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A recent paper Ncube (2013) [11] considered the disease-free equilibrium in a mathematical model for
intra-host dynamics of Plasmodium falciparum malaria with discrete immune time delay. The author
showed that depending on system parameters, the disease-free steady state can be absolutely stable
(i.e. asymptotically stable for arbitrary positive values of the time delay), or it can be asymptotically sta-
ble for sufficiently small values of the time delay and then undergo Hopf bifurcation once the time delay
exceeds certain critical value. In this paper we show by direct calculation that the conclusions regarding
stability and Hopf bifurcation of the disease-free equilibrium are incorrect, and, in fact, the disease-free
equilibrium of the model is always unstable. Furthermore, we provide a general argument why the dis-
ease-free steady state of the model can never undergo Hopf bifurcation.

� 2013 Elsevier Inc. All rights reserved.
1. Introduction

In 2004, Recker and collaborators [1] proposed a mathematical
model of immune response to Plasmodium falciparum malaria (to
be referred to as Recker model), which postulates that in addition
to a highly variant-specific immune response, the dynamics of each
antigenic variant is also affected by cross-reactive immune re-
sponses against a set of epitopes not unique to this variant. This
assumption implies that each antigenic variant experiences two
types of immune responses: a long-lasting immune response
against epitopes unique to it, and a transient immune response
against epitopes that it shares with other variants. The main im-
pact of this model lies in its ability to explain a sequential appear-
ance of antigenic variants purely on the basis of cross-reactive
inhibitory immune responses between variants sharing some of
their epitopes, without the need to resort to variable switch rates
or growth rates (see [2] for a discussion of several clinical studies
in Ghana, Kenya and India, which support this theory).

In the case when long-lasting immune responses do not decay,
numerical simulations in the original paper [1] showed that even-
tually all antigenic variants will be cleared by the immune system,
with specific immune responses reaching protective levels pre-
venting each of the variants from showing up again. Blyuss and
Gupta [3] have demonstrated that the sequential appearance of
parasitemia peaks during such immune clearance can be explained
by the existence of a hypersurface of equilibria in the phase space
of the system, with individual trajectories approaching this
hypersurface and then being pushed away along stable/unstable
manifolds of the saddle-centres lying on the hypersurface.

Under the assumption of perfect synchrony, when all variants
are identical to each other, Recker and Gupta [4] have analysed
peak dynamics and threshold for chronicity, while Mitchell and
Carr [5] have investigated the additional effect of time delay in
the development of immune response. De Leenheer and Pilyugin
[6] have replaced linear growth of antigenic variants in the original
model by the logistic growth, and have studied the effects of vari-
ous types of cross-reactivity on the dynamics, ranging from no
cross-reactivity to partial and complete cross-immunity. Mitchell
and Carr [7] have studied the appearance of synchronous and asyn-
chronous oscillations in the case of global coupling between vari-
ants (referred to as perfect cross immunity in [6]). More recently,
the techniques of equivariant bifurcation theory have been used
to study symmetry properties of the Recker model, with particular
emphasis on understanding stability and clustering of different
steady states in terms of their symmetry [8–10].

A recent paper [11] considered Recker model with discrete
immune delay and showed that the disease-free equilibrium of this
model can undergo Hopf bifurcation. To better understand why the
conclusions drawn in that paper are wrong, we consider the time-
delayed modification of the Recker model, which can be written as
follows [11]

_YiðTÞ ¼ YiðTÞ½/� aZiðTÞ � a0WiðTÞ�;

_ZiðTÞ ¼ bYiðT � TdÞ � lZiðTÞ;

_WiðTÞ ¼ b0
X

j

cijYjðT � TdÞ � l0WiðTÞ;

ð1Þ
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where Yi denotes the amount of antigenic variant i; Zi and Wi de-
note variant-specific and cross-reactive immune responses, respec-
tively, / is the parasite intrinsic growth rate, a and a0 are removal
rates associated with specific and cross-reactive immune responses,
b and b0 are the proliferation rates of immune responses, and l and
l0 are the decay rates of variant-specific and cross-reactive immune
responses, Td is the time delay associated with the development of
immune response. The coefficients cij of the connectivity matrix de-
scribe cross-reactive interactions between different variants [1,3,6].
To facilitate the analysis, the author followed an earlier work of
Mitchell and Carr [5] in two ways: all variants are taken to have
identically the same temporal dynamics, i.e. YiðtÞ ¼ YðtÞ,
ZiðtÞ ¼ ZðtÞ; WiðtÞ ¼WðtÞ for all i, and then the system is rescaled
using as new independent variables yðtÞ; zðtÞ and wðtÞ deviations
from the endemic steady state, which satisfy the system of
equations

_y ¼ �ðzþwÞð1þ yÞ;
_z ¼ qyðt � sÞ � az;
_w ¼ yðt � sÞ � abw;

ð2Þ

where we have used the scaling [5,11]

YðtÞ ¼ Ys½1þ yðtÞ�; ZðtÞ ¼ Zs 1þ 1
q

pl
/

� �1=2

zðtÞ
" #

;

WðtÞ ¼Ws 1þ l0

l
pl
/

� �1=2

wðtÞ
" #

; T ¼ pl
/

� �1=2

t

and the new parameters are defined as follows

a ¼ pl
/

� �1=2

; b ¼ l0

l
; q ¼ ab

a0nb0
; p ¼ qþ l

l0
:

Here, s is the rescaled time delay, n is the number of antigenic
variants each given variant is connected to (in the case of all-to-all
coupling considered in [7], this number is the same as the total
number of variants), and the endemic steady state values of vari-
ables are given by

Ys ¼
l/

a0nb0p
; Zs ¼

/q
ap

; Ws ¼
l/

a0l0p
:

For simplification of analysis, a new variable is introduced:
x ¼ zþw, which transforms the system (2) into the following
system

_x ¼ ð1þ qÞyðt � sÞ � abx� að1� bÞz;
_y ¼ �xð1þ yÞ;
_z ¼ qyðt � sÞ � az:

ð3Þ

System (3) has two steady states:

E0 ¼ ðx0; y0; z0Þ ¼ �1þ qb
ab

;�1;� q
a

� �
ð4Þ

and

E1 ¼ ðx1; y1; z1Þ ¼ ð0;0;0Þ: ð5Þ

Despite the fact that the steady state E1 of the system (3) has all
its components equal to zero, since the system (3) describes the
dynamics of deviations from the uniform endemic steady state,
the steady state E1 actually corresponds to the non-zero uniform en-
demic equilibrium of the original system (1). Hence, although the
stability analysis of the steady state E1 performed in [11] is for-
mally correct, it was erroneous to interpret it as a stability result
for the disease-free equilibrium, as it rather provides information
on stability of the non-zero uniform endemic equilibrium, which
has been studied earlier by Mitchell and Carr [5,7], and Blyuss
and Kyrychko [8,9]. At the same time, stability of the steady state
E0, which is a genuine disease-free steady state has remained
unexplored. Furthermore, the assertion in [11] that the system
(3) has a third non-uniform equilibrium is also incorrect, as the
system (3) has only two steady states E0 and E1, and non-uniform
equilibria with some Yi variables being equal to zero and others
being positive can only exist in the full original system (1), but
not in its fully-synchronous truncation (3). Such equilibria have re-
cently been systematically analysed for the Recker model with and
without time delay using the techniques of equivariant bifurcation
theory [8–10].

2. Stability of the disease-free steady state

To analyse stability of the disease-free steady state E0, we line-
arise the system (3) near this steady state

_x ¼ ð1þ qÞyðt � sÞ � abx� að1� bÞz;

_y ¼ �x0y� ð1þ y0Þx ¼
1þ qb

ab
y;

_z ¼ qyðt � sÞ � az;

ð6Þ

where we have used the values of x0 and y0 from (4). Looking for
solutions of the system (6) in the form

x

y

z

0
B@

1
CA ¼

c1

c2

c3

0
B@

1
CAekt;

where c1; c2; c3 2 R, and k 2 C, yields the characteristic polynomial
for the eigenvalues k is given by

DðkÞ ¼ det
�ab� k ð1þ qÞe�ks �að1� bÞ

0 1þqb
ab � k 0

0 qe�ks �a� k

0
B@

1
CA

¼ ðabþ kÞðaþ kÞ 1þ qb
ab

� k

� �
¼ 0:

Since all parameters a; b and q are positive, two roots of the
characteristic polynomial k1 ¼ �ab and k2 ¼ �a are always
negative, and the third one

k3 ¼
1þ qb

ab

is always positive, thus implying that the disease-free steady state
E0 is always unstable regardless of the value of the immune time
delay s. This, in turn, implies that the conclusions about possible
absolute stability of the disease-free steady state as presented in
[11] are wrong, and this steady state can never undergo Hopf
bifurcation.

To get a better understanding of the phase space of the system
and the reason why the disease-free steady state cannot undergo
Hopf bifurcation, let us return to the system (1) and prove the fol-
lowing well-posedness result.

Theorem. Let the initial condition for the system (1) be
ðYiðsÞ ¼ Yi0ðsÞ; Zið0Þ ¼ Zi0; Wið0Þ ¼Wi0Þ; Zi0 P 0;Wi0 P 0;

Yi0ðsÞP 0 for s 2 ½�Td;0�:

Then the solution ðYðTÞ; ZðTÞ;WðTÞÞ of the system (1) will remain non-
negative for all T P 0.
Proof. The proof of non-negativity of solutions is done by contra-
diction. Let us assume that for some i ¼ 1; ::;N; T1 > 0 is the first
moment of time when YiðT1Þ ¼ 0. In order for Yi to become nega-
tive, one would need to have dYi=dTðT1Þ < 0, however, according
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to the first equation in (1), we have dYi=dTðT1Þ ¼ 0. Hence, Yi can
never become negative. Similarly, let us assume that T2 is the first
moment of time when some ZiðT2Þ ¼ 0. For Zi to become negative,
one has to have dZi=dTðT2Þ < 0, but according to the second equa-
tion in (1), at this moment we have

_ZiðT2Þ ¼ bYiðT2 � TdÞ � lZiðT2Þ ¼ bYiðT2 � TdÞP 0;

hence the contradiction. A similar argument can be used to show
that WiðTÞP 0 for all T P 0. h

Let us now consider a solution of the system (1) with a non-
negative initial condition. If the disease-free steady state
ðYi; Zi;WiÞ ¼ ð0;0;0Þ were able to undergo Hopf bifurcation, pro-
vided this bifurcation is supercritical, one would have an oscillatory
solution around the disease-free steady state. However, since these
oscillations would occur around the point ðYi; Zi;WiÞ ¼ ð0; 0;0Þ, all
components of the solution would have to become negative for
some part of the period, thus violating the well-posedness theorem
we have just proved. Therefore, we can conclude that the absence of
Hopf bifurcation of the disease-free steady state is a natural conse-
quence of the non-negativity of solutions.

3. Discussion

In this paper, we have considered the disease-free steady state
of the Recker model and showed that this steady state is always
unstable regardless of the value of time delay. Besides explicit
computation of the eigenvalues, we have shown that the same con-
clusion follows from well-posedness of the system.
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