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Master-equation approach to the study of phase-change processes in data storage media
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We study the dynamics of crystallization in phase-change materials using a master-equation approach in
which the state of the crystallizing material is described by a cluster size distribution function. A model is
developed using the thermodynamics of the processes involved and representing the clusters of size two and
greater as a continuum but clusters of size one (monomers) as a separate equation. We present some partial
analytical results for the isothermal case and for large cluster sizes, but principally we use numerical simula-
tions to investigate the model. We obtain results that are in good agreement with experimental data and the
model appears to be useful for the fast simulation of reading and writing processes in phase-change optical and

electrical memories.
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I. INTRODUCTION

Recently there has been a growing interest in developing
adequate models of crystallization dynamics of phase-change
(PC) materials because of their increasing technological im-
portance in read-write optical and electrical data storage.
Both types of storage can utilize PC materials with reversible
transformations between amorphous and crystalline states
[1,2]. Data recording is achieved through writing amorphous
dots on a crystalline base by local melting with a focused
laser beam or electrical heating. After the heating is with-
drawn the melt is quenched in an amorphous state due to
high heat conductivity of the substrates surrounding the PC
material. Conversely, to erase a dot, a material is heated
above the glass transition temperature but below the melting
point, and then recrystallization occurs. Some significant dif-
ferences in optical properties (for optical storage) or electri-
cal properties (for electrical storage) of the crystalline and
amorphous states allow the stored data to be read easily.
Experiments suggest that crystallization is generally a much
slower process than amorphization, and there is also a differ-
ence between crystallization of melt-quenched or as-
deposited amorphous states [3]. Therefore crystallization is a
speed-limiting process for the erasing and rewriting of opti-
cal disks, and a good understanding and modeling of crystal-
lization dynamics is vital for the successful development of
advanced PC optical and electrical memory devices.

Crystallization of PC materials involves two processes:
nucleation and growth. At the initial stage of evolution
nucleation leads to the formation of so-called clusters, or
embryos, which grow by incorporation of neighboring
monomers. A critical cluster size can be identified—its value
is a function of a number of variables including the tempera-
ture and the competition between surface tension and the
free-energy difference between amorphous and crystalline
states. The significance of the critical size is that larger clus-
ters will tend to continue to grow while smaller ones will, on
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average, lose their monomer groups. This means that in time
these small clusters will eventually be reduced to predomi-
nantly monomers. It is noteworthy that, depending on the
chemical constituents, crystallization of PC materials can be
nucleation dominated or growth dominated. In the former
case the prevalent mechanism of crystallization is the sto-
chastic formation of new nuclei and their subsequent growth.
For growth-dominated crystallization one observes determin-
istic growth of neighboring crystallized material into the
amorphous region. An important role is also played by any
crystal clusters which exist in a melt-quenched amorphous
state.

There are several approaches to modeling the processes of
crystallization and amorphization during the phase-change
processes. One of the most popular and useful is the
Johnson-Mehl-Avrami-Kolmogorov (JMAK) model [4-6],
which attempts to predict the fraction of crystallized material
at every given point in time. This model assumes that the
nucleation occurs randomly and uniformly, and the nucle-
ation rate is time independent. The validity of the JMAK
model has been recently investigated [7—10], and several ar-
guments have been forwarded as attempts to explain differ-
ences between its predictions and observed experimental re-
sults. One principal problem is that experimental evidence
suggests that many underlying assumptions of the JMAK
model are violated: the nucleation takes place mainly on the
boundary between the phase-change material and the sur-
rounding substrates [11,12] rather then uniformly and, fur-
thermore, there exist non-negligible incubation times preced-
ing the onset of crystallization [13]. Although JMAK cannot
give information about the distribution of cluster sizes, it is a
useful model for studying total crystallization.

A more sophisticated alternative to the JMAK model is an
approach based on a so-called master equation (also known
as the Zeldovich equation) used to describe the crystalliza-
tion dynamics of PC materials [14,15]. Within this frame-
work the dynamics is determined by the temporal evolution
of a cluster size distribution function, which is the density of
material in clusters of various sizes. Rate equations are used
to obtain the frequencies of attachment and detachment of
monomers, which represent unit changes in cluster sizes
[14,16,17]. Several techniques have been employed in order
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to study the master equation in the special cases of small or
large cluster sizes together with clusters near the critical nu-
clei size (see Refs. [18-21] and references therein). Although
the steady states can be examined analytically [18,19], in the
transient regime (which is particularly relevant for data stor-
age applications), the approximations used in these ap-
proaches are invalid. More recently, Shneidman has used a
combination of Laplace transform and matched asymptotics
to obtain the large-time behavior of nucleation fluxes and
cluster size distributions. An interesting review of various
thermodynamic aspects of the master equation and their in-
fluence on cluster size distributions can be found in Ref.
[22].

In this paper we develop a different formulation of the
master equation in which we assume a continuous distribu-
tion of clusters of sizes n=2 while retaining a separate sca-
lar for the monomer n=1 concentration. The set of continu-
ous and discrete equations are closed by applying
appropriate boundary conditions at n=2 and % and using an
integral to incorporate the exhaustion of monomer. An ad-
vantage of this is we can readily examine the effect of mono-
mer exhaustion critical in the dynamics of the cluster distri-
bution. Several important assumptions are incorporated
within our system. In particular, the heterogeneity of nucle-
ation is accounted for by a ‘“spherical cap model” which
allows one to represent the surface interaction of PC material
and its substrates by the so-called wetting angle [18]. This
angle is related to the specific surface energies of
substrate/n-sized cluster and substrate/bulk new phase inter-
faces. The heat transfer can be modeled directly with a ther-
mal equation whose solution determines the local crystalli-
zation regime. This is particularly important when modeling
the recrystallization of amorphous marks, since the tempera-
ture gradients can be quite significant.

We illustrate the applicability of our model by simulating
several isothermal and ramped anneals of Ge,Sb,Tes mate-
rial (GST). Although this is a multicomponent alloy, the in-
vestigations of a number of authors (e.g., Refs. [23-25]) and
the speed with which reversible changes can appear in this
material suggests that diffusive separation of elements does
not play a role in the crystallization process. It therefore is
reasonable to consider the material as composed of “mono-
mer” molecules that may or may not be aligned with adja-
cent monomers to form a crystal structure. The master equa-
tion approach in its fully discrete form has been recently
used to model some of the experiments on crystallization of
GST [26]. However, a drawback of the numerics is that it
entails the solution of systems of differential equations with
hundreds or thousands of variables. This is computationally
very intensive. We show how this disadvantage can be over-
come with the continuous formulation of the master equation
leading to a problem that can be efficiently handled by mod-
ern numerical solvers and demonstrate some examples of
anneals that are appropriate to write and erase processes in
optical memories.

II. DERIVATION OF THE MODEL

As mentioned in the Introduction we characterize the
crystallization by a time-dependent cluster size density
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Z(n,x,t) which denotes the probability that at time ¢ the
point x is a part of a size n cluster of crystallized material.
We consider a continuum for n=2 and set

Z,,=Z(1,x,1)

to be the density of monomer. We will use this quantity to
measure the proportion of crystallized material and the
progress of the crystallization. We define the proportion of
crystallized material in some sample (or size large compared
to crystal size) to be the ratio of monomers that are in size n
clusters (n=2) to the total monomers in that sample. The
relationship between this definition of crystallinity and ma-
terial properties such as reflectivity or electrical conductance
is not necessarily linear or simple [27].

The temporal dynamics of Z(n,x,1) (for n=2) and Z,, is
governed by the master equation which describes the kinetics
of a crystallization process. We use a generalization of the
Szilard model, i.e., it is assumed that formation of crystal
clusters is a result of successive attachments and/or detach-
ments of single molecules (monomers). The detachment fre-
quency is hard to specify accurately as it depends on the
cluster properties which are themselves poorly known since
the cluster is a new phase of finite size [18]. We use a stan-
dard approach to circumvent this difficulty by introducing a
quasiequilibrium cluster size distribution function C(n,T)
[15], and use this to approximate the detachment frequency
from attachment frequency. We retain the x dependence in
the formulation of the master equation approach but note that
in this paper we only consider bulk (i.e., space-independent)
simulations.

A. The master equation

The master equation for evolution of the cluster size den-
sity Z(n,x,1) is

5 g d | Z(n,x,1)
EZ(”,X,Z‘) = % f(n’T’Zm(X’t))C(n’T)%[m}

(1)

for n=2, which is a time- and space-dependent version of
the master equation derived by Zeldovich for isothermal
nucleation at constant supersaturation [15]. In Eq. (1)
f(n,T,Z,(x,t)) is the frequency of monomer attachment to
an n-sized cluster at temperature 7" and, naturally, it depends
on the concentration of available monomer Z,,(x,¢). Further,
C(n,T) is the above-mentioned quasiequilibrium cluster size
distribution and it is supposed that the spatial dynamics of
the cluster size distribution function Z is driven by spatial
variations in f and C which are in turn determined by varia-
tions in 7.

The total density of crystalline material can be expressed
as

f nZ(n,x,t)dn;
n=2

which must remain finite at all times and, on obvious physi-
cal grounds, we note that Z(n,x,7) = 0. The density of mono-
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mer Z,, is determined by the conservation of material

oo

Z,(X,0) =Zy— f nZ(n,x,t)dn, (2)
2

where Z is the total density of material, assumed to be con-
stant independent of phase.

The master equation (1) must be augmented by appropri-
ate boundary conditions. For large n we require

limZ(n) — 0, (3)

n—oe
in keeping with the condition of bounded total density of
cluster sizes [note that C(n,T) does not satisfy this in under-

cooled melts]. A suitable boundary condition at n=2 can be
derived by the following argument. Let

sz Z(n,x,t)dn
2

be the total density of crystallites of various sizes (excluding
monomers) located at the point x at time 7. In view of master
equation (1) the time derivative of this quantity is given by

IN 9
—=| —Znx,t)dn
at ), ot

n=

n=2

d Z(n,x,t)

- f(Z’T’Zm)C(Z,T)[an C(l’l,T) :|n:2' (4)
On the other hand the rate of change in N is determined by
the rate of creation or destruction of monomers—such events
occur when monomers attach to other monomers or when
monomers are detached from dimers (recall the underlying
assumption that the size of a cluster can only change by one
at each step). Hence

%’ =f(1,1.2,)Z,(x,t) -d(2,T.Z,)Z2.x,1).  (5)

The detachment frequency d can be expressed in terms of
attachment frequency f via the quasiequilibrium cluster size
distribution function C(n,T) as in Ref. [18],

ALT1,2,)C(1,T)=d(2,T,Z,)C(2,T). (6)

(This relationship is only formally justifiable in close-to-
equilibrium situations and, in particular it can lead to an
unrealistic dependence of d on Z,,.) Using Eq. (6) in Eq. (5)
and then Eq. (4) gives

J
_f(27T9Zm) Z(l’l,X,t)
n n=2

+ [f(laT»Zm)Fl(T) +f(2»T’Zm)F2(T)]Z(27X7t)
=f(1.T.2,)Z,(x,1), (7)

where
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C(1,7)

F(T) = c T)’

14
Fy)(T)= —InC(n,T)
on n=2
This boundary condition, together with Eq. (3), allows
one to study the temporal evolution of Z as an initial value
problem with a given initial cluster size distribution Z(n,0).

B. Thermodynamics of cluster formation

Attachment of monomers is controlled by mass transfer
subject to an appropriate activation energy. Let W(n,T) be
the work required for the heterogeneous formation of a size n
cluster at temperature 7. Following Ref. [26] this can be
written as

W(n,T) =—- K,(T)n + K,n*? (8)

where the coefficients can be interpreted in the following
way. First, K;(T) is the supersaturation, i.e., the difference
(per monomer) in the bulk Gibbs free energy between the old
and the new phases while K, (which we assume to be tem-
perature independent) describes the difference in the surface
energy between the two phases. The quantity K,(7) has been
approximated by Singh and Holz [28] as

- 7
K\(T) = UOAHf( T'"T T){T +T6T] (9)

m

where v is the volume of a monomer, 7 is current tempera-
ture, 7, is the melting temperature of the PC material, and
AH; is the enthalpy of fusion at the melting point.

The coefficient K, has the form

K, =[(6,) ac

with a=(36mv3)" and o the specific surface energy of the
planar new phase/old phase interface. To allow for heteroge-
neous nucleation, we assume that nucleating crystals form
caps on the surface of the substrate with some wetting angle
0,,. The geometrical factor ¢(6,,) takes a value somewhere
between (0)=0 and ¢(m7)=1 and, according to Ref. [18],
assumes the particular form

(6,) = i(z +cos 6,)(1 —cos 6,)>. (10)

Choosing appropriate values for 6, thus enables heteroge-
neous or homogeneous nucleation to be modeled.

Observe that K changes sign at 7=T,,: below the melting
point T<T,, we have K;>0 and there is a critical cluster

size given by
# 3 <K2>3
n=—\—1,
27\ K,
i.e., n" such that dW(n",T)/dn=0.

C. Approximation of f and C in the master equation

For our particular intended applications the latent heat
released during a phase transition can be neglected since the
amount of heat conducted through the substrate is signifi-
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cantly greater. Since we consider nucleation of crystals in the
melt, the main mechanism of mass transport that governs the
attachment of monomers to the existing clusters, is that of
interface control [18]. In this process the monomers to be
attached are supposed to be in the close proximity of the
condensed-phase cluster and can join the cluster by making a
random jump over a distance comparable with their diameter
[29]. The attachment frequencies for the three-dimensional
heterogeneous nucleation of caps can be approximated as

f(n.T,Z,) = fZ,,n*? exp{- [W(n + 1,T) — W(n,T) KT},
(11)

where k is the Boltzmann constant and f is given by

cv%’3(1 —cos 6,,)
2d0'7”2/3(0w)

Within this formula the geometrical function # is as in Eq.
(10), dy and v, denote the diameter and volume of the mono-
mer, respectively, and c is a “shape factor” for heterogeneous
nucleation; it is (367)'3 for the case of caps. Finally D is a
diffusion coefficient which may also be space and time de-
pendent through its dependence on the temperature; see for
example Ref. [26].

The quasiequilibrium cluster size distribution C(n,T) de-
pends on the temperature [18] and is given simply by

C(n,T) = exp{— W(n,T)/kT} (12)

f‘:

up to a multiplicative constant that is independent of n. Sub-
stituting the form (8) for W(n,T) shows that

C(n,T) = exp{[K,(T)n — K,n**VkT}. (13)

The specific forms of the attachment frequency (11) and
quasiequilibrium cluster size distribution (13) when substi-
tuted into the master equation (1) give rise to a Fokker-
Planck equation of the type

aZ  a &Z(n,x,t))
= aT7Z Z ) st 9TaZn - |
P M(U(n WZ(n,x,1) + f(n ) o
(14)
where

0(1.T.Z,) = — f(1.T.Z,)~—[In C(n.T)]
an
as in [Ref. [18], Eq. (9.29)].

D. Evolution of temperature field

The temporal dynamics of the temperature is governed by
the heat equation

aT
pCE—KAng, (15)

where p is a material density, C is a specific heat, x is a
thermal conductivity, and g is a bulk heat source or sink. We
note that these material properties may change in quite com-
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plicated ways as the proportion of the different phases
change.

Equations (14) and (15) together with the boundary con-
ditions (2), (3), and (7) form a closed system of equations
that determine the dynamics of the spatial density Z(n,?) of
clusters of various sizes and a (possibly) time-dependent
temperature field 7. Although for fixed Z,, this system is
linear in Z, the dependencies on n are too involved for ana-
Iytical solution, though we discuss some particular limiting
cases separately.

III. ISOTHERMAL LIMIT OF LARGE CLUSTER SIZES

We begin our analysis of the system by considering the
case when T(x,f)=const and restricting to large values of n.
In this approximation two particular cases are of interest. The
first corresponds to the situation when the latter term in the
expression (8) dominates. Physically, this situation describes
the case when the temperatures are high, and consequently,
the size of the critical nuclei is large. We restrict ourselves to
the initial stage of nucleation when it is reasonable to take
Z,,(x,t)=Zy,=const. In this regime, for large cluster sizes 2
<n<n", the master equation reduces to a linear partial dif-
ferential equation (PDE) with coefficients depending on n: in
particular

9z 9 2 azZ
e _ 9 exp(— _lﬂn—m) pnPZ 4 pn? | b,
dt  dn 3ps on

(16)
where
2K, K, N K,
P = gﬁfzm exp<ﬁ> and p,=fZ, exp(g),
are independent of n and ¢. Changing variables to n=a*? and

V(r,t)=n'"Z, one obtains in the limit of large cluster sizes
2<n<n" the equation

v 2 v 2 a(v)

ot 39" 9 a

4 PV an
— |+ -pr—.

a 9p2 da’

Separation of variables in Eq. (17) gives the eigenmodes of
the solution of this equation as

I
Vi(a.t)=a"™ exp[\t = 3pal(4py) M, (3a\p} +4Np,/(2p,))

2 _ /4 _ .2 18
Vy(a,1)=a"" exp[\t 3P19/(4P2)]WK,,L(3Q\P1+4)\P2/(2P2)) (18)

where W, , and M, , are Whittaker functions [30] with

1 1 1
Kk=—-—7————— and =-.
4 \pi+4np, "4
With an appropriate choice of boundary conditions it should
be possible to form a basis of L? using Eq. (18) for a discrete
sequence of eigenfunctions with A, <0. However, we do not
do this here other than to note that the eigenmodes V} with
A=<0 decay exponentially in a for fixed ¢. This agrees with
the phenomenologically derived exponential scaling at onset
as proposed by Mulheran in the study of continuous nucle-
ation [31].
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TABLE I. Temperature-independent parameters used for the nu-
merical simulations.

Parameter Value Reference
Volume of monomer v 2.9%10728 m~3 [26]
Specific surface energy o 0.1 J/m? [26,32]
Enthalpy of fusion AH, 6.18x 108 J/m? [26]
Melting temperature T, 889 K [33]

Another limit of interest is the one corresponding to the
regime 2<n"<n, where the bulk contribution in Ref. [8]
dominates and, under approximations as above (i.e., at the
initial stages of crystallization), Eq. (14) reduces to

Z d

iz
23 2/3
= - Z+ s 19
o an{ q\n qon ﬂn] (19)

with ¢; and g, given by

12,K, K, d 7z K,
=—"— exp| — n = xp| — |.
q1 kT p kT a 92 m €XP kT

A steady state of this equation is easily seen to be

Z(n) ~ exp[ﬂn} ,
9>
and it coincides with the large-n asymptotic form of the equi-
librium cluster size distribution C(n).
Changing variables to cluster radius r, where n=r> and
V(r,t)=n*3Z(n,1), gives

v v F|V
—=—&—+l2—2 = (20)
ot 39r 9arlr

The general steady solution of Eq. (20) can be written in
terms of Whittaker functions as

C P
V(r) = N7l Cir*+ _/2|:3r2M1/6,2/3<q1_>
\r q>

3
qir
+ 4612W1/6,2/3( )]
q>

In principle the constants C; ; can be deduced by imposition
of appropriate boundary conditions. Unlike the previous case
however, it appears that a complete set of time-dependent
eigenfunctions of Eq. (20) cannot be obtained analytically
and numerical simulations have to be resorted to instead.

IV. NUMERICAL SIMULATIONS

Various physical characteristics of GST material are in-
corporated in our model based on known properties of the
GST alloy Ge,Sb,Tes commonly used in phase change opti-
cal and electrical memories. These parameter values are
listed in Table I. As discussed in Ref. [26], several of these
values have to be determined indirectly from results of ex-
periments on composite materials similar to GST, since for
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GST itself they have not yet been measured. The diffusion
coefficient D was obtained from the Stokes-Einstein relation

kT

- 3wy’

where \, the jump distance, can be well approximated by the
GST nearest-neighbor distance (2.99 A). The viscosity 7 has
the Arrhenius type of temperature dependence,

E
n:Kﬂexp{k—;], (21)
where the activation energy for GST has been estimated as
E,~2x0.1eV [1326] and the prefactor K,=5.82
X 107'2 m?/s was found by fitting to obtain the correct incu-
bation time at 130 °C. However, observe that even a small
uncertainty in E, translates into a very large uncertainty in
K, Quite significant variations in the values of wetting angle
have been reported for different substrates; we take 6,,=94°
previously used in simulations of crystallization on silicon
oxide substrate [26].

The system (1)—(3) and (7) was solved using the FORTRAN
NAG routine DO3PSF. This routine uses a backward difference
approximation for convection-diffusion equations with adap-
tive remeshing: this is particularly important for our problem
due to exponential behavior of the cluster size distribution
density at dimers and the boundary layer that forms at maxi-
mum cluster size. We performed our simulations on a finite
interval [2,L] with a variety of values of L and space and
time discretizations. The results presented here mostly relate
to the length L=40 divided up into 100-500 subintervals. We
used the adaptive time step recommended by the routine for
absolute and relative tolerances 107!°. This gave a very wide
range of time steps, ranging from less than 107'%s to 1 s
depending on current system state and parameters. The scale
of time evolution for the problem depends very sensitively
on the temperature and the state of the distribution; nonethe-
less we could obtain reliable results over a range of tempera-
tures up to over melting temperature using just a few minutes
on a personal computer. Before each time step Z,, was set
according to Eq. (2). The initial condition imposed on the
system was that of an undercooled melt in which all matter is
concentrated in monomers; this is a reasonable model for
as-deposited PC material on an optical disk.

We begin our account of the simulations with some iso-
thermal treatments. An important quantitative characteristic
of phase-change processes in GST is the crystallized frac-
tion, which signifies how much of the total volume of under-
cooled melt has been already crystallized. In experiments the
amount of crystallized material is usually determined by
measuring the change in optical properties of the GST, for
instance its reflectance. For isothermal anneals these mea-
surements can be performed in real time for low tempera-
tures [13]. The results of our simulations are shown in Fig. 1
for the values of the annealing temperature 7=119, 131, and
140 °C. These results are in good agreement with the experi-
mental data [13] and the simulations with a discrete version
of master equation [26]. The incubation time is estimated to
be the time taken until an arbitrary proportion (50%) of the
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FIG. 1. (a) Crystallization behavior of GST during isothermal
anneals. The solid denote simulation results and symbols are experi-
mental data from Ref. [13] for T=131 °C; the dashed line shows
T=119 °C and the dotted line T=140 °C. (b) Dependence of incu-
bation time on the annealing temperature. The line shows simula-
tion result. Symbols are experimental data taken from Ref. [13].

monomer has been crystallized. This gives an estimate of the
length of the period before which the dynamics becomes
governed by the steady-state nucleation and growth. For the
temperatures investigated, the incubation times are very
large, and therefore for data storage purposes, the process of
crystallization takes place in the regime of transient nucle-
ation [19]. This suggests the importance of using an explic-
itly time-dependent master equation rather than the JMAK
approach with assumed stationary nucleation and growth
rates.

In Fig. 2(a) we show several initial iterations of the mas-
ter equation for 7=140 °C. This figure suggests that the
monomers start forming clusters at an early stage, which
subsequently grow into the clusters of larger sizes. Qualita-
tively, this is in good agreement with Eq. (18). Later, the
original pool of monomers is being exhausted, and a redis-
tribution of cluster sizes takes place with larger clusters gain-
ing further monomers and smaller clusters losing them.
Eventually the system settles on a distribution shown in Fig.
2(b). This curve is in good qualitative agreement with the
phenomenological expression for cluster size distribution in
the case of nucleation which occurs as site saturation: Z(n)
Ta%e="|T'(a) [34]. Site saturation means that all nuclei
are simultaneously present and just grow, as compared to the
mechanism of continuous nucleation when new nuclei ap-
pear at a certain rate.

=n%

Z(n)

FIG. 2. Numerical solutions of the master equation (1). (a) Ini-
tial iterations for 7=140 °C. (b) Final cluster size distribution pro-
file for 7=140 °C—the final profile is determined by the exhaus-
tion of monomer.
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FIG. 3. Crystallized fraction of the GST material as a function
of temperature during a ramped anneal with a heating rate
3 °C/min starting at 120 °C. The line shows the result of simula-
tion using our model, while the squares are experimental data from
Ref. [35].

The main problem for data storage media concerns the
dynamics of crystallization behavior during nonisothermal
anneals. Ramped temperature anneals are often used to gain
insight into the dynamic behavior of phase change materials.
We briefly describe our simulations of the effect of a con-
stant temperature ramp on fraction of crystallized material.
First we consider the case when the temperature gradually
increases from an initial temperature 7=120 °C with a con-
stant ramp rate 3 °C/min; results are presented in Fig. 3, and
these show a crystallization curve which is in good agree-
ment with experimental results. We have also performed
simulations of the cooling of the GST material starting from
the melting temperature. If the cooling rate is sufficiently
slow then the material fully crystallizes; if it is sufficiently
fast then the material effectively reamorphizes, while inter-
mediate cooling rates can result in an arbitrary proportion of
residual crystalline material. This should enable one to un-
dertake more careful numerical modeling of the “priming” of
GST [23].

As a final example we consider a nonisothermal process
starting at an amorphous initial state with 7=100 °C at ¢
=0. At t=1s we change to 7=240 °C and return to T
=100 °C at time t=1.1 s. At time t=1.2 s we raise the tem-
perature to 7=500 °C for a time 7 before returning to
100 °C. Figure 4 shows (a) the evolution of crystallization
fraction and (b) the final distribution of cluster sizes at ¢
=1.3 s for this anneal with 7=0.1 and 0.2 ms. One can
clearly see that the final crystalline fractions are very differ-
ent, and this is reflected also in the distribution of cluster
sizes (b) at the end of the process. For the larger 7 the ma-
terial is effectively reamorphized.

V. DISCUSSION

The dynamics of crystallization behavior in phase-change
materials has been considered using a master-equation ap-
proach. A major advantage of the master-equation technique
is that, unlike simpler methods, it gives fast prediction of
cluster size distributions from the thermodynamics of the
crystallizing material. In particular, it does not require addi-
tional assumptions about the phase change processes implicit
in the justification of the JMAK model. These assumptions
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FIG. 4. (a) Crystallized fraction of the GST material and (b)
distribution of crystal sizes for two different anneals; during A to B
the material is subjected to 240 °C for 0.1 s while between C and D
it is subjected to 500 °C for a very short time 7 (see text).

include among others homogeneity and the randomness of
crystallization as well as the stationarity of nucleation.

There are of course other alternatives to the JMAK model
that predict the cluster size distribution and we describe
briefly two of these. Phase-field methods (see, e.g., Ref. [36]
and references therein) are effective in the modeling of the
crystal growth in a melt, but are computationally very inten-
sive. Another option is direct molecular simulation, but this
is even more demanding, especially if one wishes to attempt
simulations using sufficiently many molecules to derive a
realistic distribution of crystal sizes. In addition, some in-
sight into the dynamics of crystallization can be gained from
the analytical solution of the master equation in particular
cases.

PHYSICAL REVIEW E 72, 011607 (2005)

We have performed numerical simulations of isothermal
and nonisothermal treatments of GST. The results of these
computations are in good agreement with experimental ob-
servations. Our subsequent research will concentrate on fur-
ther development of the master-equation approach and its
extension to the study of crystallization dynamics in the pres-
ence of nonhomogeneities, i.e., when the spatial effects start
to be important. This will require the simultaneous solution
of both the master equation and a coupled heat equation for
the temperature field. Still, since the master equation does
not include explicit spatial derivatives, we will obtain an
approximation of the crystallite size distribution much more
rapidly than if phase-field or direct molecular dynamics
simulations were used.

In our numerical simulations the initial condition for clus-
ter distribution function has been taken to be an as-deposited
pool of monomers with no larger clusters present. From both
experimental and practical points of view it is interesting to
investigate the influence of preexisting clusters on the final
cluster size distribution [3]. This will give insight into the
mechanisms occurring in phase-change processes that are the
result of several heating-cooling cycles. We believe this
could shed light on the most efficient way to achieve a de-
sired distribution of cluster sizes and, correspondingly, help
optimize the write-erase and initialization processes in data
storage media. It could also prove useful in understanding
the behavior of the so-called cognitive computer [27,37], at
whose heart is a multi-input phase-change cell that relies on
accumulation of crystallized material to provide a threshold-
ing function analogous to that of a neuron.
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