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A B S T R A C T

In this paper we present a new method for deriving Itô stochastic delay differential equations (SDDEs) from
delayed chemical master equations (DCMEs). Considering alternative formulations of SDDEs that can be derived
from the same DCME, we prove that they are equivalent both in distribution, and in sample paths they produce.
This allows us to formulate an algorithmic approach to deriving equivalent Itô SDDEs with a smaller number of
noise variables, which increases the computational speed of simulating stochastic delayed systems. The new
method is illustrated on a simple model of two interacting species and a model with bistability, and in both cases
it shows excellent agreement with the results of direct stochastic simulations, while also demonstrating a much
superior speed of performance.

1. Introduction

Stochastic models have successfully been used to study the dy-
namics of numerous biological processes across various scales, from
gene regulation [1,2] and immunology [3–5] to epidemics [6,7] and
population ecology [8]. Some of the most common methodologies used
to analyse stochastic effects in biological models are continuous-time
Markov chains (CTMC), discrete-time Markov chains (DTMC), and
stochastic differential equations (SDEs) [9]. Focusing on continuous-
time models, CTMC are formulated in terms of probabilities of transi-
tions between different states under memoryless assumption, and they
result in the forward Kolmogorov equation, also known as the chemical
master equation (CME), which, with an exception of some very simple
examples, cannot be solved analytically. To make further analytical
progress, one can then either use the CME to derive a system of equa-
tions for moments of the distribution and use some higher-order ap-
proximation to make this a closed system of differential equations, or
one can use approximations, such as van Kampen or Kramers-Moyal
expansions [10,11], to obtain Gaussian approximations for dynamics
around deterministic trajectories. Alternatively, one can solve the CME
numerically using, e.g., Gillespie’s exact stochastic simulation algo-
rithm (SSA) [12] or some alternative formulations [13–15]. Another
approach is to use forward Kolmogorov equation to reformulate the
problem as an SDE, which, for a large system size would provide a good
approximation of the underlying CTMC dynamics [16]. Although being
only an approximation of the exact stochastic dynamics, this approach
has a major advantage of being very computationally efficient, since

numerical solutions of SDEs can be found at a fraction of time required
for the full simulation of the original CTMC. A very recent paper by
Warne et al. [17] provides a nice overview of these and other different
approaches to simulating biochemical reactions.

Besides stochasticity, many biological processes are also char-
acterised by non-negligible time delays, such as, intracellular delays
associated with gene transcription and translation [18,19], latency and
immunity periods in epidemics [20,21], or maturation period in
ecology [22]. Thus, it is essential to correctly account for those delays
in corresponding mathematical models. Similar to CMEs for non-de-
layed models, one can analyse stochastic delayed systems using the
delay chemical master equation (DCME) that describes the exact prob-
ability distribution of finding the system in a particular state [23–25].
Leier and Marquez-Lago [26] have presented a general framework of
DCMEs, which covers both consuming and non-consuming delayed
reactions, and applies not only to fixed time delays, but also to delay
distributions. They showed how one can obtain closed-form solutions of
the DCME for some simple reaction schemes. Galla [27] showed how
one can perform a system-size expansion of the DCME to obtain a de-
layed Langevin equation describing fluctuations around solutions of the
deterministic models (see also Guillouzic et al. [28] and Phillips et al.
[29] for further examples of using this approach). Brett and Galla
[30,31] showed how one can derive chemical Langevin equation de-
scribing deterministic limit and linear-noise approximation around it
for stochastic models with distributed delay, without using a master
equation, but instead relying on the generating functional approach.

In terms of numerical simulations of stochastic delayed models, one
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of the first approaches to modelling the combined effects of a time delay
and intrinsic noise was proposed by Bratsun et al. [23] in the context of
gene regulation. They developed a truncated master equation for a set
of biochemical reactions, some of which are delayed, and also in-
troduced modifications to the Gillespie algorithm to incorporate de-
layed reactions. Barrio et al. [24] developed a delay stochastic simu-
lation algorithm (DSSA) based on the so-called ‘rejection method’,
which accounts for waiting times and also provides a method for si-
mulating consuming delayed reactions, defined as such reactions where
the reactants of an unfinished reaction cannot participate in a new re-
action. In this respect, the rejection method is superior to the algorithm
of Bratsun et al. [23], which can only be used for simulating non-con-
suming delayed reactions, in which the reactants of an unfinished reac-
tion can also participate in other reactions. Zavala and Marquez-Lago
[32] have used rejection algorithm to study stochastic effects in a
simple genetic circuit with negative feedback and transcriptional/
translational delays. Subsequently, Cai [33] developed a so-called ‘di-
rect algorithm’ and showed that this method, as well as the rejection
method of Barrio et al. [24], is exact, with the direct algorithm being
faster and generating fewer additional random variables. More recently,
Thanh et al. [34,35] proposed some further DSSAs with improved
computational performance. Marquez-Lago et al. [36] developed a
DSSA that can work not only with discrete delay, but also with delay
distributions.

Since using DSSAs can be very computationally demanding [29,37],
one can use SDDEs that provide an approximation for DCMEs in the
same way as SDEs provide an approximation for CMEs, with the ad-
vantage of such approach being much more computationally efficient.
Tian et al. [25] developed two methods for deriving SDDEs from dis-
crete delayed stochastic models with non-consuming delayed reactions,
and then used the Euler-Maruyama method for solving them for fixed
time delay, as well as for time delay obeying a uniform distribution or
being a Gaussian random variable. The results of simulations on a
simple model of gene regulatory network showed small differences in
means and variances between two SDDE models. As an alternative, Niu
et al. [37,38] have introduced a strong predictor-corrector method for
numerical solution of SDDEs and showed that its asymptotic mean-
square stability bound is much larger than that of the Euler-Maruyama
method, while its implementation is much more efficient. Frank [39]
has shown how the probability distribution of an SDDE can be de-
scribed analytically as a solution of a delayed Fokker-Planck equation
(DFPE), and also proposed a method for deriving a DFPE directly from
SDDEs [40].

In this paper, we propose a method for deriving Itô SDDEs from
DCMEs for different types of delayed reactions, which generalises the
methodology of Tian et al. [25] to also include consuming delayed
reactions. We will adapt an approach used by Allen et al. [41] for non-
delayed stochastic equations to prove that alternative forms of such
SDDEs are equivalent both in distribution, and in sample path trajec-
tories they produce, thus addressing the above-mentioned issue of small
differences between numerical realisations of alternative SDDEs in Tian
et al. [25]. This allows us to formulate an algorithmic approach for
deriving a computationally efficient Itô SDDE with a smaller number of
noise variables. Using an example of a system with two interacting
species that contains non-delayed and delayed reactions (both non-
consuming, and consuming), as well as a simple model with bistability,
we will illustrate the efficiency of our method in terms of computational
speed and comparison with direct simulation using DSSA.

2. Itô SDDE models and their equivalence

As a starting point, we consider a system of N molecular species
(which can also represent cells, biological populations etc.)

= …S S S{ , , },N1 whose state at time t is described by a vector
= …t X t X tX( ) ( ( ), , ( )),N1 and these species react through reactions

…R R{ , , }m1 . Each reaction Rj is characterised by a state change vector

= …v v vv ( , , , ) ,j j j Nj
T

1 2 and an associated propensity function aj. One has
to explicitly distinguish between non-consuming and consuming de-
layed reactions, because non-delayed and non-consuming delayed re-
actions have a single update vector v, whereas for delayed consuming
reactions, v j

r and v j
p are the update vectors for reactants at the start of

reaction, and for products at the end of the time delay associated with
reaction Rj, respectively, so + =v v vj

r
j
p

j. Assuming the first m1 reac-
tions to be non-delayed, the reactions +m 11 to m2 to be delayed non-
consuming reactions with corresponding time delays …+ , , ,m m11 2 and
the rest to be consuming delayed reactions with time delays …+ , , ,m m12
the DCME accounting for all non-consuming and consuming reactions is
then given by [26]
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where I X( ) is the set of all possible system states in the past, from which
the given state X can follow via a chain of reactions, and
P t tX X( , ; , )i i is the joint probability of finding the system in state X
at time t, and in state Xi at time t ,i with

=P t P t tX X X( , ) ( , ; , , ),0 0 0 where 0 is initial history. Let
= …t Y t Y t Y tY( ) ( ( ), ( ), , ( ))N

T
1 2 be a vector of continuous random vari-

ables representing the amounts of molecular species at time t. Applying
the methodology as used in Tian et al. [25] for systems without con-
suming delays, the corresponding SDDE model which faithfully re-
presents the intrinsic noise associated with all those delayed reactions,
has the form
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where = …( )t W t W t WW( ) ( ), ( ), , m m
T

1 2 2 2 is a vector of independent
Wiener processes, and =H H H H H( )1 2 3 4 is a ×N m m(2 )2 ma-
trix which
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In this formulation, each delayed consuming reaction is effectively split
into two reactions, one describing changes in reactants, and one de-
scribing changes in products, in the same way as they are represented in
the DCME (1). This then results in extending the number of in-
dependent Wiener processes that need to be included in the SDDE (2) in
a manner similar to how non-delayed and delayed non-consuming re-
actions are treated. This also fits with an underlying assumption of
weak coupling of the system states at time t and t ,k which underlies
the derivation of the SDDE (2) from the DCME in [25], and one should
also note that a similar approach is taken when one performs system-
size expansion of the DCME [27].

Tian et al. [25] have also considered an alternative formulation of
the model in the form

= …
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1 2 = …t W t W t W tW*( ) ( * ( ), * ( ), , * ( )) ,N
T

1 2

with W *,j 1 ≤ j ≤ N, being independent Wiener processes, and G being
an N× N symmetric positive semidefinite matrix related to H through an
N × N matrix V, where =V HHT and =G V ,1/2 which also implies

=V GGT . As mentioned earlier, numerical simulations of a model for
gene regulatory networks using these two alternative SDDE formulations
produced small differences in observed means and variances of resulting
distributions, thus is was suggested that “more work is needed to compare
the difference between the two types of the Langevin approach” [25]. To
address this problem, we will now show that the above two SDDE models
are actually equivalent in the sense that their solutions have the same
probability distribution, as well as the same sample path solutions.

To show that systems (2) and (3) are equivalent in distribution, i.e.
their solutions have the same probability distribution, it suffice to show
that the probability density function for both of these systems satisfies
the same forward Kolmogorov or Fokker-Planck equation. This is es-
tablished by the following result, which generalises earlier work in
[40,42] to the case of multiple time delays and multi-dimensional
stochastic systems.

Theorem 2.1. Consider the following Itô SDDE model
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Planck equation has the form
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where = …dV d d dy y y ,q1 2 and G is an N × M matrix with
= …G g ty y y( , , , , ),ij ij q1 for every 1 ≤ i ≤ N and 1 ≤ j ≤ M.

Proof. Let us consider the joint probability density
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for t ≥ t′, where … denotes ensemble average, and δ( · ) is the Dirac
delta function. Expressing the single time-point probability density
P ty( , ) through the conditional probability density and utilising the
generalized Kramers-Moyal expansion [40,42] yields the following PDE
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Since we are working with an Itô SDDE, it is possible to reformulate the
problem in the form of Langevin equation similar to the case of Markov
process [40]. By rewriting coefficients …D j j
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1 in the form
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one can use the time-discrete version of the SDDE model [40,42] to
obtain the following expressions for these coefficients
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which completes the proof. □

Due to the relation = =V GG HH ,T T Theorem 2.1 implies that so-
lutions to SDDEs (2) and (3) do indeed have the same probability dis-
tribution. We now use the method presented in Allen et al. [41] for non-
delayed SDEs to show that sample paths obtained as solutions of one of
these SDDEs are also sample paths of the other SDDE.

Theorem 2.2. Consider the two following Itô SDDE systems
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and matrices G and B are related through the n × n matrix V, where
=V GGT and =B V1/2. Notice that V and B are symmetric positive semi-

definite matrices and =V BBT . Then SDDE systems (5) and (6) have the
same sample paths.

Proof. We need to show that if a given Wiener trajectory tW( )
results in the sample path solution tY( ) to (5), there exists a Wiener
trajectory tW*( ) with the same sample path solution =t tY Y*( ) ( ) of
(6), and vice versa. Let us assume that for a given Wiener trajectory

tW( ) for 0 ≤ t ≤ T, SDDE (5) has the sample path solution tX( ).
Consider the following singular value decomposition of the matrix G:
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for 0 ≤ t ≤ T, where P(t) and Q(t) are n × n and m × m orthogonal
matrices, and C(t) is a n × m matrix with p ≤ n positive diagonal
entries. In light of orthogonality of matrices P(t) and Q(t), we have
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where sW**( ) is a vector of length n, whose first p entries are equal to
zero, and the remaining n p entries are independent Wiener
processes, and +(·) denotes the pseudo-inverse of a matrix [43,44]. It
follows that =t t tIW W( *( )( *( )) ) ,T

n where In is the n × n identity
matrix, thus confirming that tW*( ) is indeed a vector of n independent
Wiener processes. Substituting tY( ) instead of tY*( ) into the diffusion
term of (6) gives
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which proves that tY( ) is a sample path solution of (6).
Conversely, assume that a Wiener trajectory tW*( ) for 0 ≤ t ≤ T

with the sample path solution tY*( ) to (6) is given. Consider the fol-
lowing singular value decomposition

… = =B t t t t B t P t C t Q tY Y Y( *( ), *( ), , *( ), ) ( ) ( ) ( ) ( ),q1

for 0 ≤ t ≤ T, where P(t) and Q(t) are n × n and m × m orthogonal
matrices, respectively, with C(t) being again an n × m matrix with
p ≤ n positive diagonal entries. We can define the Wiener trajectory

tW( ) for 0 ≤ t ≤ T as
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where sW***( ) is a vector of length m, having zeros as the first p entries,
and the next m p entries being independent Wiener processes. Pro-
ceeding in the same way as above, we can show that the solution tX*( )
of SDDE (6) that corresponds to the Weiner trajectory tW*( ) is also a
solution of the SDDE (5) corresponding to the Weiner trajectory tW( )

given in (8). Therefore, solutions to SDDE systems (5) and (6) have the
same sample paths. □

Taken together, Theorems 2.1 and 2.2 show that any SDDE of the
form

= … ++( )( )d t t t dt Qd tY f Y Y Y W( ), , , ( ) ( ),m m11 (9)

is equivalent to model (2), as long as =QQ VT (= HHT). This includes
as a particular case system (3) having a square matrix Q, but this does
not necessarily have to be the case, provided the condition =QQ HHT T

is satisfied. The importance of this result is that since normally there is a
large number of reactions involved, by allowing one to replace an

×N m m(2 )2 matrix H by a matrix with possibly much fewer col-
umns, this can significantly reduce computational complexity of the
resulting SDDE model.

3. Algorithm for deriving an SDDE

Having established the equivalence of systems (2) and (9), let us
present an alternative approach for finding the function f and the
matrix Q, which extends the method presented earlier in [9,45] for
systems without time delays. Let us recall that

= …t Y t Y t Y tY( ) ( ( ), ( ), , ( ))N
T

1 2 is a vector of continuous random vari-
ables representing the amounts of molecular species at time t, with the
first m1 reactions being non-delayed, reactions +m 11 to m2 being de-
layed non-consuming reactions with corresponding time delays

…+ , , ,m m11 2 and the rest to be consuming delayed reactions with time
delays …+ , ,m m12 . We assume that Δt is small enough, so that during
this time interval at most one change can occur in state variables as
represented by the state change vectors, and if it is a consuming delay
reaction, then we split its state change vector into two vectors in a si-
milar way to how it was done for the DCME (1), namely, with one state
change vector representing changes in reactants, and the second one
representing changes in products. These state changes together with
corresponding probabilities are all listed in Table 1. Using this table of
possible state changes, one can compute the expectation and covariance
matrix of the state change Y for sufficiently small Δt.

The expectation vector to order Δt is given by

=
=

µP t tY Y( ) ( ) ,
i

m m

i i
1

2 2

and the covariance matrix is obtained by only keeping terms of order
Δt, i.e.

=

= =
=

P t t

Y Y Y Y Y Y Y

Y Y

cov( ) [( )( ) ] [ ]( [ ]) [( )( ) ]

( ) ( ) .

T T T

i

m m

i i i
T

1

2 2

It can be easily shown that for the matrix H in Eq. (2) =HH ,T and
thus, matrix Σ found using Table 1 is the same as matrix V.

In summary, to derive an SDDE model for a model with delays
…{ , , , },q1 2 first we have to compile the table with all possible state

changes, explicitly separating consuming reactions. Then we use this
table to find the drift vector μ and covariance (diffusion) matrix Σ, from
which we find the matrix Q satisfying =QQT . The resulting Itô SDDE
model then has the form

= +
=

µd t dt Qd t
t t t

Y W
Y

( ) ( ),
( ) ( ) for [ , 0], (10)

where = …max{ , , },q1 and tW( ) is a vector of independent Wiener
processes. One should note that the order of entries in the table of state
changes is irrelevant, since all entries come with their respective
probabilities. Moreover, if any two (or more) entries have the same
state change vectors, these entries can be combined into one, with the
associated probability being the sum of individual probabilities of those

F. Fatehi, et al. Mathematical Biosciences 322 (2020) 108327

4



entries. This would reduce the size of the tables of state changes, but
would not affect the drift vector or the diffusion matrix.

Remark 1. In order for SDDE model (2), which represents a delayed
chemical Langevin equation (CLE), to provide a good approximation of
the original DCME (1), certain assumptions have to be satisfied. The
first of these is the so-called leap condition [46], which states that there
exists some Δt> 0, such that propensities for all reactions a X( )j remain
constant on time interval +t t t[ , ). This then implies that the
number of reactions Rj that occur in the interval +t t t[ , ) obeys a
Poisson distribution with parameter a x t( ) ,j where =tX x( ) . Under
additional assumption that Δt is not only small enough to satisfy
the leap condition, but also large enough to satisfy a x t 1( ) ,j
one can approximate each Poisson random variable by a
normal random variable with the same mean and variance,

= +P a t a t a t a tx x x x( ( ) ) ( ( ) , ( ) ) ( ) (0, 1)j j j j j j j [46]. Both of
these conditions are satisfied when the numbers of species involved
are large [47,48], but this is a sufficient condition, and Grima et al. [48]
have shown that in certain regimes even for relatively small numbers of
species, CLE can still provide a good approximation of the CME. An
alternative derivation of the CLE can be found in Mélykúti et al. [49],
where it was shown that CLEs form a parametric family of equivalent
equations. In the case of delayed CLE, there is an additional assumption

×P t t P t P tX v X X v X( , ; , ) ( , ) ( , ),j i j j i j which effectively
means that the time delays are sufficiently large to ensure that a larger
number of reactions occur during a time interval t t[ , ],j so that the
coupling of system states at time t j and t is weak [25].

4. Examples

To illustrate how the methodology developed in the previous sec-
tion can be used for deriving and simulating stochastic models with
consuming and non-consuming delayed reactions, below we consider
two specific examples, where the mean-field deterministic analogues
are characterised either by a single stable steady state, or by a bi-sta-
bility between two stable steady states.

4.1. Example 1

Let us consider a system of two molecular species, whose state at
time t is described by the vector =t X t Y tX( ) ( ( ), ( )), which interact
through the following set of reactions

where instantaneous reactions are indicated with solid arrows, and
time-delayed reactions are shown with dashed arrows, with all reaction
rates shown above the corresponding arrows. This system has three
non-delayed reactions R1 to R3, reaction R4 is a non-consuming delayed
reaction, and reaction R5 is a consuming delayed reaction. Using the
notation from the previous section, we introduce =m 3,1 =m 4,2 and

=m 5 as an overall number of reactions.
Using the law of mass action, we obtain a system of differential

equations describing deterministic evolution of mean-field concentra-
tions of species X and Y

= +

=

dX
dt

b dX t aX t Y t cY t

dY
dt

aX t Y t cY t dY t

( ) ( ) ( ) ( ),

( ) ( ) ( ) ( ).

4 4 5

4 4 (12)

This model can have up to two steady states: =E b d( / , 0)1 and
= + +E c d a ab d c d ad(( )/ , ( ( ))/ )2 . E1 is stable for any τ4 and τ5 if
< +ab d c d( ), and unstable for any time delays if > +ab d c d( ), in

which case the second steady state is feasible, i.e. both of its compo-
nents are positive.

To derive an SDDE model, we consider =t Y t Y tY( ) ( ( ), ( ))1 2 to be a
vector of continuous random variables describing the amounts of spe-

cies X and Y and time t. Following the method described in the previous
section, we conclude that there are =m m2 62 state changes that
have to be included. Under assumption of Δt being sufficiently small to
ensure that during this time interval at most one change can occur in
state variables, these state changes together with their probabilities are
shown in Table 2.

Using Table 2, the expectation vector Y( ) and covariance matrix
Ycov( ) to order Δt can be found as

= = +

=
µ µP t t P P P P

P P PY Y( ) ( ) ,
i

i i
1

6
1 2 4 6

4 3 5

and

Table 1
State changes Y in a small time interval Δt.

i Y( )i Probability PiΔt

1 v1 a t tY( ( ))1
⋮ ⋮ ⋮
m1 vm1 a t tY( ( ))m1

+m 11 +vm1 1 + +( ( ))a t tYm m1 1 1 1
⋮ ⋮ ⋮
m2 vm2 a t tY( ( ))m m2 2

+m 12 +vm
r

2 1 +a tY( )m2 1

⋮ ⋮ ⋮
m vm

r a tY( )m
+m 1 +vm

p
2 1 + +( ( ))a t tYm m2 1 2 1

⋮ ⋮ ⋮
m m2 2 vm

p a t tY( ( ))m m
+m m2 12 0

= P t1 i
m m

i1
2 2

Table 2
Possible state changes Y during a small time interval Δt.

i Y( )i
T Probability PiΔt

1 (1,0) bΔt
2 ( 1, 0) dY1(t)Δt
3 (0, 1) dY2(t)Δt
4 ( 1, 1) aY t Y t t( ) ( )1 4 2 4
5 (0, 1) cY2(t)Δt
6 (1,0) cY t t( )2 5
7 (0,0)

= P t1 i i1
6

R1 : ∅ b− →X, R2 : X d−→ ∅, R3 : Y d−→ ∅, R4 : X + Y
a,τ4−→ 2Y, R5 : Y

c,τ5−→ X, (11)
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=

= + + +
+ +

=
P t t

P P P P P
P P P P

Y Y Ycov( ) ( ) ( )

.

i
i i i

T

1

6

1 2 4 6 4

4 3 4 5

If we now define the matrix Q as follows,

=
+ +

+
Q

P P P P
P P P

0
0

,1 2 6 4

4 3 5

then the 2 × 3 matrix Q satisfies =QQ ,T and the Itô SDDE model thus
has the form

= +
=

µd t dt Qd t
t t t

Y W
Y

( ) ( ),
( ) ( ) for [ , 0], (13)

where =t W t W t W tW( ) ( ( ), ( ), ( ))T
1 2 3 is a vector of three independent

Wiener processes, = max{ , },4 5 and φ(t) is the vector of initial con-
ditions. It is noteworthy that the matrix Q is only 2 × 3, and not 2 × 6
as it would be in the original SDDE formulation (2), thus reducing the
number of independent Wiener processes required for computation by
half.

To solve the model (13) numerically, we use the strong predictor-

corrector method with the degree of implicitness in the drift coefficient
chosen to be equal to 1/7, since for this value the method has the lar-
gest stability region [50,51]. We choose the values of parameters in
such a way that the steady state E2 is feasible and deterministically
stable. The initial condition is taken to be

= =Y s Y s s( ( ), ( )) (900, 100), [ , 0], max{ , }.max max1 2 4 5 (14)

Fig. 1 shows the results of numerical solution of the model (13) with
initial conditions (14) for 10,000 realisations. Since deterministically
the steady state E2 is stable (and the system is in its basin of attraction),
solution of the deterministic model (12) approaches this steady state,
while initially exhibiting some decaying oscillations associated with
characteristic eigenvalues of E2 being complex and having a small ne-
gative real part. Stochastically, the mean is very close to the determi-
nistic trajectory, because it obeys the same deterministic system of
equations [52], and we also observe that as time progresses, the var-
iance of stochastic solutions settles on some steady level. One can also
notice that even though averaged dynamics mimic the behaviour of the
deterministic model, individual stochastic realisations exhibit sustained
oscillations, a phenomenon known as coherence resonance or stochastic
amplification [53,54].

Although it is known that SDDEs only provide an approximation of
the true stochastic dynamics, in Fig. 1(c) and (d) we have compared the

distribution of values for one of the species obtained as a solution of the
SDDE model (13) with an equivalent distribution obtained using an
exact DSSA proposed by Cai [33] and implemented in the StochPy
package in Python [55]. One observes a good agreement between the
two distributions, providing additional support for using SDDEs as an
effective tool for stochastic simulations of systems with consuming and
non-consuming delays. Importantly, with both SDDE and DSSA codes
being implemented in Python and run on the same laptop with 2.6GHz
i7-3720 processor, one run of the SDDE model only took on average 0.1
s, while one run of the DSSA took on average 55.2 s, suggesting a huge
improvement in terms of speed of performance, without compromising
accuracy in terms of resulting distribution.

4.2. Example 2

It has been extensively discussed in the context of various biological
and chemical models that negative feedback is required for systems to
exhibit oscillations, while positive feedback is needed for multi-stabi-
lity, see, e.g. [56–58] and references therein. As our second example,
we consider a model suggested by Wilhelm [58] with positive and ne-
gative feedback, which arguably represents the smallest bistable che-
mical reaction system in terms of having the smallest numbers of re-
actants, reactions, and associated ODEs representing chemical kinetics.
This model consists of two species X and Y that interact as shown in the
diagram below

which corresponds to the following systems of reactions

where, as before, solid arrows represent instantaneous reactions, and
dashed lines represent time-delayed reactions. We also assume that
reactions R1 and R2 are non-delayed, reaction R3 is a non-consuming
delayed reaction, and R4 is a consuming delayed reaction. Using the
notation from the pervious section, this gives =m 2,1 =m 3,2 and

=m 4.
Applying the law of mass, one obtains a system of two ODEs de-

scribing the dynamics of mean-field concentrations of chemical species
X and Y:

=

=

dX
dt

cY t dX t bX t Y t aX t

dY
dt

dX t cY t

2 ( ) ( ) ( ) ( ) ( ),

( ) ( ).

3
2

4
2

3 (16)

For any values of parameters, this system has a trivial steady state
=X Y( , ) (0, 0),0 0 and provided cd> 4ab, it also has a pair of additional

steady states

= ±X Y c
b

ab
cd

( *, *)
2

1 1 4 .

In order to derive an SDDE representation of the model, we in-
troduce a vector = Y t Y tY ( ( ), ( ))1 2 of continuous random variables,

Table 3
Possible state changes Y during a small time interval Δt.

i Y( )i
T Probability PiΔt

1 ( 1, 0) aY1(t)Δt
2 ( 1, 0) bY1(t)Y2(t)Δt
3 (2, 1) cY t t( )2 3
4 ( 1, 0) dY1(t)2Δt
5 (0,1) dY t t( )1 4 2

6 (0,0)
= P t1 i i1

5

R1 : X a−→ ∅, R2 : X + Y b− →Y, R3 : Y
c,τ3−→ 2X, R4 : 2X

d,τ4−→ Y, (15)
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whose components represent the amounts of chemical species X and Y
at any given time t. In this case, there are =m m2 52 different tran-
sitions to consider during any infinitesimal time interval Δt, and their
probabilities, as well as associated state changes, are given in the fol-
lowing table

This immediately gives approximations to order Δt of the expecta-
tion vector

= = +
+

=
µ µP t t P P P P

P PY Y( ) ( ) 2 ,
i

i i
1

5
1 2 3 4

3 5

and the covariance matrix

= = + + +
+

=
P t t P P P P P

P P PY Y Ycov( ) ( ) ( ) 4 2
2 .

i
i i i T

1

6
1 2 3 4 3

3 3 5

Introducing the matrix Q as follows,

=
+ +

Q
P P P P

P P
2 0

0
,1 2 4 3

3 5

ensures that it satisfies the condition =QQ ,T and therefore, the Itô
SDDE model for system (15) has the form

= +
=

µd t dt Qd t
t t t

Y W
Y

( ) ( ),
( ) ( ) for [ , 0], (17)

with =t W t W t W tW( ) ( ( ), ( ), ( ))T
1 2 3 being a vector of three independent

Wiener processes, = max{ , },3 4 and φ(t) being the vector of initial
conditions. Similarly to the first example, we have reduced the number
of independent Wiener processes required for computation from 5 to 3.

For each particular choice of time delays τ3 and τ4, deterministic
model (16) exhibits a bistability, where for the same values of para-
meters, the solution approaches either a trivial steady state (0,0), or a
non-trivial equilibrium (X*, Y*), depending on the initial condition.
Fig. 2(a) illustrates such behaviour, where for a very small difference in

the initial values of Y variable, the solution with higher initial Y goes to
(X*, Y*), while the solution with smaller initial Y approaches a steady
state (0,0). For the same values of parameters and time delays, if we
choose initial condition that deterministically approaches the steady
state (0,0), in the case of SDDE model (17) we observe that solutions
will approach either of the two steady states with some probability, as
shown in Fig. 2(b). Comparing distribution of frequencies with an
equivalent distribution obtained by solving the original model using a
delayed next reaction method [15], which is another exact DSSA im-
plemented in StochPy package [55], we again observe good qualitative
agreement, while having a very substantial decrease in computational
time (with one run of SDDE model being completed in around 1.3 s
compared to an average of 408 s per each run of the DSSA).

The validity of CLE approximation to CMEs has been earlier studied
numerically in the context of non-delayed [46,48] and delayed [25]
systems from the perspective of not very large system sizes. Going back
to Remark 1, we have looked into how the accuracy of this approx-
imation is affected by sufficiently small delays, which can potentially
violate one of the assumptions behind the derivation of the delayed CLE
regarding weak coupling between system states at times t j and t. To
investigate this issue, we have fixed the values of all parameters as in
Fig. 2, keeping large numbers of species, but reduced both time delays
by a factor of 10. Corresponding simulations, as shown in Fig. 3, suggest
that whereas the aggregate differences between temporary profiles of
solutions obtained using SDDE and the exact DSSA appear to be small,
the details of those solutions are quite different. While only 10% of
solutions of SDDE model approached the trivial steady state at the end
of simulation, this proportion rose to 45% for solutions obtained using
the DSSA. Furthermore, looking at distribution profiles, one observes a
larger clustering of solutions close to =Y 01 for the case where DSSA
was used, as compared to a much higher peak around =Y Y *1 for the
SDDE model. This suggests that while generally SDDE-based models of
stochastic systems with delays can provide computationally efficient
approximations of stochastic dynamics, in the case of very small time

Fig. 1. (a), (b) Numerical simulation of the SDDE (13), where shaded blue region indicates an area of one standard deviation from the mean of 10,000 simulations.
Blue curve shows one stochastic realisation of the model (13), black curve is the solution of the deterministic model (12). (c) and (d) show frequency distributions at

=t 120 of values for the variable Y1 using SDDE and DSSA with 300 simulations, respectively, together with a fit to a normal distribution shown in red. Parameter
values are =a 0.005, =b 1000, =c 1, =d 1, = 1,4 = 3.55 (For interpretation of the references to color in this figure legend, the reader is referred to the web version
of this article.).
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Fig. 2. (a) Numerical solution of the deterministic model (16) with initial conditions =X s Y s( ( ), ( )) (1000, 395)0 0 (red) and =X s Y s( ( ), ( )) (1000, 392)0 0 (blue) on
s [ 0.03, 0]. (b) Numerical simulation of the SDDE (17) with initial condition =X s Y s( ( ), ( )) (1000, 392)0 0 on s [ 0.03, 0] for 200 realisations. (c) and (d) show
frequency distributions at =t 3 of values for the variable Y1 using SDDE and DSSA, respectively, together with a fit to a bi-normal distribution shown in red.
Parameter values are =a 10, =b 0.005, =c 50, =d 0.01, = 0.01,3 = 0.034 (For interpretation of the references to color in this figure legend, the reader is referred to
the web version of this article.).

Fig. 3. (a) Numerical solution of the SDDE (17) with initial condition =X s Y s( ( ), ( )) (1000, 392)0 0 on s [ 0.003, 0] for 300 realisations. (b) Numerical solution of the
model (15) using DSSA with initial condition =X s Y s( ( ), ( )) (1000, 392)0 0 on s [ 0.003, 0] for 300 realisations. (c) and (d) show frequency distributions at =t 1.5 of
values for the variable Y1 using SDDE and DSSA, respectively. Parameter values are =a 10, =b 0.005, =c 50, =d 0.01, = 0.001,3 = 0.0034 .
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delays, the accuracy of the approximation provided by these models can
be reduced, thus necessitating the use of DSSAs to simulate the dy-
namics.

5. Discussion

In this paper we have shown that a number of alternative for-
mulations of SDDE models can be obtained that are all equivalent in
terms of probability distribution and sample paths. Using this equiva-
lence, we have proposed an algorithm for deriving computationally
efficient Itô SDDEs from the DCMEs for systems with consuming and
non-consuming delayed reactions. Numerical simulations done on an
example of a system with two chemical species interacting through five
non-delayed, delayed non-consuming and delayed consuming reac-
tions, show that the distributions obtained as solutions of such SDDEs
provide a good approximation of the exact dynamics, but are sig-
nificantly faster than delayed stochastic simulation algorithms.
Similarly, good agreement was observed between the results of an
SDDE formulation for a chemical reaction model with bistability and an
exact solution computed using a DSSA. It is important to note, though,
that SDDE models described in this paper can only provide accurate
approximations of underlying stochastic dynamics in certain regimes,
and the accuracy of this approximation can deteriorate for small delays,
as was observed in the example with bistability.

In many scenarios, discrete time delays (which effectively are re-
presented by δ-functions) provide reasonable approximation for various
biological processes that happen non-instantaneously. However, in
some cases such description is not adequate, and it would be more
appropriate to represent time delays by proper distributions [59]. One
example is stochastic models of epidemics, where distribution of in-
fectious periods is much closer to a Γ-distribution, which interpolates
between constant and exponentially distributed infectious periods [21].
Representing such a distribution by a number of infectious stages, with
individuals progressing through stages and staying in each stage for
exponentially distributed periods of time, it is possible to derive a
master equation describing the dynamics, from which a power spec-
trum of stochastic oscillations can be analytically obtained [60]. Using
such an approach, known in other contexts as a ‘linear chain trick’ [61],
one effectively avoids the need for having a delayed distribution in the
model, thus making the resulting system of SDEs much easier to solve
numerically. A somewhat similar strategy, but in reverse, was proposed
by Barrio et al. [62] to abridge large chains of consecutive reactions by
lumping reaction sequences into smaller systems, which provided an
improvement when using a stochastic simulation algorithm. However,
in many realistic situations it does not prove possible to simplify the
delay distribution, and in the future we will consider how one could
generalise an approach presented in this paper for stochastic models
with distributed delays.

Declaration of Competing Interest
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