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A new detailed mathematical model for dynamics of immune response to hepatitis B is proposed, which 

takes into account contributions from innate and adaptive immune responses, as well as cytokines. Stabil- 

ity analysis of different steady states is performed to identify parameter regions where the model exhibits 

clearance of infection, maintenance of a chronic infection, or periodic oscillations. Effects of nucleoside 

analogues and interferon treatments are analysed, and the critical drug efficiency is determined. 
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1. Introduction 

Hepatitis B is a major viral infectious disease that affects a

third of the world population, with 240–350 million people hav-

ing a chronic infection ( Takkenberg et al., 2009; WHO, 2016 ),

and over 129 million new infections having occurred since 2013

( Vos et al., 2015 ). This disease is a significant public health bur-

den, causing 750,0 0 0 deaths annually ( WHO, 2016 ), of which about

30 0,0 0 0 can be attributed to liver cirrhosis and hepatocellular car-

cinoma ( Naghavi et al., 2015 ). Whilst the prevalence of hepati-

tis B is relatively low (below 1%) in Western Europe and North

America, it remains significant in south-east Asia and sub-Saharan

Africa, where 5–10% of the adult population are chronically in-

fected ( WHO, 2016 ). 

The disease is caused by the hepatitis B virus (HBV), which is a

hepatotropic noncytopathic DNA virus of the Hepadnaviridae fam-

ily ( Seeger and Mason., 20 0 0 ). There are two main routes of trans-

mission of the HBV virus. One is a vertical (perinatal) transmis-

sion from an infected mother to a child, resulting in subsequent

infection, which in 90% of cases becomes chronic ( Liang, 2009; Re-

hermann and Nascimbeni, 2014 ). The other possibility is a horizon-

tal transmission between adults primarily through sexual contacts,

intravenous drug use or poor sanitary habits. This type of trans-

mission usually results in recovery, with only 5–10% of adults de-

veloping chronic infections ( Liang, 2009; Rehermann and Nascim-

beni, 2014 ). Multiple branches of the immune system are involved

in mounting the response during different phases of the HBV in-

fection. In many viral infections of humans, such as HIV, LCMV,

Epstein-Barr, the main contribution to the immune response dur-
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ng the early stages of infection comes from the innate immune re-

ponse, i.e. natural killer (NK) cells and antiviral cytokines, which

im at reducing the spread of the virus and facilitating the devel-

pment of an adaptive immune response. Contrary to this gen-

ral observation, early stages of HBV infection are characterised

y a delayed viral production and the lack of production of IFN-

/ β ( Bertoletti and Gehring, 2006 ). Several potential suggestions

ave been proposed to explain this, including the possibilities that

he initial replication of HBV is very slow, or that the virus does

ot immediately reach the liver and remains for a period of time

n other organs ( Bertoletti and Gehring, 2006; Wieland and Chis-

ri, 2005 ), however, the exact mechanism is still largely unknown.

nce the exponential phase of HBV expansions properly starts, it

ctivates the innate response and the cytokines ( Guidotti et al.,

999 ), which, in turn, induces adaptive immune response, with cy-

otoxic T lymphocytes (CTLs) being responsible for killing infected

ells, and antibodies against HBV surface antigen (HBsAg) neutral-

zing virus particles and preventing (re)infection of cells. Interest-

ngly, besides killing HBV-infected hepatocytes, CTLs are able to in-

uce non-cytolytic “cure” of such cells ( Abbas et al., 2014; Guidotti

t al., 1999; Guidotti and Chisari, 2001 ). An important role in the

ynamics of immune response against HBV is played by cytokines,

hich reduce viral replication ( DeVico and Gallo, 2004; Isaacs and

indeman, 1957; Kalvakolanu and Borden, 1996 ), activate NK and

TL cells ( Babiker et al., 2012; Guidotti and Chisari, 2001; Tamura

t al., 2005 ), and facilitate induction of immunity in uninfected tar-

et cells ( Ramsay et al., 1993; Wiah et al., 2011 ). 

A number of mathematical models have looked into various

spects of HBV dynamics and that of the immune response dur-

ng infection. Ciupe et al. (2007a,b) extended a standard model

f immune response to study acute HBV infection and the role

f time delay associated with activation and expansion of ef-
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ector cells, and later they also looked into the role of pre-

xisting or vaccine-induced antibodies in controlling the HBV in-

ection ( Ciupe et al., 2014 ). Min et al. (2008b) have used a stan-

ard incidence function rather than a mass action to account

or a finite liver size and susceptibility to HBV infection, while

ourley et al. (2008) have developed a time-delayed extension of

his model. Hews et al. (2010) have used a logistic growth for hep-

tocyte population and a standard incidence to help the model bet-

er represent available data and achieve more realistic values for

he basic reproduction number. Yousfi et al. (2011) have analysed

ossible mis-coordination between different branches of adaptive

mmune response, more specifically, the CTLs and the antibod-

es, during HBV infection. In terms of the effects of cytokines on

ediating immune response, Wiah et al. (2011) have studied a

odel that besides the CTLs and antibodies also includes α- and

-interferons, whose role is taken to convert susceptible hepato-

ytes into infection-resistant cells. Kim et al. (2012) adapted an

arlier model for hepatitis C to include cytokines implicitly through

llowing effector cells to cause a non-cytolytic recovery of the in-

ected cells, and a similar approach has also been used by other

esearchers ( Dahari et al., 2009; Lewin et al., 2001; Sypsa et al.,

005 ) who considered a constant rate of non-cytolytic cure along-

ide treatment. 

In this paper we focus on the interplay between various

ranches of the immune system during HBV infection, with partic-

lar emphasis on explicitly modelling the role of cytokines in me-

iating immune response and controlling viral replication. In the

ext section we discuss the details of underlying biological pro-

esses associated with the immune response against HBV and de-

ive a corresponding mathematical model. Section 3 contains an-

lytical and numerical studies of stability of various steady states.

n Section 4 we perform numerical simulations of the model to il-

ustrate different dynamical regimes, as well as to investigate the

ffects of different types of treatment. The paper concludes with

he discussion of results and open questions. 

. Model derivation 

In order to analyse various aspects of immune response to HBV

nfection, we build on the methodology of some earlier HBV mod-

ls ( Nowak et al., 1996; Perelson et al., 1996; Su et al., 2012 ). The

ost liver cells are divided into populations of uninfected cells T ( t ),

BV-infected cells I ( t ), and refractory cells R ( t ). Healthy hepato-

ytes are assumed to be produced at a constant rate λ, die at a

ate d , and they are infected by virions (free virus particles) at a

ate β . New HBV virions V ( t ) are produced by the infected cells at

 rate p , and they are cleared at a rate c . Interactions between all

ell populations are illustrated in Fig. 1 . 

Adaptive immune response consists of HBsAg-specific antibod-

es A ( t ) that destroy virions at a rate k , and HBV-specific CTLs, also

eferred to as effector cells, E ( t ). After viral clearance, because of

he long-lived plasma and memory B cells, antibody level is kept

t some homeostatic level ( Ciupe et al., 2014 ). To model this, we

ssume that antibodies are produced at a constant rate λa , and die

t per capita rate d a . During infection, antibodies are produced at

ate q proportional to the viral load. Whilst antibodies are respon-

ible for eliminating free virus, CTLs instead kill infected cells at

 rate μ2 . Some models assume certain basal level of CTLs s / d e in

he absence of infection, where s is the source of CTLs, and 1/ d e is

heir average lifespan ( Ciupe et al., 20 07a; 20 07b ). We will instead

ssume the dynamics of effector cells in the absence of infection to

ave the form of logistic growth with the proliferation rate r e and

he carrying capacity E max . Upon infection, the immune response

s activated, and the population of effector cells will expand at rate

IE ( Ciupe et al., 20 07a; 20 07b ). Similarly to effector cells, in the
bsence of infection, NK cells are assumed to obey logistic growth

ith the linear growth rate r n and the carrying capacity N max . 

Let us now focus on the role of cytokines in the immune dy-

amics. Type-1 interferons IFN- α/ β , to be denoted by F 1 ( t ), are

roduced by infected cells ( Busca and Kumar, 2014; Guidotti and

hisari, 2001 ) at a rate p 1 , and they are destroyed at a rate δ1 .

ype-2 interferons IFN- γ , denoted as F 2 ( t ), are produced by CTLs

nd NKs (natural killer cells) N ( t ) ( DeVico and Gallo, 2004; Guidotti

nd Chisari, 2001; Guidotti et al., 1994; Herbein and O’Brien, 20 0 0 )

t rates p 2 and p 3 , respectively, and they are lost at a rate δ2 .

oth types of interferons have the capacity to render the unin-

ected cells protected from infection through making them resis-

ant to infection ( Julkunen et al., 2001; Price et al., 20 0 0; Wiah

t al., 2011 ), or by turning them into refractory cells ( Ramsay

t al., 1993; Ramshaw et al., 1997 ). Therefore, the combined ef-

ect of interferons making uninfected cells refractory is taken to be

 1 (F 1 + F 2 ) per uninfected cell, and refractory cells can lose their

iral resistance at a rate ρ ( Ciupe et al., 2007a ). During infec-

ion, IFN- α/ β are able to activate NK cells ( Pawelek et al., 2012 ),

hile IFN- γ induces protein-10 (CXCL-10) that recruits NK cells

 Abbas and Afzal, 2013; Babiker et al., 2012 ) and can also acti-

ate NK cells ( Guidotti and Chisari, 2001 ). Hence, the combined

ffect of interferons on activating NK cells is taken to occur at a

ate q 1 NF 1 + q 2 NF 2 . Besides positive contribution to the production

f new NK cells, IFN- α/ β also increase the cytotoxicity of NK cells

nd CTLs ( Abbas et al., 2014 ). On the other hand, IFN- γ increases

he expression of MHC antigen acting to help CTLs destroy infected

ells ( Tamura et al., 2005 ), and it also enhances the activity of

K cells ( Carnaud et al., 1999; Schroder et al., 2004 ). Thus, both

ypes of interferons increase cytolytic activity of NKs and CTLs, and

ence, we will assume that NKs and CTLs destroy infected cells

t rates μ1 (1 + s 1 F 1 + s 2 F 2 ) IN and μ2 (1 + s ′ 
1 
F 1 + s ′ 

2 
F 2 ) IE, respec-

ively. Moreover, antiviral cytokines, such as IFN- γ and TNF- α, can

on-cytopathically purify viruses from infected cells ( Guidotti and

hisari, 2001 ), so that HBV-specific CTLs and NK cells can effec-

ively “cure” infected cells through a non-cytolytic antiviral activ-

ty mediated by IFN- γ ( Biron et al., 1999; DeVico and Gallo, 2004;

uidotti, 2002; Guidotti and Chisari, 2001 ). Hence, infected cells

an be lost due to non-cytolytic response of IFN- γ at a rate ϕ2 IF 2 .

tudies have shown that IFN- γ can activate a number of intracel-

ular mechanisms that suppress viral replication ( DeVico and Gallo,

004; Isaacs and Lindeman, 1957; Kalvakolanu and Borden, 1996;

tark et al., 1998 ), while IFN- α/ β can stimulate the activation of in-

racellular antiviral pathways to limit the development and spread

f viral replication ( Guidotti and Chisari, 2001 ). Thus, both types of

nterferons help infected cells reduce production of new virus par-

icles, so infected cells produce virions at a rate p/ (1 + s 3 F 1 + s 4 F 2 ) .

With the above assumptions, the complete model for immune

esponse to HBV infection takes the form 

dT 

dt 
= λ − dT − βV T + ρR − ϕ 1 T (F 1 + F 2 ) , 

dI 

dt 
= βV T − δI − μ1 (1 + s 1 F 1 + s 2 F 2 ) IN 

− μ2 (1 + s ′ 1 F 1 + s ′ 2 F 2 ) IE − ϕ 2 IF 2 , 

dF 1 
dt 

= p 1 I − δ1 F 1 , 

dF 2 
dt 

= p 2 E + p 3 N − δ2 F 2 , 

dN 

dt 
= r n N 

(
1 − N 

N max 

)
+ (q 1 F 1 + q 2 F 2 ) N, 

dE 

dt 
= r e E 

(
1 − E 

E max 

)
+ αIE, 

dR = ϕ 1 T (F 1 + F 2 ) + ϕ 2 IF 2 − ρR, 

dt 
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Fig. 1. A diagram of immune response to HBV infection. Blue circles indicate host cells (uninfected, infected, and refractory cells), green circles denote adaptive immune 

response (antibodies, CTLs), yellow circles show cytokines (type-1 and type-2 interferon), red circle is the innate immune response (NK cells), and grey indicates virus 

particles (virions). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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dV 

dt 
= 

p 

1 + s 3 F 1 + s 4 F 2 
I − cV − kAV, 

dA 

dt 
= λa − d a A − kAV + qV. (1)

To reduce the complexity of the model and the number of free

parameters, we introduce the following rescaled parameters 

ˆ d = 

d 

r n 
, ˆ β = 

βλa 

d a r n 
, ˆ ρ = 

ρλa d 

r n λd a 
, ˆ δ = 

δ

r n 
, 

ˆ s i = s i 
λa 

d a 
, i = 1 , 2 , 3 , 4 , 

ˆ μ1 = 

μ1 N max 

r n 
, ˆ μ2 = 

μ2 E max 

r n 
, ˆ ϕ i = 

ϕ i λa 

d a r n 
, ˆ p 1 = 

p 1 
r n 

, 

ˆ p 2 = 

p 2 d a E max 

r n λa 
, ˆ p 3 = 

p 3 d a N max 

r n λa 
, 

ˆ r e = 

r e 

r n 
, ˆ α = 

αλa 

r n d a 
, ˆ p = 

p 

r n 
, ˆ c = 

c 

r n 
, ˆ k = 

kλa 

r n d a 
, 

ˆ d a = 

d a 

r n 
, ˆ q = 

q 

r n 
, 

ˆ s ′ i = s ′ i 
λa 

d a 
, ˆ δi = 

δi 

r n 
, ˆ q i = 

q i λa 

r n d a 
, i = 1 , 2 , 

and new variables 

ˆ t = r n t, T = 

λ

d 
ˆ T , I = 

λa 

d a 
ˆ I , F 1 = 

λa 

d a 
ˆ F 1 , F 2 = 

λa 

d a 
ˆ F 2 , 

N = N max ̂  N , E = E max ̂  E , 
R = 

λa 

d a 
ˆ R , V = 

λa 

d a 
ˆ V , A = 

λa 

d a 
ˆ A . 

ubstituting these variables into the model (1) and dropping all

ats gives the following non-dimensionalised system of equa-

ions 

dT 

dt 
= d(1 − T ) − βV T + ρR − ϕ 1 T (F 1 + F 2 ) , 

dI 

dt 
= βV T − δI − [ μ1 (1 + s 1 F 1 + s 2 F 2 ) N 

+ μ2 (1 + s ′ 1 F 1 + s ′ 2 F 2 ) E + ϕ 2 F 2 ] I, 

dF 1 
dt 

= p 1 I − δ1 F 1 , 

dF 2 
dt 

= p 2 E + p 3 N − δ2 F 2 , 

dN 

dt 
= N(1 − N) + (q 1 F 1 + q 2 F 2 ) N, 

dE 

dt 
= r e E(1 − E) + αIE, 

dR 

dt 
= ϕ 1 T (F 1 + F 2 ) + ϕ 2 IF 2 − ρR, 

dV 

dt 
= 

p 

1 + s 3 F 1 + s 4 F 2 
I − cV − kAV, 

dA = d a (1 − A ) − kAV + qV. (2)

dt 
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It is straightforward to show that this system is well-posed,

.e. its solutions with non-negative initial conditions remain non-

egative for all t ≥ 0. 

. Steady states and their stability 

We begin our analysis of the system (2) by looking at its steady

tates 

 

∗ = (T ∗, I ∗, F ∗1 , F 
∗

2 , N 

∗, E ∗, R 

∗, V 

∗, A 

∗) , 

hat can be found by equating the right-hand sides of equations in

2) to zero and solving the resulting system of algebraic equations.

ue to the high dimensionality of the system (2) , it can admit

 significant number of possible steady states. Hence, in order to

ystematically find and analyse all of them, we begin with steady

tates characterised by the absence of virus particles, i.e. V ∗ = 0 ,

hich immediately implies I ∗ = F ∗1 = 0 and T ∗ = A 

∗ = 1 . There are

our such steady states, 

 

∗
1 = (1 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1) , S ∗2 = 

(
1 , 0 , 0 , 

p 2 
δ2 

, 0 , 1 , 
ϕ 1 p 2 
ρδ2 

, 0 , 1 

)
,

 

∗
3 = 

(
1 , 0 , 0 , 

p 3 
δ2 − p 3 q 2 

, 
δ2 

δ2 − p 3 q 2 
, 0 , 

ϕ 1 p 3 
ρ(δ2 − p 3 q 2 ) 

, 0 , 1 

)
, 

 

∗
4 = 

(
1 , 0 , 0 , 

p 2 + p 3 
δ2 − p 3 q 2 

, 
δ2 − p 3 q 2 + p 2 q 2 + p 3 q 2 

δ2 − p 3 q 2 
, 1 , 

ϕ 1 (p 2 + p 3 ) 

ρ(δ2 − p 3 q 2 ) 
, 0 , 1 

)
. 

hilst the steady states S ∗
1 

and S ∗
2 

are feasible for any values of

arameters, S ∗3 and S ∗4 are only biologically feasible, provided δ2 −
p 3 q 2 > 0 . Linearisation of the system (2) near each of these steady

tates shows that S ∗
1 
, S ∗

2 
and S ∗

3 
are always unstable, while S ∗

4 
is

table if the following condition holds 

 < K c , K = 

pβ(δ2 − p 3 q 2 ) 
3 

(c + k )(p 2 s 4 − p 3 q 2 + p 3 s 4 + δ2 ) 
, (3)

ith 

 c = δp 2 3 q 
2 
2 + μ1 p 

2 
2 q 2 s 2 − μ1 p 2 p 3 q 

2 
2 

+ μ1 p 2 p 3 q 2 s 2 − μ2 p 2 p 3 q 2 s 
′ 
2 + μ2 p 

2 
3 q 

2 
2 − μ2 p 

2 
3 q 2 s 

′ 
2 

− 2 δδ2 p 3 q 2 + δ2 μ1 p 2 q 2 + δ2 μ1 p 2 s 2 − δ2 μ1 p 3 q 2 

+ δ2 μ1 p 3 s 2 + δ2 μ2 p 2 s 
′ 
2 − 2 δ2 μ2 p 3 q 2 

+ δ2 μ2 p 3 s 
′ 
2 − p 2 p 3 q 2 ϕ 2 − p 2 3 q 2 ϕ 2 + δδ2 

2 + δ2 
2 μ1 

+ δ2 
2 μ2 + δ2 p 2 ϕ 2 + δ2 p 3 ϕ 2 . (4) 

hen K = K c , equilibrium S ∗
4 

undergoes a steady-state bifurcation,

nd for K > K c , this steady state is unstable. 

For V 

∗ � = 0, one has to distinguish between two cases, k = q and

 � = q . For k = q, one finds A 

∗ = 1 , and there are four associated

teady states with different combinations of E ∗ = 0 or E ∗ � = 0, and

 

∗ = 0 or N 

∗ � = 0. The first of these, S ∗5 , characterised by the ab-

ence of CTLs and NKs, i.e. E ∗ = 0 and N 

∗ = 0 , has other compo-

ents given by 

T ∗ = 

(c + k )(dp 1 s 3 + δδ1 ) 

cd p 1 s 3 + d kp 1 s 3 + βpδ1 

, I ∗ = 

dδ1 (pβ − cδ − kδ) 

δ(cd p 1 s 3 + d kp 1 s 3 + βpδ1 ) 

F ∗1 = 

dp 1 (pβ − cδ − kδ) 

δ(cd p 1 s 3 + d kp 1 s 3 + βpδ1 ) 
, F ∗2 = 0 , 

R 

∗ = 

dp 1 ϕ 1 (c + k )(dp 1 s 3 + δδ1 )(pβ − cδ − kδ) 

δρ(cd p 1 s 3 + d kp 1 s 3 + βpδ1 ) 2 
, 

 

∗ = 

dδ1 (pβ − cδ − kδ) 

β(c + k )(dp 1 s 3 + δδ1 ) 
, 
nd this steady state is always unstable. The steady state S ∗6 with

 

∗ = 0 and N 

∗ � = 0 has components given by 

I ∗ = 

δ1 F 
∗

1 

p 1 
, F ∗2 = 

1 + q 1 F 
∗

1 

a 
, N 

∗ = 

δ2 F 
∗

2 

p 3 
, 

 

∗ = 

pI ∗

(c + k )(1 + s 3 F 
∗

1 
+ s 4 F 

∗
2 
) 
, 

T ∗ = 

d + ϕ 2 I 
∗F ∗2 

d + βV 

∗ , R 

∗ = 

ϕ 1 T 
∗(F ∗1 + F ∗2 ) + ϕ 2 I 

∗F ∗2 
ρ

, 

here F ∗
1 

satisfies the cubic equation 

 3 (F ∗1 ) 
3 + b 2 (F ∗1 ) 

2 + b 1 F 
∗

1 + b 0 = 0 , 

here the coefficients b 1 , b 2 and b 3 are always positive, and 

 0 = dp 1 [ −a 3 pp 3 β + (c + k )(a + s 4 ) 

× (a 2 p 3 δ + aδ2 μ1 + ap 3 ϕ 2 + s 2 δ2 μ1 )] , a = 

δ2 − p 3 q 2 
p 3 

. 

he steady state S ∗
6 

is also always unstable. 

Similarly, the steady state S ∗7 with E ∗ � = 0 and N 

∗ = 0 has its state

ariables given by 

I ∗ = 

δ1 F 
∗

1 

p 1 
, F ∗2 = 

p 2 
δ2 

(
1 + 

αδ1 F 
∗

1 

r e p 1 

)
, E ∗ = 

r e + αI ∗

r e 
, 

 

∗ = 

pI ∗

(c + k )(1 + s 3 F 
∗

1 
+ s 4 F 

∗
2 
) 
, 

T ∗ = 

d + ϕ 2 I 
∗F ∗2 

d + βV 

∗ , R 

∗ = 

ϕ 1 T 
∗(F ∗1 + F ∗2 ) + ϕ 2 I 

∗F ∗2 
ρ

, 

ith F ∗1 satisfying the cubic equation 

 3 (F ∗1 ) 
3 + m 2 (F ∗1 ) 

2 + m 1 F 
∗

1 + b 0 = 0 , 

here m 1 , m 2 and m 3 are positive, and 

 0 = dp 3 1 r 
3 
e 

[
− βpδ2 

2 + (c + k )(p 2 s 4 + δ2 ) 

× (μ2 p 2 s 
′ 
2 + δδ2 + μ2 δ2 + ϕ 2 p 2 ) 

]
. 

his steady state is unstable for any parameter values. 

The last steady state S ∗
8 

with E ∗ � = 0 and N 

∗ � = 0 has components 

 

∗ = 

δ1 F 
∗

1 

p 1 
, E ∗ = 

r e + αI ∗

r e 
, F ∗2 = 

αp 2 δ1 + r e p 1 [ p 2 + p 3 (1 + q ) ] 

r e p 1 (δ2 − p 3 q 2 ) 
, 

N 

∗ = 

δ2 F 
∗

2 − p 2 E 
∗

p 3 
, 

 

∗ = 

pI ∗

(c + k )(1 + s 3 F 
∗

1 
+ s 4 F 

∗
2 
) 
, T ∗ = 

d + ϕ 2 I 
∗F ∗2 

d + βV 

∗ , 

R 

∗ = 

ϕ 1 T 
∗(F ∗1 + F ∗2 ) + ϕ 2 I 

∗F ∗2 
ρ

, 

nd F ∗
1 

satisfies a cubic equation. It does not prove possible to de-

ermine stability of this steady state in a closed form, so is has to

e done numerically. 

For k � = q , we again have four options, depending on whether

 

∗ = 0 or E ∗ � = 0, and N 

∗ = 0 or N 

∗ � = 0. Similar to the case k = q,

he steady states S ∗9 with E ∗ = N 

∗ = 0 , S ∗10 with E ∗ = 0 and N 

∗ � = 0

nd S ∗11 with E ∗ � = 0 and N 

∗ = 0 , are always unstable. The steady

tate S ∗
12 

with all components being positive cannot be found in a

losed form. 

The cases k = q and k � = q have to be considered separately,

ince for k � = q one has a relation V ∗ = d a (1 − A 

∗) / (kA 

∗ − q ) , which

annot be directly used in the case k = q with A 

∗ = 1 . However, it

s straightforward to show that as k → q , the steady states S ∗9 , S 
∗
10 ,

 

∗
11 

and S ∗
12 

converge to S ∗
5 
, S ∗

6 
, S ∗

7 
and S ∗

8 
, respectively. Of these

teady states, only S ∗
4 

and S ∗
12 

(or equivalently S ∗
8 

for k = q ) can po-

entially change stability, as all other steady states are unstable for

ny parameter values. 
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Fig. 2. Stability of the disease-free steady state S ∗4 with parameter values from Table 1 . Black grid area indicates the region where there are no feasible steady states. Colour 

code denotes maximum real part of the largest characteristic eigenvalue for the disease-free steady state S ∗4 when it is feasible.(For interpretation of the references to colour 

in this figure legend, the reader is referred to the web version of this article.) 
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To gain a better understanding of how stability of different

steady states is affected by various parameters in the model, we

perform numerical stability and bifurcation analysis. Baseline val-

ues of parameters are given in Table 1 in the Appendix, though one

should note that at this stage it is only feasible to explore different

qualitative scenarios, as the actual values of many of these param-

eters have not yet been measured, or significant variations in their

values have been reported. 

Fig. 2 shows regions of feasibility and stability of the disease-

free steady state S ∗4 . Our earlier analysis indicates that this steady

state is only feasible, provided δ2 − p 3 q 2 > 0 , which means that

this steady state can only exist if the rate p 3 of production of IFN-

γ by NK cells, and the rate q 2 at which IFN- γ in turn upregulates

the production of new NK cells, are not too large, as illustrated in

Fig. 2 (a) and (b). Stability of the disease-free steady state S ∗
4 

is de-

termined by the value of K defined in (3) , and Fig. 2 (a) and (b)

suggest that increasing p 3 can stabilise this equilibrium if it were

previously unstable, which should be expected, as increasing the

number of NK cells and the amount of IFN- γ leads to a more ef-

fective eradication of the viral population. Similarly, increasing the

rate of clearance of virions by antibodies k , the rate at which IFN- γ
inhibits production of new virus particles s 4 , or the rate of IFN- γ -

induced conversion from infected cells to refractory cells ϕ2 , all

lead to the stabilisation of the disease-free steady state. At the

same time, comparison of Fig. 2 (a) with (c) and (d) indicates that

if antibodies are not very effective, i.e. if k is small, it is easier to

clear the infection, i.e. achieve stability of the disease-free steady

state, by increasing production of IFN- γ by NK cells, since both s 
4 
nd ϕ2 have to be increased very significantly before the stability

an be achieved. 

Fig. 3 illustrates how regions of feasibility and stability of the

ndemic steady state S ∗
12 

depend on system parameters. Compar-

son of Fig. 3 (a) with Fig. 2 (a) suggests that as the disease-free

teady state loses its stability, the endemic steady state becomes

iologically feasible and stable. However, for very small values of

 3 , there is a certain range of k values, for which the endemic

teady state is also unstable, and one could expect the appearance

f periodic solutions. This is illustrated in more detail in the bifur-

ation diagram shown in Fig. 4 (a), which indicates that when one

xes some small value of p 3 and increases k , the endemic steady

tate does indeed lose its stability via a supercritical Hopf bifurca-

ion, and then regains it at a subcritical Hopf bifurcation for yet

igher value of k . In the range of k values where the endemic

teady state S ∗12 is unstable, one observes a stable periodic orbit,

hose period increases with k but reduces with p 3 , as shown in

ig. 4 (b). The effects of varying s 4 and ϕ2 on stability of S ∗
12 

are

imilar to those of varying p 3 , with the exception that for small

 , increasing s 4 or ϕ2 does not make this steady state infeasible,

.e. biologically irrelevant. Fig. 3 (b) and (f) are quite similar to each

ther in that for each value of k , there is some minimal value of

he infection rate β or production rate of new virions p , above

hich the endemic steady state S ∗
12 

becomes biologically feasible

nd stable. If k is small, then further increases of β or p do not

ave effect on stability, and S ∗12 remains stable, whilst for higher k

ncreasing either β or p results in the loss of stability through a

upercritical Hopf bifurcation. A very interesting behaviour is ob-
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Fig. 3. Stability of the endemic steady state S ∗12 with parameter values from Table 1 . White area shows the region where the endemic steady state is not feasible, but the 

disease-free steady state S ∗4 is feasible and stable. Black grid area indicates the region where there are no feasible steady states. Colour code denotes maximum real part of 

the largest characteristic eigenvalue for the endemic steady state S ∗12 when it is feasible. (For interpretation of the references to colour in this figure legend, the reader is 

referred to the web version of this article.) 
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erved in Fig. 3 (d), which shows that for k small or very large, the

tability of S ∗
12 

is unaffected by changes in the rate of production

f new antibodies q , whereas for an intermediate range of k , S ∗12 
s unstable for small q but gains stability as q is increased. This is

uite counter-intuitive, as one would normally expect that if more

ntibodies are produced for the same viral load, this would help

lear the infection. Since k is also the rate at which antibodies are

inding free virus and, hence, are removed, this means that it is

he balance between k and q that determines whether the infec-

ion is maintained at a steady level, i.e. S ∗12 is stable, or if peri-

dic oscillations appear in the dynamics. Similar behaviour can be

bserved in Fig. 3 (e), which shows that the endemic steady state

 

∗ is unstable for small ρ , i.e. for long periods of viral resistance,
12 
ut it stabilises as the duration of viral resistance reduces, i.e. for

igher values of ρ . 

In order to better understand the role of cytokines in system’s

ynamics, we present in Fig. 5 stability of the endemic steady state

epending on cytokine-related parameters. Fig. 5 (a) and (b) sug-

est that increasing the rates s 1 and s 2 at which IFN- α/ β and IFN-

enhance cytolytic activity of NK cells, or the rates s 3 and s 4 at

hich these interferons inhibit production of new virions, results

n stabilisation of the endemic steady state S ∗12 . One should note,

owever, that while increasing the rates s 1 or s 3 , associated with

FN- α/ β only acts to make the endemic steady state more stable,

ncreasing the rates s 2 or s 4 associated with IFN- γ can actually

ake the endemic steady state biologically irrelevant, thus help-
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Fig. 4. Bifurcation diagram (a) and periods of periodic solutions (b) with parameter values from Table 1 . (a) In this figure p 3 = 0 . 3 . The blue line shows the endemic steady 

state, and the red line shows the disease-free steady state, with solid (dashed) lines corresponding to stable (unstable) steady states. At k = 6 . 277 and k = 10 . 74 there is a 

Hopf bifurcation of the endemic steady steady state, and at k = 11 . 2389 there is a transcritical bifurcation. Between the two HB points there is a stable periodic solution, 

the minimum and maximum of T are shown in green. (b) This figure shows the dependence of the period of periodic solutions on k for p 3 = 0 . 1 (black), p 3 = 0 . 3 (blue), 

p 3 = 0 . 5 (red). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 5. Stability of the endemic steady state S ∗12 with parameter values from Table 1 . White area shows the region where the endemic steady state is not feasible, but the 

disease-free steady state S ∗4 is feasible and stable. Colour code denotes maximum real part of the largest characteristic eigenvalue for the endemic steady state S ∗12 when it is 

feasible. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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ing clear the infection by moving the system to a stable disease-

free steady state. This suggests the profoundly different effects of

IFN- α/ β and IFN- γ on viral dynamics. A similar phenomenon is

observed when one investigates the role of cytokines in producing

refractory cells from either uninfected or infected cells. Increasing

the rate ϕ1 of conversion of uninfected cells into refractory cells,
hich involves contributions from both types of interferon, results

n destabilisation of the endemic steady state. On the other hand,

ncreasing the rate ϕ2 of non-cytolytic cure of infected cells by

FN- γ initially stabilises the endemic steady state, but subsequent

ncrease makes the endemic steady state infeasible, thus leading to

learance of infection, as shown in Fig. 5 (c). We have also looked
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Fig. 6. Numerical solution of the model (2) with parameter values from Table 1 , and p 3 = 3 , k = 8 . In this case, the disease-free steady state S ∗4 is stable, so immune system 

is able to clear the initial infection. 
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nto the effects of both types of interferon on enhancing cytotoxic

ctivity of CTLs, as represented by parameters s ′ 
1 

and s ′ 
2 
. In this

ase, numerical calculations suggest that the stability of the en-

emic steady state is not sensitive to s ′ 1 , implying that this partic-

lar contribution from IFN- α/ β does not help clear the infection.

n this respect, IFN- γ plays a more important role, since increas-

ng s ′ 2 above a certain level makes the endemic steady state bio-

ogically irrelevant, so the system reverts to a stable disease-free

tate. Finally, Fig. 5 (d) shows that increasing the rates q 1 and q 2 
f cytokine-related activation of NK cells leads to stabilisation of

he endemic steady state, however, increasing the rate q 2 associ-

ted with IFN- γ beyond certain level results in this steady state

ecoming biologically irrelevant, thus eradicating the viral infec-

ion. 

. Numerical simulations 

To demonstrate different types of dynamical behaviour that can

e exhibited by the model (2) in various parameter regimes, we

olve this system numerically using the baseline values of param-
ters given in Table 1 in the Appendix, and the results are shown

n Figs. 6 –8 . In all these figures, the free virus V ( t ) exhibits the

ehaviour that is qualitatively similar to that of the number of in-

ected cells, hence, we plot instead the dynamics of the popula-

ion of refractory cells R ( t ). Fig. 6 illustrates the dynamics of im-

une response when the condition (3) holds. In this case, the ini-

ial viral growth leads to an increase in the numbers of NKs and

TLs, as well as both types of interferons, which results in the

uccessful clearance of the HBV infection, upon which type-1 in-

erferons are also destroyed, and the system settles on a stable

isease-free steady state S ∗
4 
. Fig. 7 shows the dynamics in the case

here the endemic steady state S ∗
12 

is feasible and stable. One ob-

erves that the initial viral growth is suppressed by the combined

ffects of different branches of the immune system. However, the

pproach to the endemic steady state is oscillatory with the am-

litude of oscillations decaying, with each subsequent viral peak

eing smaller than the previous one. In the case when the en-

emic state is unstable due to Hopf bifurcation, one observes sta-

le oscillations, as shown in Fig. 8 . Biologically, these would cor-
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Fig. 7. Numerical solution of the model (2) with parameter values from Table 1 , and p 3 = 0 . 3 , k = 0 . 3 . In this case, the system approaches a stable endemic steady state S ∗12 . 
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respond to the so-called “flare-ups” ( Chang and Liaw, 2014; Per-

illo, 2001 ), where the infection is never completely cleared, but

through the interactions between the virus and the immune sys-

tem, there are periods of very low viral activity followed by the

periods of acute viral growth. This situation is reminiscent of the

infection-induced autoimmune reaction, where initial viral infec-

tion can lead to a breakdown of immune tolerance, so that even in

the absence of any exogenous factors or subsequent infections, pa-

tients exhibit periods of remission and relapses ( Blyuss and Nichol-

son, 2012; 2015 ). It is worth noting that the behaviour shown in

Fig. 8 has the hallmarks of slow-fast dynamics, or relaxation os-

cillations, that are not uncommon in models of immune response

( Lenbury et al., 20 0 0; Merrill, 1978 ). At every “flare-up”, there is

a significant growth in the number of infected cells that triggers

the proliferation of both types of interferon, as well as the growth

in the populations of CTLs and natural killer cells. All of them are

growing very quickly, resulting in a fast immune response that re-

duces the infection, but as the number of infected cells subsides,

so do all the various populations associated with the immune re-

sponse. Hence, the infection is not completely cleared but rather
s kept in check at a very small level. Now, as the population of

usceptible cells recovers, which is happening on a much longer

ime-scale, more of these cells become the target of free virus, re-

ulting in a new episode of high viral load, and the cycle repeats. 

As a next step, we look into effects of antiviral treatments on

BV. There are two main types of drugs used to treat HBV in-

ection: nucleot(s)ide analogues (NAs), such as lamivudine, ade-

ovir, entecavir, tenofovir, telbivudine, famciclovir, telbivudine, cle-

udine, and IFN-based therapy, which includes stand-alone IFN- α
roferon, intron) or pegylated interferon peg-IFN- α2a/2b ( Dahari

t al., 2009; Kim et al., 2012; Packer et al., 2014; Sypsa et al.,

0 05; Takkenberg et al., 20 09 ). These treatments individually ( Min

t al., 2008a; Nowak et al., 1996 ) and in combinations ( Colombato

t al., 2006; Lewin et al., 2001 ) result in either reducing the pro-

uction of new virus particles, or in blocking de novo infections.

athematically, one can represent these two effects by a mod-

fied viral production rate (1 − ε) p and a modified transmission

ate (1 − η) β, where 0 ≤ ε ≤ 1 and 0 ≤η ≤ 1 are drug efficacies as-

ociated with inhibiting viral production and preventing new in-

ections, respectively. In order to characterise the overall effective-
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Fig. 8. Numerical solution of the model (2) with parameter values from Table 1 , and p 3 = 0 . 3 , k = 8 . In this case, both the disease-free S ∗4 and the endemic steady state S ∗12 

are unstable, and the system exhibits a periodic solution. 
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f  
ess of treatment, it can be helpful to consider a cumulative pa-

ameter describing the total drug effectiveness εtot , which is de-

ned as 1 − εtot = (1 − η)(1 − ε) ( Dahari et al., 2009 ). This would

llow one to determine a critical drug efficacy, εc , corresponding

o stability boundary of the disease-free steady state S ∗4 , so that

his steady state would be stable for εtot > εc . With these modi-

cations, new equations for the numbers of healthy and infected

ells, as well as the free virus, have the form 

dT 

dt 
= d(1 − T ) − β(1 − η) V T + ρR − ϕ 1 T (F 1 + F 2 ) , 

dI 

dt 
= β(1 − η) V T − δI − μ1 (1 + s 1 F 1 + s 2 F 2 ) IN 

− μ2 (1 + s ′ 1 F 1 + s ′ 2 F 2 ) IE − ϕ 2 IF 2 , 

dV 

dt 
= 

p(1 − ε) 

1 + s 3 F 1 + s 4 F 2 
I − cV − kAV, (5) 

ith the rest of the equations remaining the same as in the main

odel (2) . 
Fig. 9 (a) shows that for parameter values from Table 1 , if

> 0.7646, then pure NAs therapy is sufficient to destabilise the

ndemic steady state and thus clear the infection, and similarly, if

> 0.7646, then just IFN-therapy can make the disease-free steady

tate S ∗4 stable. This Figure also suggests that disease clearance

an be achieved if the combined efficacy εtot exceeds some criti-

al value εc . Fig. 9 (b) illustrates how this critical combined efficacy

c varies with the rate k of clearance of free virus by antibodies

nd the rate p 3 of production of type-2 interferons by NK cells.

ne observes that the critical combined efficacy εc decreases with

 , implying that the faster the free virus is cleared by antibodies,

he less stringent is the requirement on the efficacy of treatment to

lear the infection, and for sufficiently high k the disease clearance

an be achieved even in the absence of treatment. Surprisingly, for

he same value of k , having a higher rate of production of type-2

nterferons by NK cells requires a higher combined efficacy εc for

iral clearance. 

Fig. 10 illustrates the effect of using combined NAs and inter-

eron therapy on chronic and relapsing HBV infections. In both



108 F. Fatehi Chenar et al. / Journal of Theoretical Biology 447 (2018) 98–110 

Fig. 9. Effects of NAs and interferon therapy on the dynamics of HBV with parameter values from Table 1 , and k = 7 , β = 30 .(a) Stability plot for the endemic steady state 

S ∗12 , with the colour code denoting maximum real part of the largest characteristic eigenvalue for the endemic steady state when it is feasible. White area shows the region 

where the endemic steady state S ∗12 is not feasible, and the disease-free steady state S ∗4 is stable. (b) Dependence of the critical drug efficacy ( εc ) on k , with disease being 

cleared for εtot > εc , with p 3 = 0 . 1 (black line), p 3 = 0 . 9 (blue line), p 3 = 2 (red line). (For interpretation of the references to colour in this figure legend, the reader is referred 

to the web version of this article.) 

Fig. 10. Numerical solution of the model (2) with treatment (5) and parameter values from Table 1 and (k = 0 . 3 , p = 0 . 3) in (a-b), and (k = 8 , p = 0 . 3) in (c-d). In all plots, 

blue colour denotes a rescaled number of uninfected cells T ( t ), and red colour denotes a rescaled number of infected cells I ( t ). (a)-(b) Treatment of the chronic infection 

with εtot < εc (η = 0 . 6 , ε = 0 . 5) (a), and εtot > εc (η = 0 . 9 , ε = 0 . 6) (b). (c)-(d) Treatment of the relapsing infection with εtot < εc (η = 0 . 2 , ε = 0 . 1) (c), and εtot > εc (η = 0 . 2 , 

ε = 0 . 4) (d). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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regimes, application of treatment with sub-optimal efficacy, i.e.

with εtot < εc , does not cause qualitative change in the system dy-

namics but results in an increased number of uninfected cells and

a decreased number of infected cells. On the contrary, for εtot > εc ,

in both cases the number of infected cells is reduced to zero, and

the system approaches a stable disease-free steady state S ∗
4 
, which

corresponds to a successful clearance of infection. 

5. Discussion 

In this paper we have derived and analysed a new model for

HBV infection with particular emphasis on interactions between

different branches of immune system, including innate immune re-

sponse as exemplified by NK cells, adaptive immune response rep-

resented by HBV-specific cytotoxic T cells and antibodies, and var-
ous cytokines. During infection the cytokines play an important

ole in recruitment of innate and adaptive immune factors, and

hey also help them to be more effective, as well as facilitate non-

ytolytic cure of infected cells. 

Stability analysis of the steady states has shown how various

arameters affect the dynamics of immune response, with some

f the results being intuitively clear, and others being quite unex-

ected. Naturally, increasing the number of NK cells, the rate of

learance of free virus by antibodies, the rate of inhibition of vi-

al production by IFN- γ , or the rate of conversion from infected to

efractory cells, all facilitate a more efficient clearance of infection,

aking the disease-free steady state stable. Once the disease-free

teady state loses its stability, the endemic equilibrium becomes

iologically feasible and stable. For sufficiently small values of the

ate of production of IFN- γ by NK cells, the endemic steady state
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Table 1 

Table of baseline parameter values. 

Parameter Value Definition 

d 0.003 Natural death rate of uninfected cells 

β 7 Infection rate 

ρ 5 Rate of missing refractory state 

ϕ1 14 Rate of IFN-induced conversion from uninfected 

cells to refractory cells 

δ 0.56 Natural death rate of infected cells 

μ1 5 Death rate of infected cells by NK cells 

s 1 1.5 Effect of IFN- α/ β on NK cells to kill infected cells 

s 2 0.6 Effect of IFN- γ on NK cells to kill infected cells 

μ2 0.14 Death rate of infected cells by HBV-specific CTLs 

s ′ 1 1.9 Effect of IFN- α/ β on the HBV-specific CTLs 

s ′ 2 2 Effect of IFN- γ on the HBV-specific CTLs 

ϕ2 21 Rate of IFN- γ -induced conversion from infected 

cells to refractory cells 

p 1 1 Production rate of IFN- α/ β by infected cells 

δ1 4.9 Natural death rate of IFN- α/ β

p 2 0.5 Production rate of IFN- γ by HBV-specific CTLs 

p 3 0.9 Production rate of IFN- γ by NK cells 

δ2 5.16 Natural death rate of IFN- γ

q 1 0.8 Production rate of NK cells by IFN- α/ β

q 2 0.6 Production rate of NK cells by IFN- γ

r e 0.5 Maximal growth rate of HBV specific cytotoxic T 

cells 

α 1 Antigen-dependent proliferation rate of 

HBV-specific CTLs 

p 20 Production rate of free virus 

s 3 1.7 Effect of IFN- α/ β on the production of free viruses 

s 4 1 Effect of IFN- γ on the production of free viruses 

c 0.67 Natural clearance rate of free viruses 

k 2 Clearance rate of free viruses by antibodies 

d a 0.332 Natural death rate of free antibodies 

q 5 Production rate of free antibody by free viruses 

R
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B  
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an lose its stability via Hopf bifurcation, giving rise to stable pe-

iodic solutions. We have found that for a very small or a very

arge rate of free virus clearance by antibodies, the stability of the

ndemic steady state is unaffected by how quickly the new anti-

odies are produced, whereas for an intermediate range of virus

learance rate, this steady state is unstable for low production of

ntibodies, and gains stability as the rate of antibody production is

ncreased. This is a very surprising result, as normally one would

xpect that a higher rate of production of antibodies for the same

iral load leads to a clearance of infection, rather than stabilisa-

ion of a chronic state. The implication of this observation is that

t is not the individual rates of production of antibodies and viral

learance, but rather the balance between them that determines

hether the system maintains a chronic infection or exhibits peri-

dic oscillations. 

In terms of the role of cytokines on mediating various branches

f immune response, a surprising result of the analysis is that in-

reasing the rates at which IFN- α/ β and IFN- γ increase cytolytic

ctivity of NK cells or inhibit production of free virus, actually

eads to stabilisation of the endemic steady state. The major dif-

erence in the effects of cytokines IFN- α/ β and IFN- γ lies in the

bservation that whilst increasing the rates associated with IFN-

/ β just results in the stabilisation of an otherwise unstable en-

emic steady state, increasing the same rates for IFN- γ can result

n making the endemic steady state biologically irrelevant, thus

ualitatively changing the dynamics. The same result holds for IFN-

-facilitated non-cytolytic cure of infected cells. If the production

f IFN- γ by NK cells is too high, this makes all steady states of the

ystem unstable, leading to persistent oscillations, thus maintain-

ng the infection. 

We have also looked into modelling the dynamics of HBV treat-

ent with nucleot(s)ide analogues and/or stand-alone or pegylated

nterferons. Since these treatments are known to act by reducing

he appearance of new infections and blocking production of free

irus, we have looked at how the combined drug efficacy depends

n these two properties. Numerical studies have shown the exis-

ence of a minimum drug efficacy required to clear the infection,

nd, unexpectedly, this critical drug efficacy is actually increasing

ith the rate of production of IFN- γ by NK cells. 

There are several directions in which the model presented in

his paper can be extended. One important aspect of the immune

ynamics is the non-instantaneous nature of several important

rocesses, such as the lag between infection and recruitment of

TLs, production of new virus particles once a cell becomes in-

ected, the time required for viral cell entry etc ( Beauchemin et al.,

0 08; Nelson et al., 20 0 0 ). Mathematically, this can be represented

y including discrete of distributed time delay for each of the as-

ociated processes, which would make the model more realistic

ut would also make the analysis much more involved. Further-

ore, it is known that antibodies do not kill the virus particles di-

ectly, but rather stick to them, creating a virus-antibody complex

 Ciupe et al., 2014 ). These complexes are not stable forever and can

xperience some dissociation, hence, explicitly including them into

he model can provide better insights into the dynamics. 
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The parameter values used for numerical simulations are given

n the table below. 
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