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This paper presents a compact pairwise model describing the spread of multi-stage epidemics on net-
works. The multi-stage model corresponds to a gamma-distributed infectious period which interpolates
between the classical Markovian models with exponentially distributed infectious period and epidemics
with a constant infectious period. We show how the compact approach leads to a system of equations
whose size is independent of the range of node degrees, thus significantly reducing the complexity of the
model. Network clustering is incorporated into the model to provide a more accurate representation of
realistic contact networks, and the accuracy of proposed closures is analysed for different levels of
clustering and number of infection stages. Our results support recent findings that standard closure
techniques are likely to perform better when the infectious period is constant.

& 2016 Elsevier Ltd. All rights reserved.
1. Introduction

Mathematical models of infectious diseases have proven to be an
invaluable tool in understanding how diseases invade and spread
within a population, and how best to control them (Anderson and
May, 1991; Diekmann et al., 2012; Pastor-Satorras et al., 2015). Given a
good understanding of the biology of the disease and of the behaviour
and interaction of hosts, it is possible to develop accurate models with
good predictive power, which provide the means to develop, test and
deploy control measures to mitigate the negative impacts of infectious
diseases, a good example being influenza (Ferguson et al., 2006).
However, as has been highlighted by the recent Ebola outbreak in
West Africa (Chowell and Nishiura, 2014), models can be very situa-
tion-specific and can become highly sophisticated or complex
depending on intricacies of the structure of the population and the
characteristics of the disease.

In the last few decades the use of networks to describe inter-
actions between individuals has been an important step change in
).
modelling and studying disease transmission (Keeling, 1999;
Danon et al., 2011; Keeling and Eames, 2005; Pastor-Satorras et al.,
2015). There is now overwhelming empirical evidence that in
many practical instances individuals interact in a structured and
selective way, e.g. in the case of sexually transmitted diseases
(Liljeros et al., 2001). Thus, the well-mixed assumption of early
compartmental models (Kermack and McKendrick, 1927) has to be
relaxed or models need to be refined by including multiple classes
and mixing between classes. However, in some cases a network
representation could be more realistic than a description based on
compartmental models. Conventionally, nodes in network-based
models represent individuals, and the edges describe connections
between people who have sufficient contact to be able to transmit
the disease (Keeling and Eames, 2005; Danon et al., 2011; Pastor-
Satorras et al., 2015). This study focuses on static undirected net-
works, in which the edges of the network do not change over time,
and all connections are sufficient to transmit the disease in either
direction. The total number of edges a node has is known as its
degree, and the frequency of nodes with different degrees is de-
termined by a specific degree distribution P(k) which can either be
empirically measured or given theoretically. In either case P(k) is
the probability of a randomly chosen node having degree k. Early
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network models often assumed regular networks where all nodes
have the same degree, or well-studied networks from graph the-
ory, such as the Erdős–Rényi random graphs (Erdős and Rényi,
1959). However, empirical research showed that real biological,
social or technological networks do not conform to such idealised
models. In fact, many studies on human interactions ranging from
sexual contact networks (Liljeros et al., 2001) to using the travel of
banknotes as an indicator of human activity (Brockmann et al.,
2006), or even internet connectivity (Caldarelli et al., 2000) have
observed wide-tail distributions, with the majority of nodes having
a low number of contacts, and a few nodes in the network having a
much higher degree. This structure is most closely approximated
by scale-free networks described by a power-law degree dis-
tribution ( ) ∼ α−P k k with some positive exponent α, which for
most accurately described human contact patterns lies in the
range α ∈ [ ]2, 3 (see, for example, Pastor-Satorras and Vespignani,
2001). The impact of contact heterogeneity on the spread of epi-
demics is significant, and studies have highlighted the dispropor-
tionate role which may be played by a few highly connected nodes
(James et al., 2007).

Another striking feature of real social contact patterns is the
presence of small and highly interconnected groups which occur
much more frequently than if edges were to be distributed at
random. This is known as clustering, and its presence in empirical
data (Newman et al., 2001; Foster et al., 2011) has driven the need
to consider network models that include this feature. Perhaps, one
of the most well-known and parsimonious theoretical models
with tuneable clustering is the small-world network (Watts and
Strogatz, 1998), where nodes are placed on a ring, and the network
is dominated by local links to nearest neighbours with a few links
rewired at random, which means that the average path length is
not too large and comparable to that found in equivalent random
networks. For a summary of numerous alternative algorithms that
can be used to generate clustered networks see, for example,
Green and Kiss (2010) or Ritchie et al. (2014). It is well known that
modelling epidemic spread on such networks is more challenging,
although some models have successfully incorporated clusterings
(Miller, 2009; Karrer and Newman, 2010b; Volz et al., 2011; Ritchie
et al., 2015, and references therein). However, it is often the case
that such models only work for networks where clustering is in-
troduced in a very specific way, e.g. by considering non-over-
lapping triangles or other subgraphs of more than three nodes.

Besides the details of the network structure, another major
assumption that significantly reduces the mathematical com-
plexity of models and makes them amenable to analysis with
mean-field models of ordinary differential equations and tools
from Markov chain theory is the assumption that the spreading/
transmission of infection and recovery processes are Markovian.
However, it has long been recognised that this is often not the
case, and, for example, the infectious periods are typically far from
exponential, and, perhaps, are better described by a normal-like or
peaked distribution (Gough, 1977; Lloyd, 2001; Wearing et al.,
2005). Modelling non-Markovian processes can be challenging
and often leads to delay differential or integro-differential equa-
tions that are much more difficult to analyse. Recently, Kiss et al.
(2015) have put forward a generalisation of a pairwise model for
Markovian transmission with a constant infectious period for a
susceptible–infected–recovered (SIR) dynamics, with a further re-
cent extension by the same authors to an arbitrary distribution of
the recovery time (Röst et al., 2016). The first generalisation re-
sulted in a model given by a system of delay differential equations
with discrete and distributed delays which makes it possible to
gain insight into how the non-Markovian nature of the recovery
process affects the epidemic threshold and the final epidemic size.
Other important recent research in this direction includes the
message passing formalism (Karrer and Newman, 2010a;
Wilkinson and Sharkey, 2014) and an approach based on renewal
theory (Cator et al., 2013).

In light of the importance of the above-mentioned network
properties (i.e. degree heterogeneity and clustering) and the non-
Markovian nature of the spreading and/or recovery processes, in this
paper we generalise our recent research on a multi-stage SIR epi-
demics (Sherborne et al., 2015) and focus on modelling a Markovian
spreading process with gamma-distributed infectious period on
networks that account for heterogeneous degree distribution and
clustering. This is achieved within the framework of pairwise
models (Keeling, 1999), and we show that the additional model
complexity induced by degree heterogeneity and non-Markovian
recovery can be effectively controlled via a reduction procedure
proposed by Simon and Kiss (2015). This allows one to derive an
approximate deterministic model that helps numerically determine
the time evolution of the epidemic and the final epidemic size.
Moreover, the model allows us to gain insights into the interactions
of the three main model ingredients, namely, degree heterogeneity,
clustering and non-exponential recovery and the agreement be-
tween the model and the stochastic network simulation. The paper
is organised as follows. In the next section we derive a compact
pairwise model for unclustered networks whose size is independent
of the range of degrees and derive and discuss some analytical re-
sults for this model. All results are validated by comparing the nu-
merical solution of the pairwise model to results from direct sto-
chastic network simulation. In Section 3, we investigate the case
when the same epidemic unfolds on clustered networks. The cor-
responding pairwise model is derived, and we discuss the extra
complexities necessary to more accurately approximate the spread
of the disease. More importantly, we investigate how clustering and
the non-Markovian recovery affect the agreement between the
pairwise model and simulations. Finally, in Section 4 we conclude
with a discussion of our results and future work.
2. Disease dynamics in the absence of clustering

As a first step in the analysis of the spread of epidemics on
unclustered networks, we introduce the necessary concepts from
multi-stage infections and pairwise models (Sherborne et al.,
2015). In the SIKR model, once a susceptible individual S becomes
infected, they progress through K equally infectious stages de-
noted as ( )I i , ≤ ≤i K1 . The transition rates between successive
stages are given by γK . Thus, in simulation the times spent in each
of the K stages are independent exponentially distributed random
numbers. The total time of infection is, therefore, the sum of K
exponential distributions, which is a gamma distribution with the
mean time of γ�1 (Durrett, 2010). In order to describe the dy-
namics of an epidemic we consider the state of the nodes in the
network and the edges connecting them. Since a susceptible in-
dividual can only become infected upon a transmission across an

− ( )S I i link we need to consider the expected number of edges
connecting susceptible and infected individuals in any stage i from
1 to K at time t over the whole network, to be denoted as [ ]( )( )SI ti .
Here we have taken [ ]( )SI i independently of the degrees of the
nodes in state S and ( )I i , i.e. [ ] = ∑ [ ]( ) ( )SI S Ii

a b a b
i

, where a and b
denote the degrees in the range between the minimum and
maximum degrees in the network, denoted as kmin and kmax, re-
spectively. This definition applies to all pairs, i.e. [ ]AB stands for the
population level count of all −A B edges taken across all possible
connections between nodes of different degrees;

∑[ ] = [ ] ∈ { … }≔( ) ( ) ( )AB A B A B S I I I R, and , , , , , , .
a b

a b
K

,

1 2

Here and henceforth  will denote the set of all possible states for
a node. The expected number of −S S edges depends on the
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expected number of − − ( )S S I i triples, with this being the case for
other edge types as well. To break the dependency on higher order
moments, closure relations must be introduced which allow us to
approximate the number of triples using the number of pairs and
nodes in different states (Keeling, 1999).

We begin our analysis by considering the simpler case where
the contact network has a locally tree-like structure characterised
by zero clustering. The Markovian, or single stage, approach can be
extended to a SIKR multi-stage model. In order to obtain a pairwise
model for the SIKR dynamics for unclustered and degree hetero-
geneous networks, we start with the unclosed model for a general
K-stage disease and describe an a priori method to derive a new
set of closures at the level of triples. It should be noted that our
approach resembles that used in recent works of Simon and Kiss
(2015) and House and Keeling (2011b). The system describing the
dynamics of a K-stage disease has the following form (Sherborne
et al., 2015)

( )

τ

τ γ

γ γ

τ

τ γ τ

τ γ γ τ

τ γ

[ ̇] = − [ ]

[ ]̇ = [ ] − [ ]

[ ]̇ = [ ] − [ ] = …

[ ]̇ = − [ ]

[ ]̇ = − ( + )[ ] + [ ] − [ ]

[ ]̇ = − ( + )[ ] + [ ] − [ ] = …

[ ]̇ = − [ ] + [ ] ( )

( ) ( )

( ) ( − ) ( )

( ) ( ) ( )

( ) ( ) ( − ) ( )

( )

S SI

I SI K I

I K I K I j K

S S SSI

SI K SI SSI ISI

SI K SI K SI ISI j K

S R ISR K SI

,

,

, for 2, 3, , ,

2 ,

,

, for 2, 3, , ,

, 1

j j j

j j j j

K

1 1

1

1 1 1

1

where τ is the per-link disease transmission rate, and the terms
without superscripts represent summation over all infected com-
partments, i.e. [ ] = ∑ [ ]=

( )SI SIi
K i

1 , [ ] = ∑ [ ]=
( )SSI SSIi

K i
1 and [ ]( )ISI j

= ∑ [ ]=
( ) ( )I SIi

K i j
1 . While the above equations do not seem to account

separately for the degrees of the nodes, we will show that it is
possible to keep such a system and include all the information
about the degree distribution in a new closure relation at the level
of pairs. The closure for this model can be obtained by first con-
sidering the classical triple closure for a regular network (Keeling
and Grenfell, 1997)

[ ] ≈ − [ ][ ]
[ ] ( )

( )
( )

XSI
n

n
XS SI

S
1

,
2

i
i

where n is the degree of every node in the network (and thus also
the mean degree), and ∈X . The derivation of a new closure for
heterogeneous networks starts from noting that closure (2) de-
pends on the degree of the middle node, which allows us to write

[ ] ≈ − [ ][ ]
[ ]

∈
( )

XS Y
a

a
XS S Y

S
X Y

1
, , ,

3a
a a

a

for a susceptible node of degree a, with ∈ [ ]a k k,min max . To make
further progress, one can use the approximation used by Eames
and Keeling (2002),

[ ] ≈ [ ] [ ]
∑ [ ] ( )=

S Y SY
a S

b S
.

4
a

a

b k
k

bmin
max

This assumes that the number of −S Ya pairs is approximately
equal to the number of −S Y pairs (regardless of node degree)
multiplied by the degree-biased fraction of S nodes with degree a.
Substituting this approximation into (3) yields

[ ] ≈ [ ][ ] ( − )[ ]
( )

XS Y XS SY
a a S

T
1

,
5

a
a

1
2

where
∑ ∑≔ [ ] = [ ] + [ ] + [ ]
= =

( )T b S SS SI SR
b k

k

b
i

K
i

1
1min

max

denotes the total number of edges emanating from susceptible
nodes. The second expression for T1 above follows directly from
the pairwise model (1) and explains the need for explicitly in-
cluding an equation for [ ]SR . Taking the sum of all triples in (5)
over all degrees a gives

∑[ ] = [ ] ≈ [ ][ ] −

( )=

XSY XS Y XS SY
T T

T
,

6a k

k

a
2 1

1
2

min

max

with

∑= [ ]
=

T b S .
b k

k

b2
2

min

max

Unfortunately, T2 cannot be expressed in a closed form from the
solution of system (1). However, it should be possible to estimate
the degree distribution of susceptible nodes (Shkarayev et al.,
2014; Simon and Kiss, 2015). This distribution is given by

≔[ ] [ ]s S S/ ,k k

and has the mean

= [ ]n T S/ .S 1

Simon and Kiss (2015) have shown by means of numerical simu-
lation that the (dynamic) degree distribution of susceptible nodes
is proportional to the degree distribution P(k) for a Markovian SIS
epidemic. A similar approach is applied below in the context of
SIKR dynamics under the assumption that a similar level of accu-
racy can be obtained (see Discussion for numerical arguments
supporting this assumption). This linear relationship between sk
and P(k) is then used to derive a compact model. A brief ex-
planation is given below, and the full details of the method can be
found in Simon and Kiss (2015). As they will be needed later, we
first introduce the moments of the degree distribution P(k),
namely,

∑=
∑

= ( )=

=

n
m N

N
m P m .i

m k
k i

m

m k

k
imin

max

min

max

It is easy to see that

∑= [ ]
=

T S m s ,
m k

k

m2
2

min

max

and so our goal is to find an estimate for sk. Introducing a new
variable = ( )q s P k/k k linearity enforces the following relation for all

∈ [ ]k k k,min max

−
−

=
−
−

q q

k k

q q

k k
.k k

min

k k

max min

min max min

By manipulating this equation one can identify a relation between
sk and P(k); namely

( ) ( )
=

− + −

−
( )

( )
s

k k q k k q

k k
P k .

7k
min k max k

max min

max min

Since the sum of all sk's is one, and the distribution has the mean
nS, it is then possible to recast qkmin

and qkmax
in terms of the

known quantities n1, n2, n3 and nS. Feeding these back into (7)
gives an estimate for sk, and thus T2. Using this estimate we arrive
at the following relation

⎛
⎝⎜

⎞
⎠⎟

− ≈
[ ]

( − ) + ( − )
−

−T T
T n S

n n n n n n n
n n

n
1

.
S

S S
S

2 1

1
2 2

2 2 1 3 1

2 1
2
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This gives the closure for the heterogeneous compact pairwise SIKR
model (1) in the form

ζ[ ] ≈ ( ) [ ][ ]
[ ] ( )

XSY t
XS SY

S
,

8

where

( )ζ ( ) = ( − ) + ( − )
−

−
( )

t
n n n n n n n

n n n n
1

.
9

S S

S S

2 2 1 3 1
2

2 1
2

It is evident that the range of degrees and the degree distribution
have been implicitly accounted for in the closure relation, thus
allowing us to work with a set of equations whose size is in-
dependent of the range of degrees. In other words, regardless of
the exact nature of the contact network we will only ever need

+K2 3 equations in (1) to model the epidemic. This is due to all of
the information about the degree distribution being included in
ζ ( )t . In the special case of regular contact networks, where every
node has the same degree n, one has that = =n n nS 1 , =n n2

2 and
=n n3

3, hence ζ ( )t reduces to

ζ = −n
n

1
,

and the closure reverts back to the simpler version given in (2).

2.1. Numerical simulation results

In order to test the effectiveness of model (1) with closure (8),
we compare its output to numerical simulation of epidemics
spreading on networks with bimodal and truncated scale-free
degree distributions, with both types of networks being con-
structed using the configuration model (Bender and Canfield,
1978). In the case of networks with a bimodal degree distribution,
a chosen proportion of nodes are given k1 half-edges, whilst the
remainder are given k2 half-edges, and these are then connected at
random to construct the network. The generation of truncated
scale-free networks begins by choosing bounds of minimum and
maximum degree kmin and kmax. One then generates a power law
distribution with a chosen exponent α and samples the normal-
ized probability of a node having degree ∈ [ ]k k k,min max , after
which half-edges are drawn and connected at random. If the total
number of half-edges is odd, one is removed at random, the effect
Time

I/N

0 20 40
0

0.2

0.4

0.6

Fig. 1. Dynamics of epidemics spreading on unclustered networks of 1000 nodes with (a)
(b) truncated scale-free degree distribution ( ) ∼ α−P k k bounded by =k 4min , =k 6max
simulations are performed for K¼1 (black line, circles) and K¼4 (dashed line, squares). L
symbols correspond to stochastic network simulation. Other parameter values are τ = 0
of which is small and diminishes rapidly as the total number of
nodes N grows. Each simulation begins with a single infected in-
dividual, and the time is reset to zero after the number of infected
individuals reaches 10, when counted across all compartments.
This excludes simulations where the disease has died out before it
becomes established in the population, and it also minimises the
discrepancies between simulations and the approximations
caused by random delays in the early epidemic phase. The results
of these tests are presented in Fig. 1, which show the comparison
of an average of 100 simulations (consisting of 20 simulations for
five different random networks with the same topology) and the
output from the pairwise model (1). Fig. 1 shows that increasing
the number of infectious stages leads to a more rapid spread of the
disease with higher peak prevalence, despite the mean duration of
infection remaining unchanged. This suggests that the lead time to
implement any control measures is much shorter than estimates
based on standard models where recovery is Poisson would sug-
gest. This behaviour was also observed in the case of homo-
geneous populations (Sherborne et al., 2015). We further note that
for the same parameters of the disease dynamics, the trend of
faster growth is even more profound for scale-free networks. This
effect can be attributed to the influence of a small number of
highly connected nodes; these individuals are at greater risk of
receiving infection, and also have a much greater capacity to
spread the disease, thereby causing a rapid increase in the number
of new infections. This also has a significant impact on the
threshold parameter which describes the point at which an epi-
demic occurs, as will be discussed later.

2.2. Characteristics of the multi-stage compact model

2.2.1. Real-time epidemic growth rate
Now that the system of pairwise equations (1) with closures gi-

ven in (8) has been shown to accurately match numerical simula-
tions, we focus on deriving analytical results for this model. Some of
the pertinent questions concerning the early behaviour of an out-
break are as follows: will a small initial number of infected in-
dividuals lead to a major outbreak amongst the population, and if so,
how rapidly will the disease prevalence grow? Some insights into
the early-stage disease dynamics can be obtained by performing a
linear stability analysis of the disease-free equilibrium (DFE), where
[ ] =S N , [ ] =SS n N1 , [ ] = [ ] = [ ] =( ) ( )I SI SR 0j j , = …j K1, 2 , of system
Time

I/N

0 20 40
0

0.2

0.4

0.6

bimodal degree distribution with an even split of nodes having degrees 4 or 12 and
0, and with α = 2.5, and the mean degree of around 8. For both topologies, the
ines show the solution of the pairwise model (1) with the closures given in (8), and
.07, γ = 0.15.
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(1) with the closure given in (8). The stability of the DFE and thus the
early epidemic behaviour is determined by the eigenvalues, λ, of the
Jacobian matrix  ∈ ( + )×( + )K K2 2 2 2 ([ ]SR can be safely excluded, as it
only introduces a further row and column of zeros). Due to the

nature of the system,  can be recast in the block form  ( )= A
C

B
D

,

where A is a lower-diagonal ( + ) × ( + )K K2 2 matrix, B is a
( + ) ×K K2 matrix, C is a zero × ( + )K K 2 matrix, and D is a ×K K
matrix. This simplifies the calculations significantly, since the char-
acteristic equation can now be rewritten as the product of diagonal
elements of the matrix A multiplied by the determinant of the
matrix D, i.e.

( )

λ λ γ

τ ζ γ τ λ τ ζ τ ζ
γ γ τ λ

γ

γ γ τ λ

( + )

( ) − − − ( ) … ( )
− − − …

⋱ ⋱ ⋮
⋮ ⋱ ⋱

… − − −

=

10

K

n K n n

K K

K

K K

0 0 0
0 0

0
0 0

0 0

0.K2

1 1 1

The maximum eigenvalue, λmax, emerges from the determinant
of D, as all other eigenvalues are either zero or negative. Once
found in terms of system parameters, λmax gives the initial ex-
ponential growth rate of the epidemic, and the number of infected
individuals, close to t¼0, is well approximated by
[ ]( ) ≈ [ ]( ) λI t I e0 tmax , where again [ ]( ) = ∑ [ ] ( )( )I t I ti

i . To illustrate this,
in Fig. 2 the early dynamics of an outbreak is shown against this
early growth estimate. For sufficiently small time, the two solu-
tions are almost indistinguishable, suggesting that λmax does in-
deed provide an accurate characterisation of the early phase of
disease spread.

2.2.2. Epidemic threshold
The next important question is under what conditions an epi-

demic can be avoided. Clearly, there will be no epidemic growth
for λ = 0max , thus the change in stability of the DFE can be used to
determine a threshold for major outbreaks, which in this case can
be done analytically through algebraic manipulations. Setting
λ = 0 in the matrix (10) and reducing the matrix to a series of
lower diagonal matrices gives a condition for this critical point

⎛
⎝
⎜⎜

⎡
⎣
⎢
⎢

⎤
⎦
⎥
⎥

⎞
⎠
⎟⎟∑

τ ζ γ τ γ τ

τ ζ γ γ τ λ

( ( ) − − )( − − )

+ ( ) ( − ) ( ) ( − − − ) =
( )

−

=

−
− − −

n K K

n K K

0

0 1 0.
11

K

i

K
K i K i i

1
1

1
1

1
1

Rearranging this equation, one obtains a threshold parameter 





⎛
⎝⎜

⎞
⎠⎟τ τ≔ − = ( )

( )
+ ( ) −

( )
∼ ∼n

n n
n

Var P
P

P 1 ,
12

1
2 1

1
2

Fig. 2. Dynamics of the early behaviour of a disease outbreak. The solid black line
corresponds to the proportion of the infected population as described by system
(1), and the dashed line shows the early solution approximated by the maximum
eigenvalue of the DFE. Results are shown for an epidemic on a truncated scale-free
network with =k 4min , =k 40max and α = 2.81. Disease parameters are τ = 0.3,
γ = 1, K¼3, with these and the chosen network leading to λ = 1.98max .
such that the stability of the DFE changes at  = 1. In this ex-
pression P denotes the degree distribution,  ( )P and Var(P) are its
mean and variance, respectively, and

⎛
⎝⎜

⎞
⎠⎟τ γ

τ γ
≔ −

+ ( )
∼ K

K
1 .

13

K

This result is significant because  is a time-independent
threshold parameter that has been derived by considering the
real-time growth rate of the disease directly from the pairwise
model. This parameter and the growth rate are strongly related,
since λ = 0max if and only if  = 1 (see, for example, Diekmann
et al., 2012 or Pellis et al., 2015b). The structure and purpose of 
are similar to those of the basic reproductive ratio 0 in classical
models, and indeed, it agrees perfectly with generation-based
methods of deriving threshold conditions (see, for example, Kamp
et al., 2013), as we briefly discuss below.

2.2.3. The generational approach
An alternative interpretation of τ∼ is that of the transmissibility

of the disease, defined as the probability that infection will pass
across a link from an infected to a susceptible node, when this pair
is considered in isolation. Therefore, expression (13) can also be
obtained by direct computation of this probability, which gives
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This equivalent definition of τ∼ shows that the threshold condition
for epidemic growth in our pairwise model is equivalent to gen-
eration-based approaches used to define 0. The factor in (12)
describes the expected remaining degree of a newly infected node,
and, thus, the potential number of secondary infections which it
could generate in an otherwise wholly susceptible population.

Identifying this threshold through either method allows one to
predict that for  < 1 the epidemic will die out, and for  > 1 the
epidemic will develop in the deterministic model (1). This
threshold translates to stochastic simulations, however, there is
still a small possibility that an early disease die-out can occur even
when  > 1. Similarly, small epidemics may occur in some cases
where  < 1. It is important to note that although τ∼ emerges di-
rectly from the linear stability analysis, identifying it as the
transmissibility restores the conventional interpretation of the
threshold for epidemic spread as the expected number of sec-
ondary infections caused by a single infected individual in a fully
susceptible population. In this way, our findings agree with the
literature (see, for example, Diekmann et al., 1998).

An interesting result can be reached by considering  in the
case of a scale-free distribution with ( ) ∼ α−P k k where α ≤ 3. In
this case, unless P(k) is truncated, higher moments n2, n3 of the
degree distribution are not defined as the population size tends to
infinity, and, hence, as the population size grows, the threshold
parameter  will diverge for any non-trivial choice of the disease
parameters τ, γ and K. Under these circumstances, the network
topology dominates the dynamics of disease, and unless the con-
tact structure can be altered or influenced, the disease will always
spread through the population. This conclusion has been reached
before in other models (Pastor-Satorras and Vespignani, 2001).

2.2.4. The final epidemic size
Since we are studying the spread of epidemics in a closed po-

pulation, every epidemic will reach an end when there are no
more infected individuals, at which point every member of the
population is either still susceptible or in the removed class. To
quantify the severity of an epidemic, it is instructive to look at the
proportion of the population who will become infected over the
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entire lifetime of the epidemic; this quantity is known as the final
epidemic size. In principle, it may be possible to manipulate the
equations in (1) with the newly derived closure approximation (8)
to find first-integral-like relations and thus find an expression for
the final epidemic size (Keeling, 1999; Sherborne et al., 2015).
However, by considering the final epidemic size problem using a
bond percolation model, Newman (2002b) showed that it is pos-
sible to obtain an exact result for the mean final epidemic size.
Based on the generating function for the degree distribution

( )≔ ∑G x p xk k
k

0 , where ( ) =P k pk, the generating function for the

excess degree distribution ( ) = ′ ( ) = ∑ −G x G x kp x
n n k k

k
1

1
0

1 1
1 1

, and the

transmissibility, which for our model is given by τ∼ in (13), the final
epidemic size is given by (Newman, 2002b):

 ∑θ τ θ τ= − ( + ( − ) ) = − ( + ( − ) )
( )

∼ ∼
∞ G p1 1 1 1 1 1 ,

14k
k

k
0

where θ is the unique solution in ( )0, 1 of the following equation:

∑θ θ τ θ τ= ( + ( − ) ) = ( + ( − ) )
( )

∼ ∼ −G
n

k1 1
1

1 1 .
15k

p
k

1
1

1

Newman's work has been revisited by Kenah and Robins (2007),
and whilst they showed that the distribution of final sizes sug-
gested by Newman's original work was incorrect for non-constant
infectious periods, the mean final epidemic size given by (14) and
(15) is correct.

Fig. 3 shows the comparison of the final epidemic size results
based on Eqs. (14) and (15) to results from the numerical solution
of the new pairwise model (1), and the agreement is excellent. It is
noteworthy that in all cases the final epidemic size behaves as
expected with respect to the disease parameters, i.e. a higher
(lower) transmission rate τ results in a larger (smaller) final epi-
demic size, the mean duration of infection (γ�1) has a similar ef-
fect, and a tighter distribution of the infectious periods (higher K)
increases the predicted final epidemic size. Furthermore, a careful
comparison of bimodal and truncated scale-free networks shows
that having a broader degree distribution leads to certain differ-
ences in the dynamics. Namely, for relatively low transmission
rates, epidemics of measurable size are predicted in truncated
scale-free networks but not necessarily for the bimodal distribu-
tion. However, as the transmissibility grows (either through
Fi
na

l S
iz

e

0 0.2 0.4 0.6 0.8 1
0.2

0.6

1

Fi
na

l S
iz

e

τ
0 0.2 0.4 0.6 0.8 1

0.2

0.6

1

Fig. 3. Comparison of the final epidemic size as determined by Eqs. (14) and (15) (lines) a
even split of nodes with degree 4 and 12 (a) and (b); and truncated scale-free network
values are: (a), (c) K¼1, γ = 1 (solid line, crosses), K¼4, γ = 1 (dashed line, pluses), K¼1,
(dashed line, pluses), τ = 0.15, γ = 0.5 (dotted line, stars).
increasing τ or K) there comes a point where the final epidemic
size becomes larger for the bimodal degree distribution. The most
likely explanation for this is that poorly connected nodes are more
difficult to reach in truncated scale-free networks, as once the
highly connected nodes are infected the epidemic struggles to
infect nodes with few links.

2.3. Limiting cases

It is instructive to look at the behaviour of model (1) in two
particular limits of the number of infectious stages. When K¼1,
model (1) reverts to the classical Markovian pairwise model which
has been thoroughly studied (Eames and Keeling, 2002; House and
Keeling, 2011a). As the number of stages increases, the shape of
the distribution for the infectious period changes, as shown in
Fig. 4. For larger K one can see that the distribution grows tighter
around the mean, which is kept constant at γ�1 due to the parti-
cular formulation of the model, and there is also much less var-
iation in the duration of infection. The limiting case of → ∞K
results in the infected period having a Dirac delta distribution

( )δ γ− −t 1 around the mean infectious period. It has been recently
shown that this case can be accurately described by a system of
pairwise delay differential equations (DDEs) for homogeneous
populations (Kiss et al., 2015), in which case the above-mentioned
concept of transmissibility is also applicable. In this case, the
transmission process is still Markovian (thus, the time to infection
of a susceptible node with an infected neighbour is drawn from an
exponential distribution with parameter τ), however, the in-
fectious period is now constant, hence the probability of the in-
fected node recovering is given by ξ ( )t , where

⎪

⎪⎧⎨
⎩ξ

γ
γ

( ) =
≤ <
≥

−

−
t

t

t

0 if 0 ,

1 if .

1

1

Under these circumstances the transmissibility for a disease with a
constant infectious period is given by

∫τ τ ξ= ( ) = −∼ τ τ γ
∞

− −e x dx e1 .x
const

0

/

It is easy to show that taking the limit → ∞K in (13) yields the
same result, i.e.
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This suggests that results for the final epidemic size and the
threshold parameter  for the case of a constant infectious period
can be derived independently from the DDE system (Kiss et al.,
2015), and they coincide with the result of taking the limit as

→ ∞K for the multi-stage model (1). This model, therefore,
bridges the gap between the traditional Markovian and delay-
based scenarios, and accurately represents the spread of a disease
with a distribution of infectious period which cannot be modelled
by either.
3. The pairwise model on clustered networks

As has already been mentioned, clustering is known to play an
important role in the spread of epidemics on networks. A con-
venient way to quantitatively characterise the level of clustering in
a given network is through the clustering coefficient ϕ, most
commonly defined as the proportion of closed triangles of nodes
out of the total number of triples (open and closed together) in the
network. The clustering coefficient ϕ can be intuitively understood
as the probability of two nodes with a common neighbour being
connected. This coefficient can be computed as follows (Keeling,
1999):

ϕ = ( )
∥ ∥ − ( ) ( )

A
A A

tr
tr

,
16

3

2 2

where = ( ) = …A aij i j N, 1,2, , is the adjacency matrix of the network,
with =a aij ji, =a 0ii for all i j, , =a 1ij if nodes i and j are connected
and zero otherwise, and ∥·∥ stands for the sum of all the elements
of the matrix. In the previous section it was assumed that ϕ = 0.
However, studies based on the data collected from real-world
networks have found that this is often not the case. For example,
studies of mathematics collaboration networks have found
ϕ = 0.15 (Grossman, 2002), and similar studies for other dis-
ciplines have found that the clustering coefficient ranged from
ϕ = 0.066 to ϕ = 0.726 (Newman, 2001), thus suggesting that
clustering is often an important factor to be included in the net-
work model.

The challenge presented by clustered networks is that one can
no longer assume that all triples are open, and, therefore, the
closures of pairwise models have to be reconsidered and appro-
priately modified to effectively approximate the dynamics. In the
most general formulation, one can start from a triple [ ]X S Ya b c

where the degree of nodes is considered explicitly. Based on House
and Keeling (2011a), we can write
⎛
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where again ∈X Y, . In order to remove the dependency on node
degree, we employ two a priori approximations first introduced by
Eames and Keeling (2002). The first of these approximations has
already featured earlier in (4), namely,

[ ] ≈ [ ]
∑ [ ]

[ ]X Y
a X

j X
XY ,a

a

j j

and the second has the form

[ ] ≈ [ ][ ]
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[ ]
[ ] [ ]

≈ [ ][ ]
[ ] ( )
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ab n N

a a b b
X Y XY

XY
,

18a b
a b a b1

where n1 is the mean degree, and [ ]a is the expected number of
individuals with degree a in the network. The new approximation
assumes that the joint probability of a pair can be accurately es-
timated by removing dependence on the degree of the second
node and multiplying by a second term that captures the specifics
of the network structure. This term is known as the assortativity of
nodes with degrees a and b, and it measures whether nodes with
similar degrees are more likely or less likely to connect to each
other (Newman, 2003a). The simplification shown in (18) assumes
null assortativity (i.e. random connection between nodes) and will
be used throughout this section.

We are now in a position to derive closures for the multi-stage
model on clustered networks. In (17) the terms outside the bracket
are similar to the closure in (8) and (9) for unclustered networks.
In fact, the sum over all degrees a and c will result in the same
expression but with the subscripts dropped, as can be checked
using (4) and (18). Thus, the first part of the derivation follows
exactly the same methodology as for the unclustered network case
discussed in Section 2. Focusing on the final term in (17), which is
responsible for clustering, we use the above approximations to
obtain
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In a similar way as it was done for T1, it is possible to define ( )J i
1 and

P1 as the sums of all edges emanating from infected nodes in the i-

th stage and from removed nodes, respectively. Then = ∑ =
( )J Jj

K j
1 1 1

is the number of edges emanating from all infected nodes, re-
gardless of their degree and the stage of the disease which they are
in. The full closures necessary for the model with clustering can
now be stated as follows:
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where ζ ( )t is still given by (9), and we have defined
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The model now has to explicitly consider every possible combi-
nation of pairs, which, for a disease with a K-stage gamma dis-
tributed infectious period, yields the following system of
( + + )K K3 42 equations
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with the closures for [ ]SSI , [ ]( )ISI j and [ ]ISR given in (19). Note that,
as one would expect, setting ϕ = 0 reduces this model to the
simpler compact model introduced and discussed in Section 2.

3.1. Numerical simulations

To investigate the accuracy of model (20), we compare its
output to stochastic network simulation. First, it is necessary to
explain how one can construct clustered networks, which is
achieved using the big-V rewiringmethod (Bansal et al., 2009). This
algorithm takes as an input a random unclustered network con-
structed with the configuration model, and at each iteration it
looks for a chain of five nodes − − − −u v x y z , such that newly
created links after the rewiring process do not yet exist. Once such
a chain is found, the algorithm deletes −u v and −y z edges, and
connects −v y and −u z in order to replace the five-node chain
with a triangle and a separately connected edge. If this procedure
increases local clustering, then the rewiring is accepted, and the
algorithm continues until the target clustering coefficient ϕ is
reached. The benefit of this approach is that while the level of
clustering can be varied, the degree distribution remains the same.

Many other algorithms exist that can be used to generate
clustered networks, with some of these algorithms using sub-
graphs to construct the overall network (Newman, 2009; House,
2010; Karrer and Newman, 2010b; Volz et al., 2011; Miller, 2009;
Ritchie et al., 2014, 2015, 2016). The subgraphs over three, four or
more nodes typically display different levels of clustering, and
thus, global level of clustering can be tuned. The probability gen-
erating function formalism leads to percolation models (Newman,
2009; Miller, 2009) or ODE (Volz et al., 2011; Ritchie et al., 2015)
that agree well with explicit stochastic network simulation on
particular clustered networks. Further methods exist to generate
clustered networks (Newman, 2003b; Volz, 2004; Bagrow and
Brockmann, 2013), however, the big-V algorithm introduces tri-
angles in a random and uniform way, generating little structure
beyond triangles at low and medium levels of clustering. Of
course, for high levels of clustering most algorithms lead to frag-
mentation of the network into disconnected components, and, as a
result, densely connected subgraphs may emerge. Using a sub-
graph counting procedure, Ritchie et al. (2014, 2015, 2016) have
shown that networks generated using the big-V algorithm have a
negligibly small number of subgraphs over four or more nodes
when compared to networks generated based on subgraphs. Given
that pairwise models operate on the basis of closures at the level
of open triples and triangles, and that they make no further as-
sumptions about higher-order structure, clustered networks gen-
erated using the big-V algorithm are ideal for comparison between
explicit stochastic network simulation and pairwise models.

Fig. 5 illustrates the results of simulations on networks with a
bimodal degree distribution both for unclustered networks, and for
rewired networks with the clustering coefficient ϕ = 0.2, which is in
the range observed in empirical data (Newman, 2001; Grossman,
2002). Whilst the agreement is good in all cases, the clustering in-
troduces some inaccuracy. This is to be expected since the number of
susceptible neighbours of a node is now harder to predict due to the
presence of short cycles. Furthermore, the inclusion of triangles
appears to slow down the spread of the epidemic. The grouping of
nodes into small communities decreases the number of individuals
at risk of infection at any time, because the disease has fewer routes
to spread away from an infectious seed. One should also note that
with the introduction of a gamma-distributed infectious period, the
trend of faster epidemic growth and higher peak prevalence with
increasing values of K is preserved. This reinforces the earlier con-
clusion that the inclusion of a more realistic distribution of infectious
periods can lead to more rapid severe epidemics than what would
be predicted by the traditional models with an exponentially dis-
tributed infectious period.

Similar changes in the dynamics are observed in the case of
truncated scale-free networks, as shown in Fig. 6. However, unlike
the bimodal case, the impact of higher clustering has a less pro-
nounced effect on the timescale of the epidemic. This is likely due
to the fact that highly connected nodes cannot be effectively re-
stricted to a single small community, and, therefore, their ability to
spread the disease is not significantly affected. It can also be seen
that a larger value of K appears to improve the accuracy of the
pairwise model (20).

Despite its successes, the pairwise model (20) becomes less
accurate as clustering in the network increases. To investigate this
in more detail, we have performed numerous comparisons be-
tween simulations and the numerical solution to the pairwise
model (20) for networks with bimodal and truncated scale-free
degree distributions, with increasing levels of clustering. The re-
sults of these tests are presented in Fig. 7 which shows that system
(20) is reasonably accurate for low levels of ϕ, however, this ac-
curacy reduces as ϕ increases. The most likely explanation for this
reduction in model accuracy is the assumption of null assortativity
explicitly made in (18) when deriving closures for the clustered
model, since it is known that clustering in networks increases
assortativity (Foster et al., 2011). Furthermore, it has also been
shown in a number of earlier studies that high levels of assorta-
tivity are the norm in real social networks (see, for example,
Newman, 2002a). Since the null assortativity assumption is vio-
lated in such networks, it is not surprising that the pairwise model
(20) does not provide an accurate representation of dynamics for
high levels of clustering.
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ϕ = 0; (b) K¼5, ϕ = 0; (c) K¼1, ϕ = 0.2; (d) K¼5, ϕ = 0.2. Other parameter values are τ¼0.1, γ = 0.2.

0 10 20 30
0

0.2

0.4
(a)

I/N

0 10 20 30
0

0.2

0.4

0.6
(b)

0 10 20 30
0

0.2

0.4

Time

I/N

(c)

0 10 20 30
0

0.2

0.4

0.6

Time

(d)

Fig. 6. Comparisons of numerical simulations (circles) to the pairwise model (solid line) for truncated scale-free networks with exponent α = 2.5, kmin¼4, kmax¼60. (a) K¼1,
ϕ = 0; (b) K¼5, ϕ = 0; (c) K¼1, ϕ = 0.2; (d) K¼5, ϕ = 0.2. Other parameter values are τ¼0.1, γ = 0.2.
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Fig. 8 shows the comparison of the final epidemic size recorded
from the simulations and the pairwise model. Again, it is clear that
the pairwise model performs worse for high levels of clustering.
However, the results suggest that when clustering is present in the
network, the epidemic threshold appears to increase, and thus
measurable epidemics are less likely to occur. This can be seen in
Fig. 8, as a higher transmission rate is required in order for the
final epidemic size to diverge away from zero when the epidemic
takes place in a clustered network. Similarly, for clustered net-
works, simulation results show that the final epidemic size will be
reduced when compared to equivalent networks with the same
degree distribution, no clustering and the same parameters of the
disease dynamics. This makes sense intuitively, since rewiring a
network makes the population more segregated and thus there
exist clusters of individuals that are more likely to escape infec-
tion. It is noteworthy that the data in Fig. 8 (b) is grouped much
more tightly, showing that the reduced variance in the distribution
of recovery times is reflected in the reduced variance of the
distribution of final epidemic sizes from simulation data. This is
illustrated by the significantly smaller spread of the box-and-
whisker plots for the non-Markovian case. Lower variance in the
final epidemic size occurs alongside improved agreement between
pairwise and simulation model, both for unclustered (1) and
clustered models (20). This suggests that pairwise approximations
perform better for diseases with smaller variance of the distribu-
tion of recovery times, and that clustering may play a less sig-
nificant role when non-Markovian distributions are introduced.

In an extensive recent study of small/toy networks, Pellis et al.
(2015a) proved that for an SIR epidemic on a single open triple or
closed triangle the classical closures, such as those given in (3) and
(17), are exact for constant infectious periods (see Proposition 3 in
Pellis et al. (2015a)). As has been previously discussed in
Section 2.3, as the number of stages, K, increases in the pairwise
model, we approach the limit of a constant infectious period. Al-
though the exact results do not carry over to large networks, they
suggest that a greater accuracy may be achieved on larger
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networks when the infectious period tends towards a fixed length,
that is, as K increases. To test the validity of this hypothesis, in
Fig. 9 we plot the value of the error between the final epidemic
size computed from the pairwise model (20) and the results of 100
simulations under the same parameters, for the two model net-
works. Fig. 9 indicates that the error does indeed decrease for any
ϕ as the infectious period becomes tighter around the mean (as
characterised by an increasing K), thus suggesting that the findings
of Pellis et al. (2015a) are also relevant for larger networks where
both open and closed triples are present. Furthermore, one should
note that in all but two cases the pairwise model (20) over-esti-
mates the final epidemic size when compared to simulations. This
suggests that in most cases the model can be expected to give an
upper bound on the size of an epidemic. Even though our newly
derived compact closures (19) are not exact, their performance
improves greatly when the infectious period approaches the limit
of a fixed infectious period. This is an important result that jus-
tifies the continued use of pairwise-like methods for non-Marko-
vian epidemics on networks.
4. Discussion

In this paper we have derived and studied a new pairwise
model for the spread of infectious diseases which includes three
major characteristics that are not consistently studied con-
currently, despite being essential for understanding disease dy-
namics in many realistic scenarios. Our pairwise model can ac-
count for degree heterogeneity, clustering and gamma-distributed
infectious periods, and the number of equations in the pairwise
model does not depend on the range of different node degrees.
This approach follows the methodology of the so-called compact
pairwise models (Simon and Kiss, 2015; House and Keeling, 2011b),
and the output from the resulting pairwise model shows excellent
agreement with results of numerical simulation for networks with
either no or low levels of clustering, and for all the different degree
distributions that have been considered.

The major heuristic assumption behind the super compact mo-
ment closure approximation is the existence of a linear relationship
between the degree distribution of the starting network and the
degree distribution of susceptible nodes as the epidemic evolves.



Fig. 8. Dependence of the final epidemic size on the per-link transmission rate for networks with bimodal degree distribution of degree 4 or 12, split equally. The parameter
γ is fixed at 1, and in (a) K¼1, (b) K¼4. Solid lines correspond to epidemics on unclustered networks, dashed lines illustrate equivalent epidemics on a network with ϕ = 0.4,
all based on pairwise models. The boxplots illustrate the results from 100 numerical simulations for each highlighted value of τ. The box shows the lower and upper quartile,
and horizontal line within the box shows the median. The whiskers extend to a maximum distance of 1.5 times the interquartile range, and crosses represent outliers. Black
circles denote the mean final epidemic size.

0
2

4
0

0.2
0.4

0

0.1

0.2

0.3

φK

E
rr

or

0
2

4
0

0.2
0.35

0

0.05

0.1

0.15

φK

E
rr

or

Fig. 9. The error between the final epidemic sizes obtained from the solution of the pairwise model (20) and from the average of 100 numerical simulations plotted against
the clustering coefficient ϕ and the number of stages of infection K, plotted as result from the pairwise model less result from simulation. Parameter values are τ = 0.3, γ = 1.
(a) A network with bimodal degree distribution, an even split of nodes having degrees =k 41 and =k 122 . (b) A scale-free network of 1000 nodes with =k 4min , =k 60max ,
and ( ) ∼ −P k k 2.5. Note that as predicted, even in the presence of clustering, as K grows, the error becomes smaller, and hence the pairwise model becomes more accurate.
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According to Simon and Kiss (2015), this linear relationship amounts
to having ( ) ( ) = ( ) + ( ) = ( )s t P k A t k B t q t/ ,k k for all ≥t 0, which es-
sentially means that the degree distribution of the susceptible nodes
can be deduced from P(k) by using a multiplicative factor that is
linear in k and whose gradient and intercept depend on time. In
order to test this assumption explicitly, in Figs. 10 and 11 we check if
the points ( ( ))k s P k, /k , for = … −+k k k k k, , , 1,min min max max1 , do in-
deed lie on a line at various points of the unfolding epidemic. The
two figures illustrate that the linear relationship appears to be ful-
filled to the same degree for both the standard Markovian model
(K¼1) and the non-Markovian multi-stage model (here K¼3). To be
more precise, it is obvious that ( )s P k/k shows a strong linear relation
for early time (shown in panels (b) and (c) of Fig. 10 and panel (b) of
Fig. 11); although for later stages of the epidemic the relation
weakens as the number of susceptible nodes of high degree is de-
pleted to a larger extent compared to susceptible nodes of lower
degree. However, it is noteworthy that this deviation from the as-
sumption does not significantly affect the accuracy of the pairwise
model when compared to explicit stochastic network simulations,
see panel (a) in Figs. 10 and 11.

For networks with bimodal degree distribution, as studied in
the paper, we have that the distribution of the susceptible nodes
satisfies the equations below

+ = ( )s s 1, 21k k1 2

+ = ( )k s k s n , 22k k S1 21 2

where the system provides a unique solution for ( )s s,k k1 2 without
the need to use the linear approximation assumption, see also
Simon and Kiss (2015). Hence, for this case, replicating the test in
Figs. 10 and 11 is not warranted as it would neither confirm nor
reject the validity of the assumption.

Overall, it would be desirable to carry out further tests to un-
derstand how (a) network properties and (b) the type of dynamics
impact on the linearity assumption. For example, if the network is
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assortative, in which case nodes of the same or similar degree are
more likely to be connected, will the same relation hold? The same
could be considered in the context of disassortative networks,
where nodes of differing degrees are more likely to be connected.
The accuracy of the pairwise model when compared to simulation
provides strong support for using the super compact closure at
least for the class or family of networks presented in the paper.
However, the fact that the departures from the linearity assump-
tion seem not to impact significantly on the agreement between
the mean-field and simulation models remains a question that
warrants further investigation.

In the absence of clustering we have used linear stability ana-
lysis to determine a threshold parameter from the pairwise model,
and we have shown that existing methods for finding the final
epidemic size (Newman, 2002b) can be applied. Equivalent results
have not been found in the case of clustered networks. However,
extensive numerical simulations have shown that introducing
multiple stages of infection increases the speed of epidemic
spread, as well as the peak prevalence and the final epidemic size.
The interactions of degree heterogeneity, clustering and the dis-
tribution of infectious period all have significant yet contrasting
impacts on an outbreak. For example, we have seen that both
degree heterogeneity and a larger number of infectious stages
(corresponding to a tighter distribution for the duration of infec-
tion) increase the growth rate of the epidemic in the early stages,
however, this is countered when one includes clustering that is
likely to be present in real contact networks. These findings are
consistent with earlier results on the effects of clustering on the
spread of epidemics (Eames, 2008). Serrano and Boguñá (2006)
have shown that whilst clustering makes epidemics less likely, for
scale-free topologies, and in the limit of infinite networks, an
epidemic threshold does not exist, and a significant outbreak will
always occur. The complexity of the pairwise model for clustered
networks has meant that analytical expressions for the epidemic
threshold and the final epidemic size have not been found. In fact,
analytical results have so far only been obtained for clustered
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networks with a specific construction, e.g. non-overlapping tri-
angles (Miller, 2009). Random rewiring enforces fewer restrictions
on the network and thus allows for more complex topologies to
emerge, which is likely to provide more realistic but also more
challenging scenarios for modelling than networks with a pre-
scribed nature of clusters.

A strength of the final pairwise model which we have pre-
sented is that it can be tuned based on the characteristics of the
disease and population being studied. There are several ways to
include more features into this model. For example, by allowing
the transmission rate to vary depending on the stage of infection,
one could model diseases with varying infectivity. Setting τ = 0 in
any number of initial stages also opens the possibility for multi-
stage SEIR models to be studied, again without altering the basic
framework of the model.

Models, such as the one presented in this paper, could also be
used for a more thorough study of the performance of closures and
for mapping out how different approximations behave under dif-
ferent regimes, such as stochastic models for the transmission and
recovery processes. Furthermore, one could consider whether
non-Markovian transmission processes can be incorporated into
pairwise or pairwise-like models. Additional motivation for re-
search into this area comes from studies which have suggested
that human contact patterns are typically very ‘bursty’ (Chaintreau
et al., 2007; Cattuto et al., 2010). This means that there are many
short periods with high levels of interaction and longer periods of
little or no action, and this may have a significant impact on how
an epidemic may spread. It is possible that attempts to incorporate
non-Markovian transmission may lead to a more complex system
of integro-differential equations.

There have been many recent developments in the area of
dynamic or adaptive networks (Gross et al., 2006; Risau-Gusmán
and Zanette, 2009; Kiss et al., 2012; Sélley et al., 2015) where
pairwise models have been used successfully to couple the dy-
namics of an epidemic on the network with the dynamics of the
network. These models have shown that using pairwise approx-
imation techniques it is possible to capture non-trivial properties
of both network and epidemic dynamics in a single model. There is
a wide scope for further research focussed on modelling the re-
wiring process, as well as for analysis of a reaction of networks to a
spreading epidemic when considered as a non-Markovian process.

The pairwise model presented in this paper does well at ac-
counting for non-Markovian infectious periods, indeed, it becomes
more accurate in this case, yet it is limited in capturing epidemics
on realistic clustered networks. This work highlights some of the
important factors in modelling disease outbreaks, each of which
can significantly alter the behaviour of an epidemic, and shows
that model realism and complexity are correlated.
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