between these three types of reaction lies in
when the associated state of the system gets updated, and what the
corresponding state change vector is. For non-delayed and non-con-
suming delayed reactions, there is a single time point where the update
of the system state happens both for original reactants and for the re-
sulting products - it happens either immediately in the case of non-
delayed reactions, or, respectively, after the end of delay for delayed
non-consuming reactions. In contrast, for consuming delayed reactions,
there are two distinct update points: original reactants are updated at
the initiation of reaction, while the products are updated at the end of
time delay. From a biological/chemical point of view, the difference
between non-consuming and consuming delayed reactions is that
during non-consuming reactions, reactants can also participate in other
reactions (hence, the name, as reactants are not “consumed” by the
reaction), whereas in consuming reactions, once they start, the re-
actants are consumed and thus cannot participate in any other reactions
until current reactions finish. As an example, gene transcription can be
interpreted as non-consuming reactions, since it is possible for a single
gene to be simultaneously transcribed by several different RNA poly-
merases, and moreover, the DNA molecule itself is not consumed by the
first transcription, but is rather available for another transcription even
before the end of the current one. In contrast, transport of compounds
within or outside the cell is a consuming reaction, since the molecules
leave one compartment, and after some period of time appear in an-
other compartment, clearly indicating two different updates: one at the
start of reaction, and another at the end of delay period.

Based on the deterministic model (1), stimulation and subsequent
proliferation of activated T cells with a positive growth signal from IL-2
is a non-consuming delayed reaction. In contrast, activation of inactive
T cells, and production of infected cells from uninfected cells are con-
suming delayed reactions. Therefore, the state change vector for these
reactions should be split into two vectors, with one of them indicating
the state change in the absence of delays, and the other one showing the
state change of products which occurs with a delay [53].

If we denote the probability of finding the system in the state
n = (ny, ny, N3, Ny, Ns, Ng, n7) with n; €40, 1, 2, ...} at time t by

P(n, t) = Prob{X(¢) = nlg(t)},

it then satisfies the following DCME [49,50,53]
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% - {(a{ ~ Da@) + & - 1>[a2<n) + a3(n)] + (e - Day(m)

+ (g5 — Das(m) + (&5 — Dlas(n) + a;(n) + ag(n)
+ ag(n)] + (g5 — Dajp(n)

+ (& — Daz(n) + (& — Da(n) + (& — Das(m) + (67 — Dayz(n)

+(ef — l)alg(n)}P(n, N+ D,

mel(n)

[as(m)(zz‘ - DP(n, t;m, t — fl)]

)

mel(n)

[{(111(111)(54 =1+ aiz(m)(es — 1)

+ a;s(m) (g5 — 1)}P(n, t;m,t— Tz)]

)

mel (n)

[{a7(m)(84 - D+ag(m)(e - 1)

+ ag(m)(gg — 1)}P(n, tm,t— Ts)],

(€3]

where I (n) is the set of all possible system states in the past, from which
the state n is able to follow via a chain of transitions, P(n, t; m, t — 7)
is the joint probability of finding the system in state n at time t and in
state m at time ¢ — 7, and shift operators ¢* are defined as follows,

&7f (1, ny, n, Ny, ns, Ng, N7, t) = f(ny, oy £ 1, 09, 1),
for each 1 <i<7, and if n; <0 for any 1 <i <7,

then P(n, t) = 0.

Since solving this equation analytically is not possible, it can either
be simulated numerically using some DSSAs, which is computationally
expensive [54,55,88], or one can develop some approximations of this
equation that can provide both analytical insights and analogous re-
presentations that are more computationally efficient.

4. System size expansion and fluctuations

To make analytical progress in the analysis of the DCME (4), we will
use the so-called system size expansion, or van Kampen’s expansion [89]
that is often used to construct a continuous approximation for discrete
stochastic models [55,90,91]. This will allow us to decompose time
evolution of each cell population into deterministic and stochastic
components, thus providing a methodology for analysis of fluctuations
around deterministic attractors [55,92]. In order to apply system size
expansion to the DCME (4), we consider each n; to be of order Q, with
fluctuations of order Q%, which can be written as follows,

m(t) = Q) + &), i=1,2, .7,

where x;(t) are determined by the deterministic rate equations, and &(t)
describe random fluctuations around the deterministic solution. Simi-
larly, for delayed variables we write [92]

m;(t — 7)) = Qx;(t — 77) + Q;ni([), i=1,..,7, j=1,2,3, where
the index j is chosen depending on the delayed reaction being con-
sidered. For example, if it is the reaction of production of infected cells
from uninfected cells, then m;(t —5) = Qx;
(t—m) +Quyt), i=1,2, ..,7.

The probability distributions P(n, t) and P(n, t; m, t — ;) can be
written as functions of £ = (§,...&)" and n = (3,,...,n,)7, i.e.

P(n, t) = P(Qx + Qif, t) = II(£, b),

Pn,tm, t—7) =1 9, t—1), j=1,2,3,
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which implies
dP(n, ) _ M _ 5o o1 d 31T
dt o & dt 9 (5)
To expand the master equation in a power series in O3, we use the
following expansions for step operators &*
2
%; 6)

9 2
with similar expansions for propensity functions a;, where we also re-
scale the parameters as follows,

s E a , B
d:—, = —, a=—, = —, = —,
) B Q Q Hq Q Mr Q

5. 5 X Y
Pi=519 i=1,2,3, 5=6’ /‘]-in=€; Ar=5r,

and drop tildes for notational convenience. To give two examples, ex-
pansions of propensities for non-delayed and non-consuming delayed
reactions have the form

a;(n) = s§lﬂ% + 54 Q, and
a(m) = pyam, 7, + (pyaca(t — ) + proa(t — w)N,)0 + p,
ot — B)xs(t — B)Q,

with the expansions of remaining propensities given in Appendix B.

Substituting expressions (5) and (6), together with the expansions
for propensity functions, into the DCME (4) shows that the left-hand
side of the equation only contains terms of the order Q'/* and Q°, while
the right-hand side has terms of the order Q2 Q° and Q"2 for
n €N, and we will ignore the terms of order Q"2 [46,92]. To show
how the process of substitution works, let us illustrate expansions for
one non-delayed term

. (gt  1ga® !
(ef — Dai(m)P(m, t) = ( Q 25§1 + 29 15512) glg
+ stQ}H(E, 1)
T\ 1) NN O DO D\ o
= —;Q % %, [sgln}g + o %> Q°,

and one delayed term of the DCME (4)

Smerm [a3<m><z; ~DP(n, t;m, (~ n>]=

f (—Q“%i + 19_16—22)[[&1@ — )N, + Px(t — 11)771)9;
” o, 2 %,

+ Pa(t — w)xn( —1)Q

HE tn, t —5)dy

10 s
= —But - Wnl - 11)92% - a% s [ﬁxl(t — D,

+ Pu(t — 1’1)7)1)1_1(5, tn, t — 5)dnQ°

FI(E, t)
3

with all other terms being computed in the same way. After substitu-
tion, collecting terms of order Q2 yields system (1) describing mac-
roscopic behaviour of the model.

At the next order, i.e. at order Q°, we obtain a linear delayed

1
+ Pl - n)nl - 1) Q°,
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Fokker-Planck equation, known as the linear noise approximation
(LNA), that describes stochastic fluctuations around a deterministic
trajectory, as shown in Appendix C. Following Phillips et al. [55], we
use the structure of this equation to derive a system of equations that
describes the delayed Langevin dynamics of fluctuations around any
deterministic steady states S* = (x;*, xJ,...,x;) of the model (1). This
system has the form

§ = (s — 2dpx] — xS — puxNE — BxE, — pxis + &

2

B3 (t — 1) + BxE(t — 1) — (dp + pupXd + x5 — upxs&s
- luax2*§6 + {2’

53 = —oxi§, — (din + )& + &,

&

_dr§4 + p1ax3*§2(t -5)+ plax;§3(t -5)+ F>1X7*§4(t - 1)
+ o35t — ) + &,

55 = _dngs + pzaxgkgz(t -5)+ pzaxz*gg(t -5)+ P2x7*§5(t - 1)

+ p2x5*§7 (t—-n)+ §5;

56 = _5x6*§4 —(dq + 5xf)§6 +(1 - b, — pz)dxfé’z(t - 1)
+ (1 = p, = po;&(t — )
+ p3x7E (t — ) + p3xgE (t — w) + &,

§.7 = 5155 + 525(, - di§7 + §7’
@)
where ¢(t) = (§(©), &(@),....$, ()T is a vector of seven independent

Gaussian white noise variables with zero mean, and the noise correla-
tors given by

(GOGE) = (sxf + ot + Bd + uxxDO( = 1),
(OG0 = B + dpxs + pexixs + px3xHs (e = 1),
(GOGE)) = Ain + dinxs + ax;xHE(t — 1),
(O = Ar + dexf + pioogxd + pxix)0(t = 1),
(GG = (Dyo0ix] + dux¥ + pxix DS (¢ — 1),
(6% (D) = (O = p; = paxsxs + doxg + dxg

+ pyxx)O(t — 1),
(&8N = (x5 + oxd + dix)o(t — '),
GOGE)) =0, ¥ i#].

Using a Fourier transformation of the model (7), one can find the
power spectral density (PSD) of the fluctuations, which can be used to
determine the variance and coherence of stochastic oscillations. Fourier
transform of the model (7) gives

M (@)E () = ¢ (),

where M (w) = iwl — M, — e “TIM, — e”®2M; — e"®B3M,, and

s = 2dpX" — pty - B 0 0 0 — X 0
x§ — px3
0 —dp — upx$ — g 0 0 —ppx3  pexs 0
M = XE*

0 —ax3 —dip—axyf 0 0 0 0
0 0 0 —-d, 0 0 0
0 0 0 0 —dp 0 0
0 0 0 — ox¢ 0 —dqg—6xf 0
0 0 0 0 al 02 —d;

Bxy, if (G, ) =(,2),
ML)y = Bxy*, if (i, )) = (2, 2),
0, otherwise,
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px7s if (1)) = (4, 4),
Py if (1)) = (4, 7),
pyx7, if (i, )) = (5, 5),
ppx3, if (1)) = (5, 7),
psx7, if (i, )) = (6, 6),
psxes if (i,)) = (6, 7),

M)y = (My)y

0, otherwise,

pyoxs, if (i, j) = (4, 2),

proxs, if (i, j) = (4, 3),

Doy, if (4, j) = (5, 2),
=4 p,axs, if (i, j) = (5, 3),

Q= p, = paxs, if @) = (6, 2),
Q= p, = paxy, if @ )) = (6, 3),
0, otherwise.

Introducing the matrix of spectra S(w) as Sj(w) = (§ (w)gj(w)*) [55],
we then have

S@) = M (@) (¢ @) (@)) (M (@),

where

(¢ (w)¢ ()'y = diag{by, by,...,bs}6 (w + &),

and
SX; + X2 4 BxIXS + pxixg, ifi=1,
Bxi'x; + dpxy 4+ ppXoxd + paxsxg, if i =2,
Ain + dinx; + Ofxz*x;ﬁ, if i = 3,

by = {4 + dyxf + pyaxyxs + pyxixs, if i =4,
Daxyx5 + dpXs + poxIx, ifi=35,
(1 = p; — pyaxsxy + doxd + XX + pyxexy, if i =6,
oxs + opxg + dixy, ifi=7.

Using this approach, it can be easily shown that in the case where the
macroscopic model (1) converges to either of the steady states S5 or S5,
the power spectrum for the number of regulatory T cells (S, 4(w)),
which is denoted as P.(w), is given by

by ILP + beo7pxi2 + byplxi2liw + do + 8 — pye@n2x )

By (w) = s
g (@) | det(D)I?
(8)
where L = (iw + d;)(iow + dg + 6x] — p;e™@2x)) — p,0e”#2x, and
iw + d. — pyenxf 0 — pyemivnax
D= Sxe iw + dg + 6x* — pyeT®T2xS — pieminxy |,

0 -0y iw + d;

and the PSDs of other state variables can be obtained in a similar way.
At any steady state, the covariance matrix E with

By = (§0§10) — (GONE®) = (5§ ®) is independent of time,
and is thus given by [93]

1 +00 1 +00
E=— [ S(wdw=— [ S(w)dw.
27 !{; T { 9

To relate the results of this analysis to the outcome of direct numerical
simulations of the stochastic model, it is instructive to express the
covariance matrix in terms of actual numbers of cells in each com-
partment, rather than deviations from stationary values. This can be
achieved by  defining the covariance matrix C as
Cyj = ((n; = (n;))(n; — (n;))), which is related to E through C; = QE;
[46]. When there is no delay, as an alternative to numerical computa-
tion of matrices E and C by evaluation of the matrix of spectra S(w) and
its subsequent numerical integration, one could also determine these
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Power

Frequency

Fig. 2. Coherence of stochastic oscillations ¢ defined as the spectral power as-
sociated with a range of frequencies around the peak A, relative to the total
area under the PSD curve Aq [55,95].

matrices by solving the corresponding Lyapunov equation [46,94]. Ei-
ther of those approaches allows one to compute the value of variance of
fluctuations around any steady state of the deterministic model.

In order to quantify how well-structured stochastic oscillations are
around the dominant spectral frequency for any of the relevant state
variables, we can use the notion of coherence [55,93,95]. Choosing a
particular state variable X(t), we can consider the power spectral den-
sity P(w) of stochastic oscillations of this variable around its steady state
value X*. The overall level of fluctuations can be measured by the
mean-square variance

Pi+P 0 0 0 0 0
0 PB+PR 0 0 0 0
0 0 P+h 0 0 0
=] o 0 0 P +Po+Pi+Pn 0 0
0 0 0 0 Py + Pis + Py 0
0 0 0 0 0 Py + Pis + Pig
0 0 0 0 0 0

+00
+T
— 15 _ 2 —
Ay = lim f_T [X () — X*Pdt = {ZP(cu)dcu.

Focusing on the particular interval of frequencies [w;, w>] around the
peak frequency in the distribution P(w), as shown in Fig. 2, one can
compute the quantity

w)
A, = fzp(w)dw,

@]

and then define coherence of stochastic oscillations as ¢ = A,/A, [55,95].
5. It6 SDDE model

Using the method presented in [58], we now derive a computa-
tionally efficient SDDE model associated with the DCME (4). Let
Y(©) = (%), Ya(), ¥3(0), Ya (), Ys(8), Ys(8), Y2(£))" be a continuous
random vector for the sizes of various cell compartments at time t, and
At be small enough so that during this time interval at most one change
can occur in state variables. These changes together with their prob-
abilities are listed in Table 2 in Appendix D. In this table, reactions 3, 7,
8 and 9 that are associated with infection and proliferation of different
types of T cells from naive/inactive T cells are consuming delayed re-
actions; reactions 11, 13 and 15 describing the delayed impact of IL-2
on proliferation of different types of T cells are non-consuming delayed
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reactions; all other reactions are non-delayed. According to the meth-
odology of Fatehi et al. [58], the order of these reactions in the table is
irrelevant, since they all come with associated state change vectors. The
assumption of only a single transition/reaction occurring during a small
time interval is a fundamental premise of all stochastic models using the
framework of master equation, irrespective of whether they are non-
delayed, or delayed, and the same applies to associated stochastic si-
mulations algorithms [52,54,88,96]. Using Table 2 of possible state
changes, one can compute the expectation vector and covariance matrix
of AY for sufficiently small At.
The expectation vector to order At is now given by
18
E(AY) ~ Y. B(AY)At = pAt,

i=1

where
P —-P
P—B
P-K
m=|Pr+Po+P1—Pp
B+ P3— Py
Py + Pis — Pig
Pi7 — Pg

is the drift vector, which is identical to the right-hand side of the de-
terministic model (1). The covariance matrix is obtained by only
keeping terms of order At, i.e.

18
cov(AY) ~ Y’ B(AY)(AY) At = ZAL,

i=1

where

(=l ele =N

0
P17 + Pig

is a 7 x 7 diffusion matrix. Since X is a diagonal matrix, it is straight-
forward to find the matrix Q, which is also a diagonal matrix with
entries Q; = \/Z—” for 1 <i < 7, which satisfies the condition QQ” = X.
The It6 SDDE model is then given by

dY(t) = pdt + QdW(2),
Y(t) =¢() for te][-t,0], 10)

where T = max{g, B, 5}, and W(t) = [W,(¢), W4(),..., W5 ()] is a vector
of seven independent Wiener processes, and ¢(t) is the vector of initial
conditions. In the next section we will use this SDDE for numerical si-
mulations to illustrate various dynamical behaviours of the model.
Having now encountered a number of different formulations of the
same model, in the Table 1 below, we provide a summary of different
modelling approaches along with their strengths and weaknesses.

6. Numerical stability analysis and simulations

In order to perform numerical simulations of the model (10), we use
the strong predictor-corrector method with the degree of implicitness in
the drift coefficient chosen to be equal to 1/7, since for this value the
method has the largest stability region [97,98]. It has been previously
shown [47,48] that in the model (1), the disease-free steady state S;*
undergoes a transcritical bifurcation at SN = dr, where f is the infec-
tion rate, N is the carrying capacity of uninfected cells, and dr is the
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Table 1
Comparison of different modelling formulations.
Method Strengths Weaknesses
DDEs Possibility of analytical results Only covers deterministic dynamics
Ease of numerical simulations and
bifurcation analyses
DSSAs Stochastically exact Computationally expensive
No analytical results
DCMEs Describe exact probability distribution Difficult/impossible to solve analytically
Serve as a basis for SDDEs
SDDEs Computationally efficient An approximation; only works for sufficiently
large system size and sufficiently large delays
LNA Approximates the PDF An approximation; only works for sufficiently

Allows to determine the variance and
coherence of oscillations

large system sizes, and in close proximity of
deterministic solutions

natural death rate of infected cells. For BN < d, the disease-free steady
state is stable, while the chronic infection steady state S; is infeasible.
On the contrary, for N > df, the disease-free steady state is unstable,
and in this case we can study the stability of the chronic infection
steady state [47,48]. This qualitative distinction between different re-
gimes suggests that it is feasible to consider the two cases separately.
First, we consider a situation corresponding to the parameter regime
BN < dg, with the values of parameters given in Table 3 in Appendix E
[46,96]. The initial condition is chosen to be

a (s), x3(5), x4(8), x5(5), x6(5), x7(s)) = (18, 7.2, 6.3, 0, 0, 0),

5 € [~Tnax, 0], Tnax = max{z, o, 3}, an

to model a situation at the start of infection, where there is some po-
sitive number of infected cells F, but there are still no regulatory,
normal or activated T cells that have emerged through activation of
naive/inactive T cells.

Fig. 3 shows the result of 20000 simulations with the initial con-
dition (11) and x(0) = 2 and u, = 2, where y, is the removal rate of
uninfected cells by autoreactive T cells. In this case, in the deterministic
model (1) the steady states S;* and S5 are both stable, but based on the
chosen initial condition, the system is deterministically in the attraction
basin of Sj'. This figure also shows single stochastic trajectories around
Sy and S, as well as areas of one standard deviation from the mean in
the basins of attraction of these steady states (computed from averaging
20000 simulations), in which trajectories show sustained stochastic
oscillations [99,100]. Taking an average of a large number of simula-
tions that enter the basin of attraction of S5* would show decaying os-
cillations around S5, which is similar to a deterministic trajectory, while
single stochastic trajectories exhibit sustained stochastic oscillations
[95,101]. The reason for this is that at the highest order in the system
size, the dynamics of the DCME is captured by the system (1), which is
nothing else but the original model (1), and similarly, the main con-
tribution to the SDDE is given by the drift vector that also coincides
with the deterministic DDE model, while the diffusion term covers
fluctuations around those deterministic trajectories [96,102]. One
should also note that with the system being deterministically in the
attraction basin of the autoimmune steady state S3', it was still possible
for a small number of realisations (around 1.5% of the total number) to
successfully clear the infection and reach a disease-free steady state,
which corresponds to a spontaneous recovery.

Fig. 4 (a) illustrates temporal evolution of the probability distribu-
tion for the same set of parameters and initial condition as in Fig. 3. The
bi-stability between steady states S;* and Si results in the system
reaching a bimodal stationary distribution after some initial transient,
as shown in Fig. 4(b). Increasing the value of the rate u, at which
autoreactive T cells are destroying infected and healthy host cells, from
2 to 3.33 shifts dynamical behaviour for the deterministic model (1) to
a regime of bi-stability between steady states S;* and S5. In this case,
with the same initial condition (11) and % (0) = 2.2, the system is in the
basin of attraction of S;. Fig. 4(c) and (d) show the evolution of the

><1O4

0 1 1 1
0 250 500 .. 750
time

Fig. 3. Numerical simulation of the model (10) with parameter values from
Table 3, with u, = 2, where p, is the removal rate of uninfected cells by au-
toreactive T cells, % (0) = 2 with a constant history, and the initial condition
(11). Blue and green curves represent two sample trajectories of the SDDE (10)
that have entered the basins of attraction of steady states S; and S;*, respec-
tively. Shaded areas around them them indicate regions of one standard de-
viation from the mean of 20000 simulations. Black curve is the deterministic
trajectory of the DDE model (1). (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)

1000

probability distribution, as well as the final bimodal distribution in this
case. Since the size of fluctuations around deterministic solutions scales
as Q71/2, increasing the size of system Q would result in the stochastic
trajectories being more narrowly centred around deterministic solu-
tions, and, as a result, these bimodal distributions becoming closer to
unimodal [92,102,103].

A recent work by Fatehi et al. [46] explored how the basins of at-
traction of steady states S;*, S;' and S5° (or periodic orbits around around
them) are affected by stochasticity. It showed how in the regime of bi-
stability, where deterministically depending on the initial conditions
for the numbers of infected cells and regulatory T cells, the system is in
the basin of attraction of one of those steady states or associated peri-
odic orbits, under the influence of stochasticity the deterministic
boundary separating basins of attraction of these different states is
smeared out, and for any initial conditions there is some positive
probability or reaching either of the states. In contrast, time delays were
shown not to have a major effect on changing the boundaries of basins
of attraction, besides switching stable steady states into periodic orbits
around those steady states [44,47].

Fig. 5 highlights the main difference between deterministic and
stochastic models by illustrating how the coherence of stochastic os-
cillations changes in the region where S5 and S; are deterministically
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Fig. 4. Probability distribution of solutions out of 20000 simulations of the model (10). (a) and (b) with parameters from Table 3 except for u, = 2, where p, is the
removal rate of uninfected cells by autoreactive T cells, and the initial condition (11) with % (0) = 2 with a constant history. (c) and (d) with parameters from Table 3
except for u, = 3.33, and the initial condition (11) with x,(0) = 2.2. In (a) and (c), the probability histogram is fit to a bimodal normal distribution at different times.

(b) and (d) illustrate stationary joint probability histograms.

stable, i.e. the deterministic solution exhibits damped oscillations that
eventually reach a steady state. This figure indicates that by increasing
time delay 7, associated with the effects of IL-2 on proliferation of T
cells, we approach the boundary of the Hopf bifurcation, and the co-
herence also increases, while in the region where deterministically the
model has a periodic solution around these steady states, the value of
coherence is equal to one. Biologically, this means that in the parameter
region where deterministically the system exhibits damped oscillations,
due to stochasticity there would be stochastic oscillations, and they
would be becoming more coherent, i.e. having a frequency spectrum
more narrowly distributed around the leading frequency, when para-
meters approach the deterministic stability boundary.

Using Eq. (9), we can determine the covariance matrix C, which
provides the variance of individual state variables, when the determi-
nistic model is at one of its steady states. Fig. 6 illustrates how variance
in the number of regulatory T cells T, as determined by Cj 4, varies
with system parameters in the parameter regions where S; is de-
terministically stable. One can observe that as one gets closer to the
border between the area, where S; is stable, and the area, where the
deterministic model can have a periodic solution around S5, the var-
iance of stochastic oscillations in Tregs increases. Moreover, this var-
iance increases with the rate o, of production of IL-2 by autoreactive T
cells, as well as with the time delay 7, associated with stimulation and
proliferation of T cells by IL-2. In contrast, Fig. 6(b) suggests that the
variance of stochastic oscillations in Tregs is insensitive to changes in
the rate y, of destruction of infected and healthy host cells by auto-
reactive T cells. The value of variance shown in this figure coincides
with the value of variance computed from the average of 20,000

simulations shown in Fig. 3.

To illustrate biological significance of simultaneous presence of time
delays and stochasticity, in Fig. 7 we fix the values of all parameters as
in Table 3 and explore the role of initial conditions for different values
of time delays. In the case where all time delays are equal to zero,
deterministically the system approaches a disease-free steady state S;
for sufficiently small initial number of infected cells F(0) and/or for
sufficiently large initial number of regulatory T cells T,.,(0). Due to
stochasticity, the deterministic boundary separating basins of attraction
of these two steady states becomes smeared, and there is a non-zero
probability that the system will approach either of these steady states
on both sides of the deterministic boundary separating their basins of
attraction. When time delays are chosen to have the values as given in
Table 3, the shape of the region delineating deterministic basins of
attraction of these two steady states changes, and it is deterministically
possible for the system to approach a steady state S;* even for large
initial values of the number of infected cells, provided the initial
number of Tregs is sufficiently small. As the time delay 7, is increased,
this makes the steady state S5 lose stability, and Fig. 7(c) illustrates a
regime of bi-stability between a disease-free steady state S;* and a
periodic solution around S;, which represents an autoimmune state. In
this case, there is a range of initial numbers of infected cells, for which,
provided the initial number of Tregs is sufficiently low, the majority of
solutions would go to autoimmune state, while a small proportion of
them would be able to clear the infection without any lasting con-
sequences. For higher initial numbers of infected cells, this escape to
disease clearance (which deterministically is impossible) can only take
place provided the initial numbers of Tregs lie in a certain range.
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Fig. 5. Coherence of oscillations in the stability regions of S5* (a) and S5 (b) with parameter values from Table 3, except for p; = 0.667, where p; is the proliferation
rate of autoreactive T cells by IL-2. Black curves show deterministic boundaries of Hopf bifurcation for respective steady states. In the white region, the steady state

S5 is infeasible, in the blue region the steady state S5 is infeasible, and in the region indicated by the black grid both steady states S5 and Sy are infeasible.
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Fig. 6. Variance of the number of regulatory T cells with parameter values from Table 3, but u, = 2 (removal rate of uninfected cells by autoreactive T cells) using
Eq. (9). Coloured regions indicate areas in respective parameter planes where the autoimmune steady state S5 is deterministically stable. Black lined area indicates

the region where S; is infeasible, and in the white region it is feasible but unstable.
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Fig. 7. Probability of solution entering and staying in the basin of attraction of the disease-free steady state S;*. Black curves indicate boundaries between different
basins of attraction in the deterministic model, with parameter values from Table 3, except for 7 = 0 (a), all delays as in Table 3 (b) and (c), except for 5 = 1 in (c). (a)
and (b) illustrate bi-stability between steady states S;* and S5, (c) shows the regime of bi-stability between a stable steady state S;* and a periodic solution around the

autoimmune steady state S;.

Conversely, in the case where deterministically the system would ap-
proach a disease-free steady state, there is now a non-zero probability
that some proportion of stochastic realisations will go on to develop
autoimmunity for the same values of parameters and the same initial
conditions.

Now we consider a situation where SN > dr, in which case de-
terministically the disease-free steady state S;* is unstable, and we can
investigate stability of the chronic steady state S;. Earlier results by
Fatehi et al. [47,48] indicate that for parameter values from Table 3,
but with § = 5.3e-4, 0, = 0.66 and 8 = 0.14, where § is the clearance rate
of autoreactive T cells by regulatory T cells, 05 is the production rate of
IL-2 by autoreactive T cells, and f3 is the infection rate, the steady states
Sy and S are both deterministically stable, and for the initial condition
(11) with %(0) = 0.6 and x4(0) = 36 with a constant history, the model
(1) is in the basin of attraction of the chronic steady state S;.

Fig. 8 shows the results of 20,000 stochastic simulations with these
parameter values and initial conditions. Since deterministically S is

0 250 500 750 1000

time

stable, and the system is in its basin of attraction for the specific chosen
initial conditions, the majority of stochastic trajectories also enter the
basin of attraction of S;. Due to bi-stability, a proportion of these tra-
jectories (about 17.5%) go to S;. Interestingly, although the disease-
free steady state is deterministically unstable, fewer than two percent of
trajectories still approach S;* and exhibit stochastic oscillations around
it. The impact of these trajectories can be observed in Fig. 8(b), which
shows temporal evolution of the probability distribution of the solu-
tions. In this figure, initially one observes a trimodal probability dis-
tribution, where the middle peak corresponds to trajectories ap-
proaching S;*. Over time, this peak disappears, while the peak at S}
becomes more pronounced. Since the proportion of trajectories going to
S;* is very small, and the amounts of healthy cells A in the steady states
S; and S;* are close, the stationary probability distribution is effectively
bimodal with peaks at Si and S;. However, the presence of a small
number of trajectories approaching the steady state S;* results in a small
reduction of the peak associated with the chronic steady state S;'.

(b)
%1074
4.
>
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&
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400
200
A 24e+4 0 time

Fig. 8. (a) Numerical simulations and (b) probability distribution out of 20000 simulations of the model (10) with parameter values from Table 3, except for
d = 5.3e-4, 0, = 0.66 and 8 = 0.14, where § is the clearance rate of autoreactive T cells by regulatory T cells, 0, is the production rate of IL-2 by autoreactive T cells,
and f is the infection rate, and the initial condition (11) with x%(0) = 0.6 and x,(0) = 36 with a constant history. In (a) green, red and blue are sample trajectories,
which have entered the basins of attraction of S, S} and S5, respectively. Black curve is the deterministic trajectory of the model (1), and the shaded areas indicate
the regions of one standard deviation from the mean. In (b) the probability histogram is fit to a multimodal normal distribution at different times. (For interpretation
of the references to color in this figure legend, the reader is referred to the web version of this article.)
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T3

Fig. 9. Coherence of oscillations in the region of stability of S; with parameters from Table 3, except for o, = 0.66 (production rate of IL-2 by autoreactive T cells) and
B = 0.14 (infection rate). Black curves show the deterministic boundary of Hopf bifurcation. The steady state S;' is infeasible in the region indicated with a black grid.

Fig. 9 illustrates how the coherence of stochastic oscillations around
the chronic steady state S; changes with parameters. We observe that
the general trend is similar to that shown earlier in Fig. 5 for steady
states S;/S;" in that approaching the deterministic boundary of the Hopf
bifurcation results in the increase of coherence, while increasing the
rate § at which regulatory T cells suppress autoreactive T cells reduces
the coherence of stochastic oscillations. When this rate is very small, the
chronic steady state S is infeasible, and once § increases past some
minimum threshold, the steady state S; becomes feasible but unstable,
with a deterministic periodic orbit around it, which corresponds to the
maximum level of coherence. Increasing § further results in stabilisa-
tion of the steady state S; and a reduced coherence of stochastic os-
cillations around the stable steady state. There is a major difference in
behaviour with regards to effects of time delays. For the time delay 7o,
associated with stimulation and proliferation of T cells by IL-2, there
are multiple stability switches in the stability of S; for intermediate
values of §, which leads to successive growth and reduction in the level
of coherence. In contrast, increasing time delay 73, which characterises
a lag in proliferation and differentiation of naive T cells, there is a single
stability switch, with coherence being low for small values of this time
delay, then increasing all the way up to the boundary of Hopf bi-
furcation, and being at its maximum value subsequently. From a bio-
logical perspective, these results indicate that in the parameter region,
where the chronic steady state is feasible and stable, as regulatory T
cells become more effective in suppressing autoreactive T cells (higher
), this results in stochastic oscillations around the chronic steady state
becoming less regular, and for sufficiently high values of §, low-co-
herence stochastic oscillations are observed for arbitrarily large values
of time delays 7z, and 7.

In Fig. 10 we illustrate how the variance in the number of regulatory
T cells Ty, for the steady states S5 or S; changes with parameters in the
region where these states are deterministically stable. One observes
some notable differences in the behaviour of variance for these two
steady states. For example, whereas for the steady state S;° the variance
appears to be almost completely independent on the rate y,, at which
autoreative T cells are destroying healthy host cells, for the steady state
S; the variance substantially decreases with the increase of this rate.
Also, due to the difference in that there is a single loss of stability of S;
depending on the time delay 7, compared to several stability switches
for S;, one observes a monotonic increase of variance for increasing
values of 7, for Sy, whereas in the case of S, periods of increased
variance are followed by periods of decreased variance until it settles on
some steady level.
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7. Discussion

In this paper we have analysed stochastic aspects of immune re-
sponse against a viral infection with account for T cells with different
activation thresholds, regulatory T cells, as well as the cytokine med-
iating T cell activity, while paying particular attention to viral and
cytokine delays. Using the framework of delayed chemical reactions, we
have carefully reinterpreted various transitions and interactions in the
model as discrete stochastic changes in the populations of state vari-
ables to derive a delayed chemical master equation that describes the
dynamics of the probability distribution of finding the system in a
particular state. To make further progress, we used the formalism of
consuming and non-consuming delayed reactions to reformulate the
DCME as an SDDE, which is much more amenable to direct numerical
treatment. Applying system size expansion to the exact DCME, we have
derived a linear Langevin model for our system that characterises sto-
chastic fluctuations around deterministic trajectories, and used this
information to derive expressions for the variance of stochastic fluc-
tuations around deterministically stable steady states.

Numerical simulations of the model indicate an intricate interplay
between bi-stability and stochasticity. While deterministically the
system can be in the basin of attraction of one particular steady state for
a chosen combination of parameters, due to stochasticity it rather has a
bi-modal probability density distribution, with a proportion of trajec-
tories approaching another stable steady state. We have illustrated this
feature by exploring stochastic basins of attraction of different steady
states and periodic orbits depending on time delays. Moreover, we have
observed that in a small number of realisations, solutions trajectories
may exhibit oscillations around the disease-free steady state, which it-
self is unstable, and the system possesses a stable chronic steady state,
suggesting theoretical possibility of a spontaneous clearance of infec-
tion. The reason for this is that, as is clear from the Table 2, the disease-
free state is an absorbing state of the stochastic model, and thus, pro-
vided this model is run for long enough, the solutions would reach the
disease-free state and stay there. However, since we are only per-
forming simulations over a limited time interval, we rather observe a
quasi-stationary distribution [104]. The effect of time delays consists in
possibly destabilising some of the steady states, and in each case the
computations indicate that the variance of stochastic oscillations
around deterministically stable steady states increases as one ap-
proaches the stability boundary from the stable side. We have also
observed that some parameters may have almost no effect on the var-
iance of oscillations around one steady state, while having a significant
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Fig. 10. Variance of the number of regulatory T cells with parameter values from Table 3 and g8 = 0.14 (infection rate), but in (e) and (f) p, = 5.55 (proliferation rate
of regulatory T cells by IL-2) using Eq. (9). In the left (respectively, right) column, coloured regions indicate areas of respective parameter planes where the
autoimmune (respectively, chronic) steady state Sy (respectively, S;) is deterministically stable, white areas are regions where the steady state is feasible but
unstable, and the black lined area indicates the region where the steady state is infeasible.

effect on the variance of oscillations around another steady state for all
other values of parameters being the same. Increasing the rates of
homeostatic production of regulatory T cells A, or the rate of suppres-
sion of autoreactive T cells by regulatory T cells § results in the re-
duction of variance of oscillations.
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An important practical observation concerns the difference between
mean, or averaged, dynamics and the behaviour of individual stochastic
realisations [46]. Even in the case when deterministically, or as a result
of averaging of a large number of simulations, the system can be set-
tling on a stable steady state, individual realisations can still exhibit
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sustained stochastic oscillations around that steady state. Since the
normal laboratory or clinical practice deals with single observations of
individual patients, this result suggests the importance of properly ac-
counting for stochastic effects when developing realistic models of
immune dynamics. Numerical simulations of the SDDE model have il-
lustrated the behaviour of individual stochastic trajectories, as well as
the time evolution of the probability distribution of the solutions.
There are a number of interesting potential extensions of this work.
In terms of more accurate representation of immune response, one
could consider including in the model the effects of regulatory T cells on
controlling IL-2 secretion [22,47], as well as memory T cells [105,106].
A related question to explore concerns the role of other cytokines, such
as IL-7 [107], TGF-B and IL-10 [73], which are also known to have a
significant impact on proliferation of different T cells and mediating
their efficiency in eliminating the infection. Including different cyto-
kines can provide a better insight into the dynamics of immune re-
sponse, as has been recently shown in a detailed model of immune
response to hepatitis B [108]. A number of papers have considered
time-delayed stochastic models of cellular processes that also explicitly
include cell division, but from a perspective of direct stochastic simu-
lation [109-112]. While in the current model, the dynamics of unin-
fected cells is described by logistic growth, it would be interesting to
explore how one could include cell division as an alternative and more

Appendix A. Table of propensity functions
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realistic representation for the dynamics of cell populations within the
framework of SDDEs.

Having computed the variance of stochastic oscillations depending
on parameters, it would interesting and insightful to compare these
results to experimental data on the progress and variation of auto-
immune disease. One possibility for such a comparison is provided by
the recent work on experimental autoimmune uveoretinitis (EAU),
where it has been observed that in genetically identical C57BL/6 mice,
once the EAU was induced in them through inoculation, the auto-
immune disease then progressed at slightly different rates [113]. At the
same time, in order to be able to perform such a comparison even at a
qualitative level, it is essential to first verify that the main underlying
immunological assumptions of the model hold for the particular ex-
perimental systems being considered, which itself is a challenge from
the perspective of being able to measure a significant number of
parameters and cell populations. In this respect, comparing theoretical
estimates of the variance in this model with the measured variability in
the numbers of T cells and infected cells could provide really important
insights and validation of the approach developed in this paper.
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Propensity functions corresponding to interactions and transitions between cell populations illustrated in Fig. 1 and described in deterministic

model (1), together with associated state change vectors, are given by

sX, vi=(1,0,0,0,0,0,0),
X (sX1/N + u,Xe), v, =(-1,0,0,0,0,0, 0),
BX1 X, vz =(-1,1,0,0,0,0, 0),
X% (dr + upXs + 4, Xe), w=(0,-1,0,0,0,0,0),
Ain» vs = (0,0, 1, 0, 0, 0, 0),
dinXs, vs = (0,0, -1, 0, 0, 0, 0),
D;aX X, v; = (0,0, -1, 1, 0, 0, 0),
P,aX%Xs, vz =(0,0,-1,0,1,0,0),
(X) = 1 = p, = p)aXX;, vy = (0, 0, -1, 0, 0, 1, 0),
’ Ay vio =(0,0,0,1,0,0, 0),
01 X4 X7, vi; =(0,0,0,1, 0,0, 0),
d, Xy, vi, = (0, 0,0, -1, 0, 0, 0),
0,X5X7, vi3 =(0,0,0,0,1,0,0),
d,Xs, vy = (0,0,0,0, -1, 0, 0),
03X6X7, vis = (0,0, 0,0, 0, 1, 0),
Xe(d, + 0Xy), vis = (0, 0, 0, 0, 0, —1, 0),
01 Xs + 02X, vi; =(0,0,0,0,0,0, 1),
di X, vig = (0,0, 0,0, 0,0, —1).

Appendix B. System-size expansion of propensity functions

Non-delayed reactions:

a2

@ (n) + a3(n)= d2§12 + 1,68 + BEE, + QdpxiE) + px + ugxed + Bak, + 5X2§1)Q%

+ (dox{ + HaXXs + Bx1%)Q,

1

ay(m)= wpb8 + 1,68 + (drd, + upxls + upxsé, + pné + upxe§,) Q2
+ (dpX% + UpXoXs + U, %X6)Q,

ap(n) = d,£,01 + dx,Q,

as(n) = 1;,Q, ap) =1,Q,

14

ay(n) = 5,07 + dyxsQ,
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as(m) + a;(n) + ag(n) + ag(m) = af&; + (diné; + ané; + ax3§2)0% + (dinxs + 0x3)Q,
ai6(n) = 85, & + (dofs + Oxa&g + O%6E)QT + (doXs + OXaXe)Q,
a;(n) = (@é + 0256)(2% + (01x5 + 02%6)Q,  ajg(n) = d@ﬂ% + d;ix;Q
Delayed reactions:
ay(m) = By, + Bt — w1, + Po(t — DNQ: + Pu(t — DRt — Q.
as(m) = p,am, 75 + (P, (t = B + Pyas(t — BN + o (t — BX(E — B)Q,

ag(m)= (1 = p, — p,)an,m; + (1 = p, = p) (% (t — m)n, + axs(t — w)n,) Q2
+ (1 —p, —pas(t — B —5)Q,

an(m) = p1,m; + (0, x4(t — )N, + pyx7(t — T2)774)Q; + p1x4(t = B)x7(t — B)Q,
a;3(m) = 0,757, + (0,X5(t — B)N; + P, X7 (t — Tz)ﬂs)Q% + 0,%5(t — B)x7(t — B)Q,

ars(m) = Py, + (03%6(t = BN, + X7 (t — B Q2 + PyXe(t — )X (t — B)Q.

Appendix C. Delayed Fokker-Planck equation (linear-noise approximation)

%_H = _i[(sfl = 2dyxaé) — paés — Hoxeb — Pk, — ﬁxZgl)H:I
t 5§1
- % [—(dpfz + upXeés + pupxsé, + puné + :uax6§2)n:|
2
— 2 r[Bnt = am, + Bolt— m, [N 69, £ = mdy — | ~(dink, + 6y + g
3, ) 53
~ 2 = 2 ol = o + pxat - oy, [N £, € w)dy
0¢, 554 n
— 2 [ it = ), + prax(e = wm, |11 69, £ — )y
8¢,
D () = 2 [ | oyxs(t = )y + oyt — o |1, 1 9, 1~ )y
§ 6§5 7

3
- gf [pzorxz(t = B)N; + pai(t — fs)nz]H(f, 5n, t—w)dy
5 9

-2 —(da + Ox48g + OxENI | — f p3X6(t = By + p3x7(t — )1 |TI(E, & 7, t — B)dp
agﬁ agﬁ 7
ag f(l -p - pz)(orxz(t — ) + ot — Tz)anH(E, 6, t— w)dy
6

6§7 [(0155 + o —d; §7)H] {(sx1 + doxi + MaXaXe + ﬁx1xz) 551

+ (ﬁ’xl(t — )% — 1) + diX + UpXXs + ﬂax2x6) 322 + (in + dinXs + 005X3) agH
2 3
9211
+ |4 + dixy + prae(t — )Xt — ) + Xt — 2)x7(E — B) 5
4
0211
+ | dpxs + p,as(t — B)xa(t — B) + p,Xs5(t — B)x7(t — 1) 5_§2
s
0211
+ | daxs + OxaXe + (1 — p; — pax(t — B)x3(t — B) + P3X6(t — B)X7(t — B) 5%'
6

+ + + d;
(o1x5 + 026 x7) 6§' }
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Appendix D

Table 2
Possible state changes AY during a small time interval At.

Mathematical Biosciences 322 (2020) 108323

i Yy Probability PAt
1 (1,0,0,0,0,0,0) sY1(DAt
2 (-1,0,0,0,0,0,0) (Y07 + 1y Yo(DYL(D) + FY()Y2(D) At
3 (0,1,0,0,0,0,0) BYi(t — m)Ya(t — m)At
4 (0, -1,0,0,0,0,0) [dr + up¥5(0) + 1 Yo (O] Y2 (1) At
5 (0,0,1,0,0,0,0) AinAt
6 (0,0, -1, 0, 0, 0, 0) [din Ya(t) + a¥s(t) Ya(t)] At
7 (0,0,0,1,0,0,0) praY3(t — w)Ya(t — )AL
8 (0,0,0,0,1,0,0) Pra¥i(t — BB — )AL
9 (0,0,0,0,0,1,0) (1 —p; — pa¥s(t — m)Ya(t — B)At
10 (0,0,0,1,0,0,0) AAE
11 (0,0,0,1,0,0,0) P Yo (t — ) Ya(t — )AL
12 (0, 0,0, -1,0,0,0) d, YAt
13 (0,0,0,0,1,0,0) P Y7 (t — R)Ys(t — )AL
14 (0,0, 0,0, -1, 0,0) d,Ys(DAt
15 (0,0,0,0,0,1,0) P Ya(t — »)Ys(t — B)AL
16 (0, 0,0,0,0, -1, 0) [da + 8Ya(t)]Ys(t) AL
17 (0,0,0,0,0,0,1) [o1Y5(t) + o2 Ys ()] At
18 (0,0,0,0,0,0,—1) d;Y, (At
19 (0,0,0,0,0,0,0) 1- E}ilP,-At
Appendix E
Table 3
Table of parameters.
Parameter Value Unit Definition
s 2 day~! Linear growth rate of uninfected cells
N 20 cell Carrying capacity of uninfected cells
B 0.1 cell-lday—! Infection rate
Ha 4.44 cell-lday—! The rate of killing of uninfected cells by autoreactive T cells
d, 0.002 day~! Natural death rate of autoreactive T cells
dr 2.2 day™! Natural death rate of infected cells
8 4.4e-4 cell~'day~! Rate of clearance of autoreactive T cells by regulatory T cells
Ur 1.33 cell-lday~! The rate of killing of infected cells by the normal T cells
0 0.3 day~! Rate of production of IL-2 by normal T cells
02 0.4 day~! Rate of production of IL-2 by autoreactive T cells
Ain 18 cell day™! Growth rate of inactive T cells
din 2 day~! Natural death rate of inactive T cells
d; 1.2 day~! Natural clearance rate of IL-2
a 0.04 cell~!day~! Rate of activation of inactive T cells by infected cells
A 54 cell day™! Growth rate of regulatory T cells
d, 0.8 day~! Natural death rate of regulatory T cells
P1 0.4 - Proportion of T cells differentiating into regulatory T cells
D2 0.4 - Proportion of T cells differentiating into normal T cells
P1 2.22 cell~'day~! Proliferation rate of regulatory T cells by IL-2
P2 0.178 cell"'day ! Proliferation rate of normal T cells by IL-2
p3 0.44 cell~lday—! Proliferation rate of autoreactive T cells by IL-2
d, 2 day~! Natural death rate of normal T cells
71 0.7 day Viral lag
T 0.5 day Delay in IL-2 enhanced proliferation of T cells
73 0.3 day Delay in T cell differentiation/expansion
Q 1000 cell System size
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