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H I G H L I G H T S
c Mechanisms of onset of autoimmunity are reviewed.
c Model of viral infection causing autoimmunity.
c Tunable activation thresholds.
c Hopf bifurcation corresponds to relapses and remission.
c Multiple infections can lead to substantial autoimmune response.
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a b s t r a c t

It has been known for some time that human autoimmune diseases can be triggered by viral infections.

Several possible mechanisms of interactions between a virus and immune system have been analysed,

with a prevailing opinion being that the onset of autoimmunity can in many cases be attributed to

‘‘molecular mimicry’’, where linear peptide epitopes, processed from viral proteins, mimic normal host

self-proteins, thus leading to a cross-reaction of immune response against virus with host cells. In this

paper we present a mathematical model for the dynamics of an immune response to a viral infection

and autoimmunity, which takes into account T cells with different activation thresholds. We show how

the infection can be cleared by the immune system, as well as how it can lead to a chronic infection or

recurrent infection with relapses and remissions. Numerical simulations of the model are performed

to illustrate various dynamical regimes, as well as to analyse the potential impact of treatment of

autoimmune disease in the chronic and recurrent states. The results provide good qualitative

agreement with available data on immune responses to viral infections and progression of autoimmune

diseases.

& 2012 Elsevier Ltd. All rights reserved.
1. Introduction

A successful immune system relies on its ability to discrimi-
nate between cells infected with a pathogen such as virus and the
uninfected cells of the host. The breakdown in discrimination of
self-antigens results in autoimmunity, where the immune system
attacks specific cells or organs. The specificity of the immune
response focuses disease within different target organs, for
example, pancreatic b-cells in insulin-dependent diabetes melli-
tus type-1 (IDDM), the central nervous system in multiple
sclerosis (MS), or the retina in uveitis—an inflammation of the
eye (Santamaria, 2010; Prat and Martin, 2002; Kerr et al., 2008).
ll rights reserved.

ss),
Multiple factors are known to contribute toward the onset
and development of autoimmune diseases, including genetic
predisposition, age, and environment. Amongst the environmen-
tal factors, the major identified triggers of autoimmunity are
believed to be infectious pathogens (Bluestone et al., 2010;
Buljevac et al., 2002). Experimentally, direct infection of islet
cells in the pancreas led to bystander damage of the islet cells and
autoimmunity, and it was concluded that the release of seques-
tered antigen was critical to the development of disease (Horwitz
et al., 1998). There is also a strong association between infection
with hepatitis C and autoimmune hepatitis (Longhi et al., 2010).
While it is certainly not the case that all autoimmune disease is
triggered by infection of the organ that subsequently becomes the
target, this is a reasonable model for several known examples of
organ specific autoimmunity.

There are many mechanisms by which host infection by a
pathogen may contribute to autoimmunity, including triggering
the innate immune system, molecular mimicry and bystander
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activation (see, e.g., Ercolini and Miller, 2008 for a recent review).
Molecular mimicry is thought to be particularly important when
viruses cause autoimmunity (Ercolini and Miller, 2008; Fujinami,
2001; Münz et al., 2009; von Herrath and Oldstone, 1996). An
immune response elicited against a viral protein that mimics a
self-antigen will not only eliminate the virus, but can also target
normal host cells that display the cross-reactive self-antigen. Such
interactions may play a role both in causing disease and also in
precipitating a relapse of disease. Between such triggering events,
disease can remit in part because of the existence of regulatory
pathways that dampen immune responses.

Whilst significant advances have been made in mathematical
modelling of various aspects of general virus dynamics and the
interactions between viruses and the immune system of the host,
theoretical studies of autoimmunity have been quite limited in
comparison. One of the earliest mathematical models of auto-
immunity did not explicitly include specific causes of autoimmu-
nity but rather concentrated on the interactions between effector
and regulator cells, and used this to get an insight into T cell
vaccination (Segel et al., 1995). Further progress in the context of
T cell vaccination was made by Borghans and de Boer (1995) and
Borghans et al. (1998), who demonstrated how the interactions of
autoreactive and regulatory T cells can lead to the onset of
autoimmunity or stable oscillations around a vaccinated state.
Burroughs et al. (2011) have studied the onset of autoimmunity
through bystander activation. Wodarz and Jansen (2003) analysed
autoimmunity in the context of viral causes of cancer. They
included viral infections indirectly through an increased rate of
uptake of self-antigen by antigen-presenting cells. León et al.
(2000, 2003, 2004) have studied the dynamics of interactions
between different T cells for the purposes of regulation of
immune response and control of autoimmune reaction. More
recently, Iwami et al. (2007, 2009) derived and studied a model
for autoimmunity, which makes explicit account of the virus
dynamics and its interaction with the immune system by means
of linear or nonlinear immune response. Despite its simplicity,
this model appears unable to reproduce a normal clearance of
virus during a single infection, as it does not allow for a viral
expansion. Various roles played by the regulatory T cells in the
dynamics of autoimmunity have recently been analysed by
Alexander and Wahl (2011).

There are several ways to account for the ability of T cells to
discriminate between cells presenting self-antigens and infected
cells. One of these is through regulatory cells, which are triggered
by autoantigens and inhibit the activity of autoreactive T cells.
This approach has already been extensively used in models of
immune response, see Alexander and Wahl (2011), Burroughs
et al. (2011), etc. Another approach is to consider T cells, which
can perform a wide range of immune function by virtue of having
different or tunable activation thresholds (TAT). This concept has
been defined previously as: ‘‘activation is a threshold phenom-
enon and the threshold is tuned by the stimulatory experience of
the cell’’ (Grossman and Paul, 1992), i.e. T cells continually tune
their responsiveness to T cell antigen receptor (TCR) stimulation
through stimuli evoked by autoantigens. Because the degree of
autoreactivity of T cells is continuously controlled through their
activation and tuning, this approach provides another way of
modelling the onset and development of autoimmune disease.
Grossman and Paul (1992, 2000) and Grossman and Singer (1996)
developed models with tunable activation thresholds that were
applied to peripheral and to central T cell activation. Altan-Bonnet
and Germain (2005) have modelled signalling threshold and
shown differences in activation/response threshold that are
dependent on the activation state of the T cell. Noest (2000) has
shown how the need for activation threshold tuning arises from
the first principles of signal detection theory, see also Scherer
et al. (2004) for further discussion of this issue. van den Berg and
Rand (2004) have studied mathematically two cellular response
models of the dynamics of tunable activation threshold. Carneiro
et al. (2005) have performed a comparative study of two mechan-
isms of self-tolerance: tuning of activation thresholds and control
by specific regulatory T cells. The authors have shown that these
two mechanisms are complementary and together provide a
plausible explanation of the observed dynamics of immune
tolerance. Besides purely theoretical studies, dynamical changes
in T cell activation during their circulation have also been shown
experimentally both in the mouse and in man, where it has
important implications for the outcome of specific therapeutic
interventions (Bitmansour et al., 2002; Nicholson et al., 2000;
Römer et al., 2011; Stefanova et al., 2002).

In this paper we propose and study a mathematical model for
autoimmune disease caused by viral infections through molecular
mimicry. By introducing separate populations of regular activated
T-cells and T-cells with a lower activation threshold to self-
antigen which arises as a result of the infection, the model is
able to qualitatively reproduce normal aspects of immune beha-
viour. The model presented in this paper differs from an earlier
work in this particular modelling aspect, as well as in the explicit
account for a viral infection represented both by infected cells and
by a separate population of free virions.

The organization of this paper is as follows. In the next section
we discuss various biological assumptions behind the origins
of autoimmunity and derive the corresponding mathematical
model. In Section 3 we perform a systematic analysis of the
steady states of the model and their stability. Section 4 contains
results of numerical simulations in different parameter regimes,
which illustrate clearance of infection, onset of autoimmunity,
periodic flare-ups, as well as the dynamics of multiple infections.
The paper concludes with the discussion of obtained results in
Section 5.
2. The model

We are interested in modelling the interactions between a
viral infection and a human host immune system that lead to
the onset of autoimmunity through molecular mimicry. When
cells in a particular organ of the body become infected with a
pathogen, the elicited immune response may cross-react with
one or more self-antigens that share determinants with the
pathogen (von Herrath and Oldstone, 1996). This subsequently
can lead to a breakdown of tolerance for self-antigens through
the appearance of lymphocytes capable of attacking the host’s
own cells, both in the same and in other organs. For both viral
and bacterial pathogens, there is evidence that the antigens
derived from pathogens engage and expand both CD4 and CD8
T cells that drive autoimmune disease (Chastain et al., 2011;
Olson et al., 2001). Furthermore, recent genetic studies of auto-
immunity implicate many genes that control T cell expansion and
activation threshold (Cotsapas et al., 2011). Hence, it is important
to understand a model of autoimmune disease that specifically
addresses the dynamics of T cells. While it is unarguable
that antibodies are important in many types of autoimmune
disease, there is good evidence that T cell recognition of antigenic
peptides is often a critical initiating step. For example, in a model
of rheumatoid arthritis, antibodies were sufficient to induce
disease (Korganow et al., 1999) but the development of antibodies
depends on prior T cell interactions with bacteria (Wu et al.,
2010). Furthermore, in some of the experimental models of
autoimmunity, B cells are dispensable, and disease develops when
they are not present (Wolf et al., 1996). Therefore, the balance of
evidence is for a necessary T cell component in the onset and
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development of autoimmunity, and our model specifically seeks
to address this.

To model the dynamics of an immune response during a viral
infection and possible onset of autoimmunity, we employ a model
similar to those studied earlier in the context of immune
responses (Nowak and May, 2000; Wodarz and Jansen, 2003).
Let A denote the number of susceptible cells in a particular organ
or tissue. We consider two distinct populations of susceptible
cells, A1 and A2 to allow for a situation when autoimmunity takes
place in a different organ to the one where the original infection
occurs. It is assumed that in the absence of infection or auto-
immunity, these two cell populations would be maintained at a
certain constant level supported by homeostasis. It has been
previously shown (Iwami et al., 2007, 2009) that a specific form
of the growth function for susceptible cells can have a significant
effect on the overall dynamics of autoimmune diseases, and here
we use the logistic form, as studied in Iwami et al. (2007), and by
Perelson and Nelson (1998) in models for HIV infection.

When a person acquires a viral infection, a proportion of cells
become infected with this virus, and after a certain period of time
the infected cells, whose population is denoted by F, will start
producing virions (free virus particles) V that will go on to infect
other as yet uninfected cells A2 (and, possibly, A1). All time
constants, such as the time to encounter an uninfected cell and
a time required for cell entry, are implicitly included in the rate of
infection l. In the absence of infection, the naı̈ve T-cells Tin are
taken to follow a logistic growth. Once activated, Tin cells become
T1 cells that have the ability to kill infected cells F. For a fraction of
these cells T2 their activation threshold for stimulation by
susceptible cells that are not infected is reduced, allowing them
to kill A cells. This is the autoimmune response. It has already
been shown that T cells with varying activation threshold can
have a significant effect on the dynamics of the immune response
(Grossman and Paul, 1992; Grossman and Singer, 1996).

With the above assumptions, the model to be analysed in this
paper has the form

dA1

dt
¼ r1A1 1�

A1

N1

� �
�p1lA1V�aaT2A1,

dA2

dt
¼ r2A2 1�

A2

N2

� �
�lA2V�p2aaT2A2,

dF

dt
¼ lðp1A1þA2ÞV�mFF�aFT1F�aaT2F,

dTin

dt
¼ gtTin 1�

Tin

M

� �
�aactTinF,

dT1

dt
¼ aactTinF�T1ðm1þtÞ,

dT2

dt
¼ tT1�m2T2,

dV

dt
¼ kF�gV , ð1Þ

where A1;2, F, Tin, T1, T2 and V denote the populations of
susceptible cells (possibly, affected by infection and autoimmu-
nity separately), infected cells, naı̈ve T cells, activated T cells,
T cells with a lower activation threshold to self-antigen, and free
virus, respectively. As it has already been mentioned, in the
absence of infection which can trigger an autoimmune reaction,
the susceptible cells A1;2 reproduce logistically with their respec-
tive linear growth rates r1;2 and carrying capacities N1;2. These
cells become infected at a rate l, and they are destroyed at a rate
aa by autoreactive T-cells T2 with a lower activation threshold to
self-antigen (this is the actual implementation of the autoimmunity
mechanism). Naı̈ve T-cells Tin are assumed to have a logistic growth
with a linear growth rate gt and a carrying capacity M; they get
primed by dendritic cells at a rate taken to be proportional to the
number of infected cells with a constant aact .

Once infected, cells presenting foreign antigen F die at a rate
mF , and they are also destroyed by the activated T-cells T1 at a rate
aF , and by the autoreactive T-cells T2 at a rate aa. Activated T-cells
T1 die at a rate m1, and at a rate t they produce autoreactive T cells
T2 with a lower activation threshold to self-antigen. Finally, the T
cells T2 die at a rate m2. Free virions V are produced by an infected
cell at a rate k, and g is the natural clearance rate of the virus.

Parameters 0rp1,p2r1 control whether the populations of
susceptible cells are affected by autoimmune reaction and/or infec-
tion. When p1 ¼ p2 ¼ 0, only cells A2 are affected by the infection,
and the autoimmunity only affects the population A1 of other cells.
Biologically, this situation arises when a pathogen causes infection
in one part of the body, and the autoimmune response causes
damage in other parts of the body. If p1 ¼ 0 and p240, only the cell
population A2 experiences infection, but both of the susceptible cell
populations are affected by the developing autoimmunity. Conver-
sely, if p2 ¼ 0 and p140, both A1 and A2 cells become infected, and
only A1 also experiences autoimmunity. Finally, in the case of
p1;240, both of the cell populations A1 and A2 get exposed to both
the infection and the autoimmune reaction, although they can
potentially be affected by infection/autoimmunity at different rates,
and the differences in intrinsic growth rates and carrying capacities
of these two cell populations can also lead to significantly different
dynamics of these two cell populations.

The main emphasis of the above model is on the separation of
T cells into two activated populations, one of which is capable of
an autoimmune reaction through having a lower activation
threshold to self-antigen. As we are particularly interested in
the role of foreign infections in the onset of autoimmunity, we
have not explicitly included in the model several other aspects
that can be of interest in specific contexts, such as antibody
response or regulatory T cells. Furthermore, we have not included
memory cells in our model, which can be important in the
analysis of longer-term dynamics or multiple infections.
3. Steady states

We begin our analysis of the system (1) by considering its
steady states En

¼ ðAn

1,An

2,Fn,Tn

in,Tn

1,Tn

2,Vn
Þ, which can be found by

equating the right-hand side of system (1) to zero. Stability is
determined by the eigenvalues of the Jacobian of linearization of
the system (1) near each of the steady states. In order to system-
atically study the steady states of system (1), we first consider all
steady states with Vn

¼ 0 (this immediately implies Fn
¼ Tn

1 ¼

Tn

2 ¼ 0). There are exactly eight of such steady states:

En

1 ¼ ð0;0,0;0,0;0,0Þ, En

5 ¼ ðN1,0;0,0;0,0;0Þ,

En

2 ¼ ð0;0,0,M,0;0,0Þ, En

6 ¼ ðN1,0;0,M,0;0,0Þ,

En

3 ¼ ð0,N2,0;0,0;0,0Þ, En

7 ¼ ðN1,N2,0;0,0;0,0Þ,

En

4 ¼ ð0,N2,0,M,0;0,0Þ, En

8 ¼ ðN1,N2,0,M,0;0,0Þ: ð2Þ

Computing the Jacobian at each of these steady states shows that
En

1 to En

7 are always saddles (and hence unstable) for any values
of the system parameters. The steady state En

8 is a stable node,
provided

klðN2þp1N1ÞomFg,

or a saddle if

klðN2þp1N1Þ4mFg:
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At

klðN2þp1N1Þ ¼ mFg,

the steady state En

8 undergoes a steady state bifurcation, where
one of the eigenvalues goes through zero along the real axis.
Biologically, the above stability condition represents the rate
of change in the number of infected cells being negative at the
steady state.

When Vna0, we can have either An

1 ¼ 0 and An

2a0, or An

1a0
and An

2 ¼ 0, or An

1a0 and A2a0. In the case where An

1 ¼ 0
and An

2a0, there are two options. One of these is En

9 with
Tn

in ¼ Tn

1 ¼ Tn

2 ¼ 0, in which case we also have

An

2 ¼
mFg
lk

, Fn
¼

r2g
lk

1�
mFg
lkN2

� �
,

Vn
¼

r2

l
1�

mFg
lkN2

� �
:

The steady state En

9 with such values of the variables is stable,
provided the following conditions are satisfied:

p1r2N2lk4lkr1N2þp1r2gmF ,

aactr2glkN24gtl
2k2N2þaactr2g2mF ,

gmF r2ðmFþgÞþlkN2½ðmFþgÞ
2
þmFg�lkN2�40: ð3Þ

It is noteworthy that when p1 ¼ 0, this steady state is unstable for
any values of other parameters. For p1 ¼ 1, this steady state can
only be stable, provided the linear growth rate r2 sufficiently
exceeds r1. The steady state En

9 can undergo a steady state
bifurcation when

p1r2N2lk¼ lkr1N2þp1r2gmF ,

or aactr2glkN2 ¼ gtl
2k2N2þaactr2g2mF , ð4Þ

and it can also undergo a Hopf bifurcation, when the system
parameters satisfy the conditions

p1r2N2lk4lkr1N2þp1r2gmF ,

aactr2glkN24gtl
2k2N2þaactr2g2mF ,

gmF r2ðmFþgÞþlkN2½ðmFþgÞ
2
þmFg�lkN2� ¼ 0: ð5Þ

An important observation is that the manifold A1 ¼ Tin ¼ T1 ¼

T2 ¼ 0 is flow-invariant, and the Hopf bifurcation of the steady
state En

9 takes place inside this manifold, which results in the
appearance of a periodic orbit confined to the same manifold. The
importance of this observation lies in the fact that this periodic
solution does not cause oscillations of any of the variables which
would go below zero, making it unrealistic.

The second option for the case An

1 ¼ 0 and An

2a0 is given by the
steady state En

10, for which Tn

in satisfies the quadratic equation

gtgaact½r2gðaFm2þaatÞþp2aatN2lk�ðTn

inÞ
2

�gt½r2g2aactMðaFm2þaatÞ�l2k2N2m2ðm1þtÞ
þp2ltgaaaactkMN2�T

n

in

þm2Mðm1þtÞ½r2gaactðN2lk�mFgÞ�l
2k2gtN2� ¼ 0, ð6Þ

and the other variables are given by

An

2 ¼
g
lk

mFþ
aFm2þaat
m2ðm1þtÞ

gtT
n

in 1�
Tn

in

M

� �� �
,

Fn
¼

gt

aact
1�

Tn

in

M

� �
, Vn

¼
kgt

gaact
1�

Tn

in

M

� �
,

Tn

1 ¼
gt

m1þt
Tn

in 1�
Tn

in

M

� �
, Tn

2 ¼
tgt

m2ðm1þtÞ
Tn

in 1�
Tn

in

M

� �
:

Depending on the particular values of parameters there can be
between zero and two distinct steady states determined by the
roots of equation (6). It does not prove possible to determine
stability of the steady state En

10 in a closed form, and hence one
has to compute the eigenvalues of the corresponding Jacobian
numerically.

In a similar way, when An

1a0 and An

2 ¼ 0, there are again two
options. The first one, denoted by En

11, describes the case when
Tn

in ¼ Tn

1 ¼ Tn

2 ¼ 0, and the other variables can be found as

An

1 ¼
mFg
lp1k

, Fn
¼

r1g
lp1k

1�
mFg

lp1kN1

� �
,

Vn
¼

r1

lp1

1�
mFg

lp1kN1

� �
:

The steady state En

11 is stable, provided the following conditions
are satisfied:

p1lkr1N14p2
1lkr2N1þr1gmF ,

aactp1r1glkN14p2
1gtl

2k2N1þaactr1g2mF ,

gmFr1ðmFþgÞþp1lkN1½ðmFþgÞ
2
þmFg�p1lkN1�40: ð7Þ

The steady state En

11 can undergo a steady state bifurcation when

p1lkr1N1 ¼ p2
1lkr2N1þr1gmF ,

or aactp1r1glkN1 ¼ p2
1gtl

2k2N1þaactr1g2mF , ð8Þ

and it can also undergo a Hopf bifurcation, when the system
parameters satisfy the conditions

p1lkr1N14p2
1lkr2N1þr1gmF ,

aactp1r1glkN14p2
1gtl

2k2N1þaactr1g2mF ,

gmFr1ðmFþgÞþp1lkN1½ðmFþgÞ
2
þmFg�p1lkN1� ¼ 0: ð9Þ

Similarly to the case of En

9, the Hopf bifurcation of the steady state
En

11 takes place inside the flow-invariant manifold A2 ¼ Tin ¼ T1 ¼

T2 ¼ 0. Analogously to the analysis of stability of the steady state
E9, one can note that for stability of the steady state E11, the linear
growth rate r1 should be sufficiently greater than the rate r2.

The second option for the case An

1a0 and An

2 ¼ 0 is En

12, for which
Tn

in is different from zero and satisfies the quadratic equation

gtgaact½r1gðaFm2þaatÞþp1aatN1lk�ðTn

inÞ
2

�gt½r1g2aactMðaFm2þaatÞ�p2
1l

2k2N1m2ðm1þtÞ

þp1ltgaaaactkMN1�T
n

in

þm2Mðm1þtÞ½r1gaactðp1N1lk�mFgÞ�p1l
2k2gtN1� ¼ 0, ð10Þ

with the other variables being given by

An

1 ¼
g

p1lk
mFþ

aFm2þaat
m2ðm1þtÞ

gtT
n

in 1�
Tn

in

M

� �� �
,

Fn
¼

gt

aact
1�

Tn

in

M

� �
, Vn

¼
kgt

gaact
1�

Tn

in

M

� �
,

Tn

1 ¼
gt

m1þt
Tn

in 1�
Tn

in

M

� �
, Tn

2 ¼
tgt

m2ðm1þtÞ
Tn

in 1�
Tn

in

M

� �
:

Finally, when both An

1a0 and An

2a0, there are again two
options. The first one corresponds to a steady state En

13 with
Tn

in ¼ Tn

1 ¼ Tn

2 ¼ 0, and the other variables being given by

Fn
¼

r1r2g ðp1N1þN2Þlk�mFg
� �

l2k2
ðr1N2þp2

1r2N1Þ
, Vn

¼
r1r2 ðp1N1þN2Þlk�mFg

� �
l2kðr1N2þp2

1r2N1Þ
,
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An

1 ¼
N1½lkN2ðr1�p1r2ÞþmFgr2p1�

lkðr1N2þp2
1r2N1Þ

, An

2 ¼
N2½lkp1N1ðp1r2�r1ÞþmFgr1�

lkðr1N2þp2
1r2N1Þ

:

Numerical computation of the eigenvalues of linearization shows
that for sufficiently small values of g, the steady state En

13 is stable;
as g increases, stability is lost, but then regained again as g
increases further still.

The final possibility corresponds to a steady state En

14 with the
values of all variables being different from zero, so that Tn

in

satisfies the quadratic equation

gtgaact laatkðp1r2N1þp2r1N2Þþgr1r2ðaFm2þaatÞ
� �

ðTn

inÞ
2

�gtfMgaact½lkaatðp1r2N1þp2r1N2Þþgr1r2ðaFm2þaatÞ�

�l2k2m2ðm1þtÞðp2
1r2N1þr1N2ÞgT

n

in

�m2Mðm1þtÞ½l
2k2gtðp

2
1r2N1þr1N2Þ

�lkgaactr1r2ðp1N1þN2ÞþmFg2aactr1r2� ¼ 0, ð11Þ

and the other variables can be found as

An

1 ¼
N1 m2Mðm1þtÞðr1gaact�p1lkgtÞþgaaaacttgtTinðT

n

in�MÞ
� �

Mm2gaactr1ðm1þtÞ
,

An

2 ¼
N2 m2ðm1þtÞðr2gaactMþlkgtðT

n

in�MÞÞþp2gaaaacttgtT
n

inðT
n

in�MÞ
� �

Mm2gaactr2ðm1þtÞ
,

Fn
¼

gt

aact
1�

Tn

in

M

� �
, Vn

¼
kgt

gaact
1�

Tn

in

M

� �
,

Tn

1 ¼
gt

m1þt
Tn

in 1�
Tn

in

M

� �
, Tn

2 ¼
tgt

m2ðm1þtÞ
Tn

in 1�
Tn

in

M

� �
:

To illustrate how stability of different steady states is affected
by the system parameters, we show in Fig. 1 regions in the k–l
parameter plane where different steady states are stable depend-
ing on whether infection and autoimmunity affect the same of
different cell populations. This figure suggests that for sufficiently
small rate of infection l, the only possible stable steady state is
the disease-free state En

8, in which cell populations A1, A2 and Tin

are maintained at their respective carrying capacities, and there
no free virus or infection, thus implying the absence of activated T
cells T1 and T2. As the infection rate l increases, this disease-free
steady state loses stability, and the system turns to a stable state
of chronic infection E14, where all cell populations are different
from zero. When this steady states loses stability in the case of
p1 ¼ p2 ¼ 1 (i.e. when both cell populations A1 and A2 are the
targets of both infection and autoimmunity), there appear to be
no other stable steady state for any values of l and k, as illustrated
in plot Fig. 1(a). At the same time, it is worth noting that some
other stable steady states can be recovered when other
Fig. 1. Stability regions of different steady states depending on l and k. Parameter

values are r1¼0.2, r2¼0.1, N1 ¼ 200, N2 ¼ 300, M¼300, gt¼0.2, aF ¼ 0:0006,

aact ¼ 0:04, aa ¼ 0:033, mF ¼ 1, m1 ¼ 0:08, m2 ¼ 0:02, t¼ 0:001. (a) p1 ¼ p2 ¼ 1.

(b) p1 ¼ p2 ¼ 0. Colour code denotes region of stability of a single steady state:

En

8 (violet), En

14 (green), En

13 (red), En

10 (blue), and white denotes a parameter region

where all steady states are unstable. (For interpretation of the references to colour

in this figure caption, the reader is referred to the web version of this article.)
parameters are changed. For instance, stability of the steady
states E9 and E11 depends heavily on the relation between the
two linear growth rates r1 and r2, so varying these may produce
additional stable steady states. In the case p1 ¼ p2 ¼ 0, the range
of possibilities is much wider, as shown in plot Fig. 1(b). It is
possible to observe stable state E10, where the cell population A1

is equal to zero with all other populations being positive. Another
possibility is a state E13, in which infection renders virus specific T
cells ineffective. An important observation is that in all parameter
regimes there appears to be a single stable steady state, hence
no bi-stability is possible in the system. Whilst Fig. 1 may not
illustrate the complete catalogue of possible steady states, it
provides an insight into how stability is affected by the system
parameters.

We summarize the above analysis of possible steady states of
the system (1) in the following table.
Disease-free steady states V ¼ F ¼ 0, Tin ¼ T1 ¼ T2 ¼ 0

E1
 all cell populations are equal to zero, always unstable
E2
 Tin ¼M, all other populations are equal to zero, always
unstable
E3
 A2 ¼N2, all other populations are equal to zero, always
unstable
E4
 A2 ¼N2, Tin ¼M, all other populations are equal to zero,
always unstable
E5
 A1 ¼N1, all other populations are equal to zero, always
unstable
E6
 A1 ¼N1, Tin ¼M, all other populations are equal to zero,
always unstable
E7
 A1 ¼N1, A2 ¼N2, all other populations are equal to zero,
always unstable
E8
 A1 ¼N1, A2 ¼N2, Tin ¼M, all other populations are equal
to zero, can be stable or unstable
Steady states with a chronic viral infection V 40

E9
 A1 ¼ Tin ¼ T1 ¼ T2 ¼ 0, other populations are positive,

can be stable or unstable
E10
 A1 ¼ 0, all other populations are positive, can be stable

or unstable
E11
 A2 ¼ Tin ¼ T1 ¼ T2 ¼ 0, other populations are positive,
can be stable or unstable
E12
 A2 ¼ 0, all other populations are positive, can be stable

or unstable
E13
 Tin ¼ T1 ¼ T2 ¼ 0, other populations are positive, can be
stable or unstable
E14
 all cell populations are positive, can be stable or unstable
4. Numerical simulations

In order to illustrate various dynamical regimes that can be
exhibited our model, we solve the system (1) numerically in
different parameter regimes, taking account of results concerning
stability and bifurcations of the steady states analysed in the
previous section. Prior to performing simulations, we simplify the

system by introducing the non-dimensional variables ðbA1,bA2,bF ,bT in, bT 1,bT 2,bA1,bV Þ and bt as follows:

bt ¼ gtt, A1 ¼N1
bA1, A2 ¼N2

bA2, F ¼ ðN1þN2Þ
bF ,

Tin ¼MbT in, T1 ¼MbT 1, T2 ¼MbT 2, V ¼ V0
bV :

Substituting these variables into the system (1) yields

dbA1

dbt ¼ br1
bA1ð1�bA1Þ�p1

blbA1
bV�baa

bT 2
bA1,
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dbA2

dt
¼br2

bA2ð1�bA2Þ�
blbA2

bV�p2baa
bT 2
bA2,

dbF
dt
¼ bl½p1Np

bA1þð1�NpÞ
bA2�
bV�ðbmFþbaF

bT 1þbaa
bT 2Þ
bF ,

dbT in

dbt ¼ bT inð1�bT inÞ�baact
bT in
bF ,

dbT 1

dbt ¼ baact
bT in
bF�bT 1ðbm1þbtÞ,

dbT 2

dbt ¼ btbT 1�bm2
bT 2,

dbV
dbt ¼ bkbF�bgbV , ð12Þ

where the modified parameters are given by

br1 ¼
r1

gt

, br2 ¼
r2

gt

, bl ¼ lV0

gt

, bg ¼ g
gt

, bk ¼ kðN1þN2Þ

gtV0
,

baa ¼
aaM

gt

, baF ¼
aFM

gt

, baact ¼
aactðN1þN2Þ

gt

, bt ¼ t
gt

,

bm1 ¼
m1

gt

, bm2 ¼
m2

gt

, bmF ¼
mF

gt

,

and we have introduced one additional parameter

Np ¼
N1

N1þN2
:

Fig. 2. Numerical solution of the system (12) for p1 ¼ p2 ¼ 1. Parameter values are r1

t¼ 0:005, k¼105, g¼ 10. (a) and (b) l¼ 0:1, (c) and (d) l¼ 0:5, (e) and (f) l¼ 1, (g) and

(red), and autoreactive T cells T2 (black). Time is measured in arbitrary units (a.u.). (For i

to the web version of this article.)
The above non-dimensionalization reduces the number of free
parameters by three, thus reducing the overall complexity and
simplifying the survey of parameter space. To simplify the nota-
tion, we will drop hats for variables and parameters in the system
(12). The values of system parameters used in simulations of
system (12) are the rescaled values of the parameters used in Fig. 1.

4.1. Single infection

First, we consider the situation when the host experiences a
single infection by a virus, and one is interested in the subsequent
dynamics of the immune response against this infection, as well
as possible autoimmune reaction. Following Wodarz and Jansen
(2003), Wodarz and Lloyd (2004) and Vickers et al. (2009), we
define a certain threshold value, below which the infection is
considered extinct; for simulations presented below this thresh-
old was chosen to be 10�8 and applied to the number of infected
cells F. Initial condition was taken to be ðA1ð0Þ,A2ð0Þ,Fð0Þ,Tinð0Þ,
T1ð0Þ,T2ð0Þ,Vð0ÞÞ ¼ ð0:9,0:0333,0,0:9,0;0,0:05Þ for all simulations,
representing the fact that before the infection there are no
infected cells and no activated T cells.

Fig. 2 shows the dynamics of system (12) for the case
p1 ¼ p2 ¼ 1, which corresponds to a situation when both types
of cells A1 and A2 are targets of both infection and autoimmunity.
For sufficiently small values of infection rate l, the infection is
being completely cleared: after the initial peak, the number of
infected cells is monotonically decreasing, and the system
approaches a stable steady state En

8, as shown in plots (a) and (b).
This is the case of a normal disease clearance, where immune
response of the host is able to completely clear the infection
without causing an autoimmune reaction. Due to the exhaustion
¼ 1, r2¼0.5, Np¼0.4, gt¼0.2, aa ¼ 50, mF ¼ 5, aact ¼ 100, aF ¼ 1, m1 ¼ 0:4, m2 ¼ 0:1,

(h) l¼ 3. In all plots, the colours denote infected cells F (blue), activated T cells T1

nterpretation of the references to colour in this figure caption, the reader is referred
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of the pool of infected cells, the activation of naı̈ve T cells stops,
and the population of activated T cells is then slowly diminishing.
The same happens to autoreactive T cells, whose number reaches
its peak slightly later than the population of activated T cells, as
these cells have to be derived from the population of regular
activated T cells T1. It is worth noting that unlike an earlier model
of Iwami et al. (2007, 2009), the present model is able to support
the initial viral expansion and subsequent clearance of infection
by the immune system.

For higher values of l, the disease-free state En

8 loses stability,
and the system evolves to a stable equilibrium En

14, which
describes the state of chronic infection. In this case, the immune
system of the host is unable to clear the infection, and as a result
it persists at a constant level. As l increases further, the steady
state En

14 loses stability via Hopf bifurcation, giving rise to stable
periodic oscillations, as shown in plots (e) and (f). In this case,
one observes episodes of high viral production (relapses) with
long periods of quiescence (remissions). Such dynamics have
been observed in a number of autoimmune diseases, such as
MS, autoimmune thyroid disease, uveitis, etc. (Ben Ezra and
Forrester, 1995; Davies et al., 1997; Nylander and Hafler, 2012).
An important note here is that none of the subsequent reactiva-
tions of the virus requires any exogenous factors, but rather the
system itself cycles through periods of relative quiescence and
viral release.

During each viral episode, the number of infected cells
increases, and this triggers rapid activation of naı̈ve T cells, which
in turn suppresses viral production, leading to a decrease in the
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Fig. 3. Numerical solution of the system (12). Parameter values are the same as in Fig

(g) and (h) l¼ 9. In all plots, the colours denote infected cells F (blue), activated T cells T

(For interpretation of the references to colour in this figure caption, the reader is refer
number of infected cells. As the autoreactive T cells in the
simulation shown in Fig. 2 have a much longer lifetime, their
number decreases much more slowly during the periods of
relative suppression of infection. For even higher values of l, this
periodic solution becomes unstable, and instead the system
evolves into another periodic orbit arising from the Hopf bifurca-
tion of the steady state En

12, in which case the second population
of target cells A2 goes to zero.

Next, we consider another biologically plausible scenario
when cells A2 are only targeted by infection, and cells A1 are only
affected by autoimmunity, which is described by p1 ¼ p2 ¼ 0.
Fig. 3 illustrates the dynamics of the system (12) in this case.
For sufficiently small values of l, one observes normal clearance
of infection similar to the case p1 ¼ p2 ¼ 1, and as l increases, the
system tends to a stable state of constant chronic infection En

14, as
shown in plots (a) and (b). When the steady state En

14 loses
stability, rather than develop sustained oscillations as in the case
p1 ¼ p2 ¼ 1, now the system goes instead to a stable steady state
En

13 shown in plots (c) and (d), which has Tin ¼ T1 ¼ T2 ¼ 0. This
situation describes a state, in which the numbers of naı̈ve,
activated and autoreactive T cells are all zero. While this is not
biologically realistic, functionally it resembles exhaustion in
which virus specific T cells are rendered ineffective and therefore
the effective population size is reduced to zero. For higher values
of l, there is another stability switch, and the system evolves
toward a stable equilibrium En

10. This behaviour is shown in plots
(e) and (f), and it describes a situation when the first population
of target cells A1 goes to zero. When l is increased further still, the
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. 2, except for p1 ¼ p2 ¼ 0. (a) and (b) l¼ 0:9, (c) and (d) l¼ 1:5, (e) and (f) l¼ 5,

1 (red), and autoreactive T cells T2 (black). Time is measured in arbitrary units (a.u.).

red to the web version of this article.)
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steady state En

10 becomes unstable, and one observes a state of
autoimmunity represented by stable periodic solution arising
from a Hopf bifurcation of a chronic steady state En

14.
In the case when only one of p1 and p2 is different from zero,

the system can exhibit behaviours similar to the cases described
above, with transitions between stable steady states and periodic
solutions of different origins. Numerical simulations suggest that
in most cases, for sufficiently large values of the infection rate l,
the system approaches a stable periodic orbit arising from the
Hopf bifurcation of the steady state En

14. Such periodic solution
corresponds to the above-mentioned state of autoimmunity with
remissions and relapses.
4.2. Multiple infections

Since for many viral infections it is realistic to expect subse-
quent exposures of a person to the same virus, we now consider a
scenario where someone who has recovered from a primary
infection or currently has a chronic viral infection experiences a
secondary viral challenge with the same virus. It is known that
the timing of secondary infection plays an important role in
determining the progress of infection, as well as the immune
dynamics (Naumov et al., 2003; Selin et al., 1998).

Fig. 4 illustrates the dynamics during a secondary viral
exposure in the parameter regime with normal clearance of
infection and during the chronic infection. In the case of normal
clearance shown in plots (a) and (b), one can observe that due to a
much slower decay of activated T cells, they still remain at a non-
negligible level following the primary infection. This means that
the second infection produces a significantly smaller number of
infected cells. The later a secondary viral challenge occurs, the
higher will be the resulting number of infected cells, and
correspondingly the higher will be the numbers of activated and
autoreactive T cells during a secondary infection. We find that the
number of T2 cells during a secondary infection is often higher
than during a primary infection, such that the exacerbation of the
autoimmune reaction is relatively much greater than the antiviral
response, as shown in plot (b). The actual level of T1 and T2 cells
depend on the timing of secondary infection: if a secondary
Fig. 4. Numerical solution of the system (12). Parameter values are the same as in Fig. 2

denote infected cells F (blue), activated T cells T1 (red), and autoreactive T cells T2 (black

colour in this figure caption, the reader is referred to the web version of this article.)
infection takes place sufficiently close in time to the original
infection, the number of T1 cells will only increase by a very small
amount, while the number of T2 cells will exceed that number
during the primary infection. If, however, a greater time elapses
between the two infections, the number of activated T cells T1 will
be slightly greater, but still it will never exceed the number of T1

cells during a primary episode. At the same time, the number of
cross-reactive T cells T2 in this case will be lower than during the
primary infection.

Plots (c) and (d) show that when the system is chronically
infected, due to the significant amount of activated T cells, the
secondary infection does not lead to a major increase in the
number of infected cells, and as a result the infection is quickly
cleared to the same chronic level as before the secondary infec-
tion. We have also analysed the influence of secondary exposures
on the dynamics of recurrent infections, and in this case the effect
of subsequent viral challenges is quite small in that it does not
change the amplitude or period of oscillations except producing a
small additional peak in the number of infected cells immediately
after the infection. From this we conclude that in the parameter
regime when the infection is recurrent, the main role is played by
the periodic nature of the system itself, and it is this that causes
relapses and remissions, rather than subsequent infections.
4.3. Treatment

As a next step in the analysis of onset and dynamics of
autoimmunity, it is instructive to consider a practically important
issue of therapeutic intervention. Numerical simulations pre-
sented earlier suggest that in the case when autoimmunity is
triggered by infection with a virus, there is no further need for
infection to maintain the periodic state of relapses and remis-
sions. Let us now consider how the autoimmune dynamics
changes upon the introduction of a therapy, aimed at reducing
the number of autoreactive T cells. It will be assumed that such
treatment can have two potential impacts: it can either act by
eliminating the autoreactive T cells, thereby reducing the overall
burden of autoimmunity, or it can transform those autoreactive
T cells into cells with a higher activation threshold, i.e. activated
, except for p1 ¼ p2 ¼ 0. (a) and (b) l¼ 0:2, (c) and (d) l¼ 1. In all plots, the colours

). Time is measured in arbitrary units (a.u.). (For interpretation of the references to
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T cells. These scenarios correspond loosely to treatments with
therapeutic monoclonal antibodies that delete populations of
cells (Coles and Compston, 2008), or with drugs such as cyclos-
porin that inhibit the activation of T cells (Liu, 1993). In clinical
studies, these therapies cannot yet be made to selectively target
autoreactive cells, which remain an important ongoing goal of
treatment. Mathematically, we model such an intervention by
modifying the fifth and sixth equations of the system (1) (and,
correspondingly, (12)) as follows:

dT1

dt
¼ aactTinF�T1ðm1þtÞþp3CT2yðt�t0Þ,

dT2

dt
¼ tT1�m2T2�CT2yðt�t0Þ, ð13Þ

where C is the rate at which autoreactive T2 cells are destroyed by
treatment, p3 shows the fraction of autoreactive T cells that can be
converted into activated T cells (when p3 ¼ 0, the treatment is
only responsible for reducing the number of T2 cells), yð�Þ is the
Heaviside function, and t0 is the time when the treatment is
introduced. We assume that initially a person is exposed to a viral
infection and develops some sort of autoimmune response, and in
response to this a treatment is introduced in order to reduce or
eliminate autoimmunity.

Fig. 5 shows the effects of treatment on the dynamics of
immune response in the regime, where before treatment the
system exhibited sustained periodic oscillations corresponding to
relapses and remission during autoimmunity. All the simulations
were performed for the case p3 ¼ 0, but it has been checked that
the same results are obtained for p340. In the case when
p1 ¼ p2 ¼ 0 (i.e. cells A2 are the only target of infection, and cells
A1 are only affected by autoimmunity), once the treatment is
introduced, the number of autoreactive T cells reduces signifi-
cantly, as shown in plots (a) and (b). Although the oscillations
persist after treatment, the number of A1 is greatly increased, and
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Fig. 5. Temporal dynamics during treatment of an autoimmune state. Parameter values

(d) p1 ¼ 1, p2 ¼ 0, l¼ 0:65, C¼2; (e) and (f) p1 ¼ 0, p2 ¼ 1, l¼ 0:9, C¼2. Time is measu
for sufficiently high rate of treatment C, it stays very close to 1.
For p1 ¼ 1 and p2 ¼ 0 (infection targets both A1 and A2 cells, but
only A1 cells are affected by autoimmune response), plots (c) and
(d) indicate that the introduction of treatment leads to a stable
steady state En

13, in which all T cells (Tin, T1 and T2) are eliminated.
It is noteworthy that whilst the autoimmune reaction is elimi-
nated in this scenario, this also leads to an increased level of
persistent infection. When p1 ¼ 0 and p2 ¼ 1 (only A2 cells are a
target of infection, and both A1 and A2 cells are affected by
autoimmunity), treatment leads to suppression of oscillations
and establishment of a stable chronic state En

14, as illustrated in
plots (e) and (f). Due to a high rate aa, at which autoreactive
T cells T2 destroy infected cells, once the population of these cells
is reduced, the resulting chronic state E14 is characterized by a
higher level of infected cells. In the case when p1 ¼ p2 ¼ 1,
behaviour of the system under treatment is qualitatively similar
to the case of p1 ¼ 1 and p2 ¼ 0, when all T cells are eliminated.

In Fig. 6 we illustrate how treatment affects the dynamics in
the case of chronic infection. One can observe that treatment
leads to a significant reduction in the number of autoreactive T
cells, prompting a substantial increase in the number of A1 cells.
However, treatment does not completely eliminate the infection
which remains chronic, and similarly to the treatment of an
autoimmune state, while the treatment reduces the level of
autoimmune reaction, it simultaneously leads to a relative
increase in the number of infected cells. This is biologically
reasonable since inhibiting autoimmunity can lead to the reacti-
vation of infection (Hellwig and Gold, 2011).
5. Discussion

In this paper we have developed and analysed a mathematical
model for the dynamics of the immune response against a viral
infection and the associated onset of autoimmunity. Having
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are the same as in Fig. 2, and p3 ¼ 0. (a) and (b) p1 ¼ p2 ¼ 0, l¼ 10, C¼30; (c) and

red in arbitrary units (a.u.).
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introduced separate populations of target cells that can be
affected by infection and/or autoimmunity, as well as different
compartments for T cells with different activation thresholds, we
have studied how the outcome of the immune response can be
the clearance of infection, chronic infection or recurrent infection.
In the case of normal clearance, there are no lasting immune
consequences for the organism. The number of autoimmune T
cells is small and decreases with time after the clearance of
infection. Chronic infections are characterized by a constant level
of activated and autoreactive immune cells, which keep infection
in check but do not clear it. Another possible scenario for
persistent infection is when virus specific T cells are exhausted,
and hence the effective T cell population is reduced to zero.
Recurrent infections are characterized by inability of the immune
response to clear an infection, which results in relatively long
periods of remission followed by relapses with a substantial viral
production and a large number of cells being infected. In this study
we have focussed on chronic infection driven by an increase in the
infection rate l. Studies in other models show that chronicity can
also be influenced by other factors such as the frequency of
antigen specific T cells (Nicholson and Nicholson, 2008). During
recurrent infection we observe higher numbers of autoimmune
cells (compared to the case of chronic infection), which exacerbate
the relapses and cause more damage. Notably, there is a difference
in the outcome of the infection, depending on whether infection
and autoimmunity affect the same or different organs.

Numerical solutions reveal a number of potentially important
features in the dynamics of the autoreactive cells. When a person
experiences a secondary challenge with the same virus, the model
shows that in the case of normal clearance the number of cells
getting infected is smaller in subsequent infections due to a
limited number of T cells remaining activated at the time of
secondary infection. Although in this case the infection is still
successfully cleared, in a number of circumstances the second and
subsequent peaks in autoreactive cell numbers exceeded that
seen during the initial response to virus (Fig. 4 (b)), thus causing
an additional immune challenge. This could implicate repeated
cycles of T cell expansion, or multiple linked rounds of infection
as crucially underpinning the development of frank autoimmune
disease. This would be consistent with multi-hit models of
autoimmunity (e.g. Ambrosini et al., 2011) and also with circum-
stances in which more than one infectious episode is necessary to
precipitate frank disease. In contrast, secondary infection during a
chronic infection does not have a significant effect on the
dynamics. The same conclusion holds for the recurrent infections,
thus indicating that in this case it is the intrinsic dynamics of the
interactions between the immune system and the virus that
causes remissions and relapses rather than the fact that a person
experiences further infections.
In the form of the model where the population of infected cells
is different from that which is the target of autoimmunity, we
found that under some conditions, low levels of viral persistence
could be associated with high levels of autoreactivity (Fig. 3(e),
(f)). We also demonstrated that the system can approach a state
that resembles T cell exhaustion (Fig. 3(c), (d)). This is intriguing
because inactivation of the immune response in the face of
chronic viral infection and in tumours is a well described and
important area of ongoing investigation (Kim and Ahmed, 2010).

We have also studied the effects of treatment aimed at
reducing the number of autoreactive cells on the dynamics of
the immune response. In the case of the recurrent autoimmune
state, when infection and autoimmunity occur in different organs,
such treatment leads to a substantial improvement of the situa-
tion, significantly reducing the number of autoreactive T cells. It is
important to note that although this does not eliminate episodes
of relapses/remissions, they have a much less prominent impact
on the numbers of susceptible cells and hence cause significantly
less damage than the full-blown autoimmunity. When only one of
the susceptible cell populations is the target of infection but both
of them can be affected by autoimmunity, introduction of treat-
ment leads to suppression of relapse/remission oscillations and
establishment of a state of chronic infection. When initially the
infection is chronic, treatment does not qualitatively change the
dynamic state of the system, but leads to a reduction in the
number of autoreactive T cells. One should note, however, that
due to reliance of immune system on autoreactive T cells to
contribute to control of infection, any treatment aimed solely at
reducing the number of these cells can inadvertently lead to a
higher level of persistent chronic infection. This trade-off between
the ability to control the infection and at the same time to
minimize the undesired effects of autoimmunity is somewhat
similar to the problem in chemotherapy where an effective
treatment of a tumour may have a negative impact on the overall
immune status, thus requiring some sort of adjuvant therapy.
At the same time, if the role played by autoreactive T cells in the
clearance of infection is not so significant, the above problem
becomes less serious, and it is possible to achieve efficient control
of autoimmunity without compromising host’s ability to fight
infection.

There are a number of interesting potential extensions to this
work which may be possible in the future. While we started with
the concept of tunable activation thresholds, the implementation
we chose here was deliberately simplified to ensure the tract-
ability of the model. Previous theoretical and experimental work
(Altan-Bonnet and Germain, 2005; Alexander and Wahl, 2011;
Grossman and Paul, 1992, 2000; Grossman and Singer, 1996; van
den Berg and Rand, 2004) has stressed the dynamic nature of the
tuning process which can be observed over timescales of minutes
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to days (Römer et al., 2011; Stefanova et al., 2002). It would
therefore be interesting to explore the dynamics of this process
and the effects that different parameters for the kinetics of tuning
might have on the development of autoreactive T cell popula-
tions. Another feature of the current model is that the auto-
immune response does not persist when the virus is cleared. Since
there is good experimental evidence that autoimmune responses
can be self-sustaining and chronic (Kerr et al., 2008), developing
the model to explore this behaviour will be an important further
development of the model.
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