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Abstract

In this paper, we consider a ring neural network with one-way distributed-delay cou-
pling between the neurons and a discrete delayed self-feedback. In the general case
of the distribution kernels, we are able to find a subset of the amplitude death regions
depending on even (odd) number of neurons in the network. Furthermore, in order
to show the full region of the amplitude death, we use particular delay distributions,
including Dirac delta function and gamma distribution. Stability conditions for the
trivial steady state are found in parameter spaces consisting of the synaptic weight
of the self-feedback and the coupling strength between the neurons, as well as the
delayed self-feedback and the coupling strength between the neurons. It is shown that
both Hopf and steady-state bifurcations may occur when the steady state loses stabil-
ity. We also perform numerical simulations of the fully nonlinear system to confirm
theoretical findings.

Keywords Neural network - Stability - Discrete and distributed time delays - Weak
gamma distributions

Mathematics Subject Classification 92B20 - 74H55 - 74H60

1 Introduction

Modern studies of neural networks have continued to develop some of the earlier
research, such as the work done by Hopfield (1984), where he proposed a simple
method of constructing a neural network model. That model, in which the linear cir-
cuit of each individual neuron consisted of a capacitor and a resistor, was capable
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of simulating the development of human memory. Hopfield went further and showed
that through these electrical components, the connection between these neurons can
be described by a nonlinear sigmoidal activation function. This profound realisation
subsequently inspired the development of an entire field where electric circuit type
models are used to study different problems, such as linear programming, signal pro-
cessing, optimisation, associative memory and pattern recognition (Ahmadkhanlou
and Adeli 2005; Amari and Cichocki 1998; Forti and Tesi 1995; Plaza et al. 2009;
Zeng et al. 2008). Such applications heavily rely on underling dynamical behaviour,
and therefore, the analysis of such dynamical effects as amplitude death, oscillation
death, full and/or partial synchronization, clustering, localized pattern formation, and
chimera states, is an important step for the practical design of realistic neural networks
(Zakharova et al. 2013, 2017; Gjurchinovski et al. 2014, 2017).

It is important to note that by their very nature, neural networks inevitably incor-
porate time delays, since the transmission of information between the neurons is not
instantaneous. Uncontrolled delays may degrade network performance and interfere
with information processing by making equilibria unstable (Marcus and Westervelt
1989; Gopalsamy and Leung 1996; Pakdaman et al. 1998; Stépan 1989; Shayer and
Campbell 2000; Gu et al. 2003; Erneux 2009; Gopalsamy 2013). In this respect, time
delays usually play a destabilizing role when compared when compared to analogous
models without time delays. Very recently, a number of important results have been
obtained concerning the effects of discrete time delays on the dynamics of fuzzy (Xu
et al. 2019¢), fractional-order (Xu et al. 2019b), as well as BAM neural networks
(Xu and Li 2019; Xu et al. 2019a). On should note that in many real situations the
time delays are not constant; they may change over time and/or depend on system
parameters (Gourley and So 2003; Feng 2010; Gjurchinovski and Urumov 2010). In
the 1970s, some seminal papers, such as those by May (1973) and Cushing (1977)
showed that in applications to biology, models with distributed delays are often more
tractable and also more realistic than models with discrete delays. Since then, different
types of distributed delays, typically represented by some distribution kernels, such as
uniform or gamma distribution, have been studied in the context of modelling neural
networks, where the presence of many parallel pathways with different axon sizes
and lengths results in different distributions of transmission velocities, which can be
studied using models with distributed time delays (Campbell 2007; Zhao 2004; Liao
et al. 2001; Hutt and Zhang 2013; Han and Song 2012; Bernard et al. 2001; Kyrychko
etal. 2011, 2013, 2014; Rahman et al. 2017a,b).

Recently, there has been a surge of interest in studying neural networks, often based
on Hopfield-type models, with a combination of both discrete and distributed delays
together. Biological justification for such an approach stems from an idea that when
one considers neurons belonging to different parts of the brain, due to long-range
(and possibly, multiple) connections between them, it is more appropriate to model
their interactions using distributed delays (Song et al. 2009), whereas for neurons
that are physically in close proximity of each other, discrete time delays provide a
good representation, since variation in these delays is negligibly small compared to
those in long-range connections (Rahman et al. 2015). Ruan and Filfil (2004) have
studied the stability of steady-state solutions in a two-neuron model with both discrete
and distributed delays, as well as a single feedback for each neuron, and discovered
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some interesting dynamical phenomena. Zhu and Huang (2007) have extended this
model to a tri-neuron network with identical neurons and equivalent delays. They have
shown that a Hopf bifurcation can occur when delays take certain critical values. Zhou
et al. (2009) have investigated local stability of two neural networks with discrete and
distributed delays. By taking the discrete time delay as a bifurcation parameter, they
have found that the system undergoes a sequence of Hopf bifurcations. A number of
other papers (Li and Hu 2011; Bi and Hu 2012; Du et al. 2013; Karaoglu et al. 2016),
have considered the dynamics of neural networks with discrete delays and different
architectures. They found that the trivial steady state can loses its stability through
a Hopf bifurcation, and identified the direction of Hopf bifurcation and the stability
of bifurcating periodic solutions. Xu et al. (2014, 2019a) and Xu and Cao (2014)
have investigated the stability and Hopf bifurcation in a class of neural networks
with two neurons and in a high-dimension neural network. By using weak and strong
distribution kernels, they have obtained conditions for the system keeping stable and
undergoing the Hopf bifurcation, and then used DDE-BIFTOOL to confirm their
analytical results. Feng (2014) has discussed the oscillatory behavior of the solutions
for a three-node network model with discrete and distributed delays, using strong
delay as a kernel distribution. Wang and Wang (2015) have analysed a model with
two identical neurons with discrete and distributed delays. They found that the system
can undergo the Hopf-pitchfork bifurcation if the neuron has negative self-inhibition
and receives an external positive excitation from another neuron. Rahman et al. (2015)
have analyzed a four-neuron model consisting of two subnetworks characterised by
discrete delays within each subnetwork, and distributed delays between subnetworks.
For a general delay distribution, they analytically obtained conditions that determine
the stability of the trivial steady state, as well boundaries of steady-state and Hopf
bifurcation of this steady state.

In order to make analytical progress, models based on Hopfield-type neural network
are often characterise by low dimensionality, whereas actual biological networks are
made up of an extremely large number of interconnected neurons. Naturally, increasing
the size of the networks often leads to a much more complex theoretical analysis. One
possible way to circumvent this complexity is to consider Hopfield-type neural net-
works with a simple architecture, such as a ring network (Baldi and Atiya 1994; Kaslik
and Balint 2009; Jiang and Song 2014). In the specific context of neural networks,
such models have been used to study a number of problems, such as gait, central pat-
tern generation, and directional head movement, see Atiya and Baldi (1989), Canavier
etal. (1997), Droretal. (1999), Xie et al. (2002) and references therein. Moreover, ring
networks have been identified in a variety of neural structures, such as hippocampus
(Andersen et al. 1969), cerebellum (Eccles et al. 1967), and neocortex (Szentdgothai
1975).

Baldi and Atiya (1994) have analysed the dynamics of the unidirectional ring neural
model with time-delayed coupling, derived conditions for the onset of oscillations, and
also determined periods of the bifurcating limit cycles. Campbell et al. (1999) modified
this model by adding self-connected delay to the system. Yuan and Campbell (2004)
developed the ring model further by considering a bidirectional delayed coupling
between neurons. In the latter two papers, stability regions have been identified in the
parameter space of the sum of time delays and the product of the coupling strengths,
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and the authors showed the presence of both steady-state and Hopf bifurcations. Xu
(2008) has explored the dynamics of a ring neural model with a delayed two-way
coupling and delayed self-connection. Using the Lyapunov functional approach, the
global asymptotic stability of the steady state was shown under delay-independent and
delay-dependent criteria. It was also shown how the steady state can lose its stability
through a Hopf bifurcation, resulting in periodic oscillations. Mitra et al. (2014) have
analysed a model based on the system with delayed unidirectional ring topology with
self-feedback in the specific case of the Mackey—Glass model. They have shown the
occurrence of phenomena such as amplitude death and synchronisation in their model.
Lai et al. (2016) have investigated multistability and bifurcations in a ring-like neural
network with four units, including the cases of one-way delayed coupling and delayed
self-coupling.

In this paper, we consider a Hopfield-type network of unidirectionally coupled neu-
rons with a discrete delayed self-feedback, and each ith neuron receiving a distributed

(b, 9(s))

Fig.1 Schematic sketch of the unidirectionally-coupled ring neural model with self-coupling described by
the system (1)
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delay signal from the (i — 1)th neuron, as shown in Fig. 1. The model can be written
in the form

o0
u;(t) = —kui(t) +af (u;(t — 7)) +b/0 g(s) fuj(t —s))ds, (D
wherei =1,2,...,n and
. |n fori=1,
J= fori =2,...,n,

k > 0, u; denotes the voltage of the ith neuron, a is the synaptic weight of self-
feedback, and b denotes the coupling strength of the neuron’s connection, which can
be positive or negative. We assume that a neuron has a delayed self-feedback input
represented by a discrete time delay, and the transmission delays between neurons are
characterised by a distribution kernel g(-).

The transfer function f : R — R is assumed to be sigmoid and in C!. For the local
stability analysis, we only require f(0) = 0, f'(0) # 0, and will use a particular
choice of f(-) = tanh(-) in the numerical simulations.

Without loss of generality, the distribution kernel g(-) is assumed to be normalised
to unity and positive-definite, that is

/Oog(s)ds =1, g(s)=>0.
0

In the case of the distribution kernel being a Dirac delta function, i.e. g(s) = §(s —
o), the last term of the system (1) reduces to bf (u(t — o)), which converts it to a
unidirectionally-coupled ring neural system with discrete time delays in both self-
feedback, and in the connection between the neurons.

The outline of the paper is as follows. In Sect. 2 we perform stability analysis
of the trivial steady state of the system by looking at the characteristic equation for
a generic delay distribution, and derive explicit conditions for stability in terms of
system parameters. Sections 3 and 4 extend these general result to two specific delays
distributions, namely, Dirac delta and weak gamma distributions. For both of these
distributions we find conditions for stability of the trivial steady state, and fully identify
boundaries of stability regions. In Sect. 5 we complement these analytical results by
numerical stability analysis and simulations that illustrate different types of dynamical
behaviours that can be exhibited by the model. Finally, Sect. 6 contains a discussion
of results and open problems.

2 Stability analysis
Under assumption f(0) = 0, the system (1) always possesses a trivial steady state

(uy,uz,...,up) = (0,0,...,0). Linearising the system (1) near this trivial steady
state gives
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o0
li(t)=—KIu(t)+otIu(t—r)+ﬂM/ g(sHu(t — s)ds, 2)
0
where u = (uy, up, ..., u,), I is an n x n identity matrix, and M is given by

o o0 o0 --- 0 1
1 0O --- 0 O

M=]10 1 0 --- 0 O ,
o o0 o0 --- 1 0

nxn

where @ = af’(0) # 0 and B = bf’(0) # 0. The characteristic equation can now be
found as

det[(h + k — ae ) — BMG(M)] = 0,

where
Y o0
G = / e M g(s)ds,
0

is the Laplace transform of the function g(-). The characteristic equation has the
explicit form

(A + K —ae )" = (BG(L)", 3)

which can be equivalently written as

AT, A) =0, 4)
with
| Ag(z, ), ifniseven,
A1) = { Ao(z.2). ifnisodd, )

where Ag(t, ) and Ap(t, \) are

Ap(t, ) =A+k —ae *" £ BG(L) =0 (6)
and

Ao(T, M) =r+k —ae " —BG() =0 (7

for even and odd n, respectively.

Lemma 1 A = 0 is a solution of the characteristic Eq. (4) if and only if |B| =k — «
when n is even, and 8 = k — o when n odd.
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Proof From the characteristic Eqs. (6) and (7), computing é(k) at A = 0 yields

G(0) = /Oog(s)ds =1.
0

Substituting this into A(t, 0) = 0 given in (6), one has
k—axp=0,
and substituting it into (7) yields
Kk—a—p=0,
which completes the proof. O

Lemma2 Let |B| = k — a when n is even, and B = k — a when n is odd. If the
condition E # % holds, where E = fooo sg(s)ds > 0 is the mean time delay, then
A = 0 is a simple root of the characteristic Eq. (4).

Proof Recall from Lemma 1 that if the condition || = ¥ — « holds when 7 is even,
or the condition 8 = k — « holds when 7 is odd, > = 0 is a root of the characteristic
Eq. (4). In order to determine the multiplicity of . = 0, we compute implicit derivative
of characteristic Egs. (6) and (7) with respect to .. When n is even, this gives

dAE
di

o0
=l4+ate ™ F ,3/ se*g(s)ds,
0

and when » is odd, one has

dA s
220 | fare T4 /3/ s’ g(s)ds.
dxr 0
Recalling that || = x — « when n is even, and 8 = k¥ — « when n is odd, and

calculating the derivative at A = 0, gives

dA

T AZO: l+at+ (k —a)E.
From the last expression, it is clear that if the condition E # % is satisfied, then
A(t,0) # 0, implying that A = 0 is a simple root of the characteristic Eq. (4). O

It is well known that the trivial steady state (uy, us,...,u,) = (0,0,...,0) is
asymptotically stable if and only if all roots of the characteristic Eqs. (6) and (7) have
negative real parts. We have the following result in a general case of the distribution
kernel when all roots of the characteristic Eqs. (6) and (7) have negative real parts.

Theorem 1 If the parameters of system (2) satisfy the condition |B| < k — ||, the
trivial solution of (1) is asymptotically stable for any distribution kernel and any t > 0.
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Proof Let . = 1 + iw. Substituting this into the characteristic Eq. (6) and separating
real and imaginary parts gives

Re[A(t; u, )] = pu + k — ae " cos(wr) £ B [5° e cos(ws)g(s)ds,

Im[A(7; p, w)] =  + ae ™ sin(wt) F B fooo e M sin(ws)g(s)ds. ®)
The real part in (8) satisfies
Re[A(T; p, )] = p +k — |ale™" — |B]
X/OOOE_’”g(S)dszR(u)=M+K—IaI—IﬂI- ©

Since |B| < k — |a|, we now have R(u) > O for all © > 0, which implies from
(9) that Re[A(7; u, w)] > 0 for all u > 0. This means that any A = i + iw with
© > 0 cannot be a root of the characteristic Eq. (6), which implies that all roots of
this equation have a negative real part. The proof works in exactly the same way for
the characteristic Eq. (7). O

Next, we are going to determine a region, where the trivial steady state is unstable
for any distribution kernel g(s) and t > 0.

Theorem 2 The characteristic Eq. (4) has a root with a positive real part for any
distribution kernel g(s) and any t > 0 if one of the following conditions is satisfied:
(i) |B| > k — a when n is even, or B > k — o when n is odd; or (ii) « > k.

Proof Substituting » = 0 into Egs. (6) and (7) gives, respectively,
Ap(t,0) =k —a £ B,

and
Ao(T,0) =k —a — B.

The assumption |8| > k —« when n is even, or 8 > k — « when n is odd, implies
that Ag(7,0) < 0 and Ap(7,0) < 0, respectively. If the condition (ii) holds, then
Ap-(1,0) =k —a— B <0forf >0, Ag+(1,0) =k —a+ B <O0for § <0and
Ao(t,0) =k —a — B < 0. On the other hand,

lim Ag(t,A) = o0, lim Ap(t, A) = oo.
L—00 A—>00

Since Ag(t, A) and A (T, A) are continuous functions of A, there exists A* > 0 such
that Ag(t,A*) = 0and Ap(r,A") =0forany t > 0,and |8| >k —aor > kK —«,
respectively. Thus, the characteristic Egs. (6) and (7) have a real positive root, which
completes the proof. O

So far, we have been derived stability results for a general delay-distributed kernel.
Figure 2 shows the shaded diamond-shaped domain in the («, §) plane plane, where
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(a)
[3 A

7

&'\Q

o=K

Fig.2 Stability region of the trivial steady state of the system (1) in the parameter plane (c, B) for a general
distribution kernel. The steady state is unstable in the region (E) (respectively, (O1)), and asymptotically
stable in the region (E») (respectively, (O2) when n is even (a), or odd (b)

the trivial steady state is stable whenever the condition |8| < x — || holds. The size
of the diamond depends on the parameter « for both even and odd r, as indicated in
Theorem 1. From Theorem 2, it follows that it is impossible to stabilise the unstable
trivial steady state in the regions E; in Fig. 2a and O in Fig. 2b, if the parameters
satisfy |B| > « — « for even number of neurons, or if 8 > x — « and & > « for odd
number of neurons.

Theorem 3 When n is even, on the lines |B| = k — «, if T < [(a¢ — k)E — 1]/, the
trivial steady state becomes stable as B crosses the line f = k — « decreasingly, or
the line B = —(k — «) increasingly, where E = fooo sg(s)ds > 0 is the mean time
delay.

Proof Recall that the lines with A = 0 are defined by the zero roots of Ag(z, A) = 0.
Differentiating Ag (7, 1) = 0 with respect to 8, we obtain

dRe()) Re + [o° g(s)e ™ ds
g 1+ate T £ B [57 se 5 g(s)ds

ke £G (L)
B I +ate? £ [ se 5 g(s)ds |

Evaluating this at || = k — « and A = 0, we have

dRe(0) 1
=+ . (10)
dpg |Bl=k—ax l4+ar+ Kk —a)E
dRe(0) . ..
Hence, T‘W < 0, provided T < [(«¢ — k)E — 1]/, and the trivial steady
=K—a
state becomes stable as § decreases through the line § = k — « and increases through
the line B = —(k — o), which completes the proof. O
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Theorem 4 When n is odd, on the line 8 =k —a, B > 0,ift < [(0« —k)E — 1]/«,
the trivial steady state becomes stable as B crosses the line B = k — «a decreasingly,
where E = fooo sg(s)ds > 0 is the mean time delay.

Proof Recall that the . = 0 line is defined by the zero roots of Ap(t,1) = 0.
Differentiating Ao (t, A) = 0 with respect to S, yields

dRe(h) Re 10" g(s)e ™ ds
g 1 +ate ™+ B [ se 5 g(s)ds

= Re /G\()L)
B 1+ate 4+ B [Cseg(s)ds |

Evaluating this at 8 = k — « and A = 0 yields

dRe(0) . 1 (11
df lp_y 1o+ —a)E
o dRe(0) .
If t < [(0 —«)E — 1]/«, this implies that 5 < 0, and, hence, the trivial
=K—
steady state becomes stable as 8 decreases through the line 8 = k —«. This completes
the proof. O

Remark 1 From Theorem 3, if 0 < o < «, then the sign of dRe(0)/dg in (10) is
fully determined by 8 and does not depend on the distribution kernel or the time delay
T > 0. Thus, the trivial steady state loses stability via a steady-state bifurcation when
B increases through the line 8 = x — «, or decreases through the line § = —(k — «).

Remark 2 From Theorem 4, if 0 < o < k, then dRe(0)/dB > 0in (11) regardless of
the distribution kernel and the time delay t > 0. Thus, the trivial steady state loses
stability via a steady-state bifurcation when B increases through the line 8 =« — «.

Remark 3 For a fixed value of « and for any distribution kernel, if |@| < «,then 8 # 0
for any T > 0. Furthermore, if |a| > «, then there exists o such that 8 = 0 for t = 19.

Proof In order to find t when 8 = 0 in Remark 3, let us assume that 8 = 0 in both
characteristic Egs. (6) and (7), which gives

Atk —ae T =0. (12)

Substituting A = iw with v > 0 into (12) and separating real and imaginary parts, we
obtain

Kk = acos(wt), —w = o sin(wT). (13)

It can be easily seen that the Eqgs. (13) can only be satisfied, if |«| > «. Under this
assumption, squaring and adding (13) gives an expression for the Hopf frequency w
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(a) (b) (c)

B4 B=x-a E; B4 Bp=x—a E, B4 p=x—a E;
T T T

a— =(k-0) Eq p=—(x-a) E;

Fig. 3 Stability boundary of the trivial steady state of the system (1) in the (7, 8) parameter plane for a
general distribution kernel when 7 is even. In the region E7, the steady state is unstable, in the region Ep
it is asymptotically stable.ao < —k. b —k <@ <0.¢0 <« <«

in the form w = V&2 — k2. Moreover, from the system (13), substituting w, we can
find the expressions for the time delay t as follows

(2j + D —cos™(k/a)
, for 0 <« <a,

2 _ .2
ror = o K (14)
2jm +cos™(k/a)
, for o < —k <0,
22 _ K2
where j = 0, 1, .. .. Since the trivial steady state is unstable for « > «, we are only

interested in the case when o < —«. This simplifies the Eq. (14) as follows

cos_l(/c/oz)
)= —— fora < —«k <0,
22 — k2

where cos~1(+) is the principal branch of the inverse cos(-) function, which has the
range [0, ]. O

Figure 3 illustrates a part of the stability region in (z, 8) plane for even n and a
general distribution kernel g(s). The shaded area E» in Fig. 3a, b indicates regions
where the trivial steady state is stable when both conditions 7 < [(¢ —k)E — 1]a and
a < 0 are satisfied. This is in the full agreement with Theorem 3, which states that if
B increases through the line 8 = k — « or decreases through the line 8 = —(x — @),
the characteristic Eq. (5) has a real positive root. The closure in Fig. 3a reveals that
for large enough values of the time delay T and @ < —«, the trivial steady state
becomes unstable independently of the parameter 3, as stated in Remark 3. In Fig. 3c,
if 0 < o < «, the trivial steady state can only lose its stability through the lines
|B] = k — «. Finally, for @ > «, the zero steady state is always unstable for T > 0,
following the results of Theorem 2(ii).

Figure 4 shows stability regions for odd number of neurons and different values
of «. For all the three cases, from Theorem 4 it follows that the trivial steady state
becomes stable as  passes through the line 8 = x — « decreasingly. The shaded
area O in Fig. 4a, b indicates the region where that the trivial steady state is stable,
provided T < [(¢ — k)E — 1]/a and o < 0. The shaded area O, in Fig. 4c is a
stability region for o > 0, as stated in Remark 2. For both even and odd number of
neurons, Theorem 2(ii) shows that if « > «, the trivial steady state is always unstable
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(a) (b) (c)
B4 b=x—o O B4 p=xo O P pra O
02| 02 | 02

T T T

Fig. 4 Stability boundary of the trivial steady state of the system (1) in the (t, 8) parameter plane for a
general distribution kernel when 7 is odd. In region O1, the steady state is unstable, and in region O it is
asymptotically stable.aa < —x. b —« <o <0.¢c0 <o <«

independently of the time delay t. It is noteworthy to mention that the trivial steady
state undergoes a steady-state bifurcation through horizontal lines || = k — o when
n is even, and B = k — o when n is odd, as illustrated in Figs. 3 and 4, and stated in
Lemma 2.

Due to the complexity of the system, it is not possible to find the full stability region
for a general distribution kernel. Therefore, we now consider specific delay kernels
to make further analytical progress and to find complete stability regions for a trivial
steady state.

3 Dirac delta function distribution

When the delay distribution kernel if chosen as a Dirac delta function, there are two
possibilities. If g(s) = §(s — o), then the system (1) reduces to a system with two
distinct discrete time delays. This case has been considered for a system of two neurons
in Shayer and Campbell (2000), a three-neuron network in Yuan and Li (2010), a four-
neuron system in Williams et al. (2013), and a ring network of n neurons in Campbell
et al. (1999) and Mitra et al. (2014).

Let us instead consider the distribution kernel of the form g(s) = 8(s), i.e

/O fQu —s))d(s)ds = f(u@)). 15)

In this case, the linearised model (2) becomes a system with a discrete time delay only,
and has the form

u(t) = (—«I + gMu(t) + alu(t — 1), (16)

where u = (uy, uy, ..., u,), I is an n x n identity matrix, and M is defined in (2).
The corresponding characteristic equations for even and odd n, respectively, are

Ap(T, ) =rA4+kE+B—ae " =0, (17)
and
Ao(T, M) =A+k — B —ae " =0. (18)

In Sect. 2, we have analysed the characteristic equation for an arbitrary distribution
kernel and obtained a subset of stability boundary in both (¢, 8) and (t, 8) parameter
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planes. We now consider the same parameter spaces to determine the complete stability
region in the case g(s) = §(s).

Theorem 5 For the system (1) with delta distributed kernel g(s) = 8(s) and even n,
the following holds.

(1) The trivial steady state is unstable if |B| > k — a.

(ii) The trivial steady state is asymptotically stable if |B| < k — |a|.

(iii) The trivial steady state is stable if k + o < |B] < k —a and T € [0, Topen). At
T = Teyen, the trivial steady state loses its stability via a Hopf bifurcation and
becomes unstable for T > Toyen, Where Toyen s the first critical time delay given
by Teyen = min{z, , r(;r}, with

cos_l(#)
JaZ — (k£ p)?

Proof Results (i) and (ii) immediately follow from Theorems 1 and 2 . In (iii), assume
that condition ¥ + @ < |B] < k — « is satisfied. First, for t = 0, the characteristic
Eq. (17) becomes Ag(0, 1) = A + k + B — «, with the eigenvalues given as A* =
—(k £ B — ). Since |B] < k —a, A* < 0, and, therefore, the trivial steady state is
stable. Now, we consider the case when T > 0 and look for eigenvalues in the form
A = iw, o > 0. Substituting A = iw into (17), and separating real and imaginary
parts, we get

+ _
T, =

k£ B —acos(wt) =0,

o + asin(wt) = 0. (19)
Upon squaring and adding these two equations, one obtains
o’ =’ — (k £ )%, (20)

and from the first equation of the system (19) it follows that

2j+ Hm — cos™! (%)

for0 <k +p8 <a,
2 _ + B)2
. var—(k£p) 21

: -1 («£8
2jm + cos <T)

Va2 —(k £ B)?

for o < —(k £ B8) <O0.

Since |B| < k — «, the latter expression for ‘L'j:-t becomes

—1,kEB .
cos ' (=E)+4+2jm
ot () +2) 22)

N e Py

where j =0,1,2,....
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To show that a Hopf bifurcation occurs at T = Ty, We note that solutions of
Eq. (19) are pairs (rf, w), such that . = Fiw are pairs of purely imaginary roots of

(17) with T = rf. Define
Teven = Minf{7y , 75},
where T,ye, 18 the first critical value of the time delay 7, for which the roots of Eq. (17)

cross the imaginary axis. In order to determine the direction of the root crossing, we
differentiate the characteristic Eq. (17) with respect to «:

dx e 1
— = = . (23)
da 1+ate™?™ e toart
From (23) it follows that
dRe(}) ot + cos(wt)
- : . (24)
do (et + cos(wt))? + (sin(wT))?
Using the first equation of (19), we obtain
+
ar—i—cos(a)r):oer—i—K p >ar+g=ar+1,
o
which implies that et + 1 < Oif o < —%. This completes the proof. O

Theorem 6 For the system (1) with delta distributed kernel g(s) = 8(s) and odd n,
the following holds.

(1) The trivial steady state is unstable if B > k — «a and o > k.
(ii) The trivial steady state is asymptotically stable if || < k — |a|.
(iii) The trivial steady state is stable if B < k — a, a« < k and T € [0, Tpo44), a Hopf
bifurcation occurs at T = Toqq, and the steady state is unstable for all T > Tyq4,
where Tyqq is the first critical time delay given by

cos_l(%)
o —(k — B)*

Todd =

Proof The proof of this theorem is similar to the proof of Theorem 5. In order to
find 7,44, we look for eigenvalues of the characteristic equation in the form A = iw,
substitute this into (17), and separating real and imaginary parts, we obtain

Kk — B —acos(wt) =0,

o + asin(wt) = 0. (25)
Squaring and adding these two equations yields
w? =a’ — (k — p)?, (26)
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=K

Fig. 5 Stability boundary of the trivial steady state of the system (1) with delta distribution kernel in
(e, B) parameter space. When n is even (a)/odd (b), the trivial steady state is unstable in region E1/0q,
asymptotically stable in region E2/O», and stable in region E3/0O3 when t € [0, Teyen)/[0, Toaq)

and from the first equation of the system (25), one obtains

2j+ DHmr — cos~! <ﬂ>

B /92 — (v — B)2
YT, i _I(K,(_,f) 27
2jm 4+ cos (T)

where t,44 = 7 is the first critical time delay, when the trivial steady state loses its
stability. The proof of transversality condition is analogous to the one in Theorem 5.
This completes the proof. O

for 0 <k —f8 <a,

for o < —(k — B) <O,

Theorems 5 and 6 give stability properties of the trivial steady state in (¢, 8) param-
eter space for Dirac delta delay distribution kernel g(s) = &(s). When n is even, the
stability region is bounded by lines || = k¥ — « to the left of the shaded diamond,
and remains symmetric with respect to «-axis, as shown in Fig. 5a. Figure 5b shows
the stability boundary for the case when n is odd. In this case, the region of stability
is enlarged towards down and to the left of the shaded diamond, and unlike the case
when 7 is even, the stability region becomes asymmetric around «-axis.

Next, we analyse stability properties of the trivial steady state of the system (2) in
(t, B) parameter plane.

Theorem 7 For the system (1) with delta distributed kernel g(s) = 3(s) and even n,
the following statements hold.

(i) For a < O, the trivial steady state is asymptotically stable if |B| < k — « and
T < —1/a. When B is increased (decreased) through the line |B| = k — «, the
trivial steady state loses its stability via a steady-state bifurcation. The trivial
steady state is stable if || < k — o and T € [—1/a, Toven). At T = Teyen, the
trivial steady state undergoes a Hopf bifurcation, and it is unstable for T > Teyen.
For o < —«, the trivial steady state is unstable independent of B for T > Toqq =

cos Mk Jar) N — k2.
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(i) For0 < «a < «k, the trivial steady state is asymptotically stable if || < k — o and
unstable if |B| > k — o. When B is increased (decreased) through the line |B| =
Kk — «, the trivial steady state undergoes a steady-state bifurcation, independently
of the time delay t.

Proof Following stability results in the case of the general distribution kernel, as stated
in Theorem 3 and Remark 1, we have proved the results in (i) and (ii) that are related
to the appearance of the steady-state bifurcation. We have also shown that the trivial
steady state is unstable independent of 8 in Remark 3 for ¢« < —«. In order to show
the occurrence of a Hopf bifurcation in (i) and (ii) when t = t,y.,, differentiating
Eq. (17) implicitly with respect to 7, we find

dxr ae T
= 28
dt 1 +ate " 28)
Substituting A = iw into (28) and taking real part, one has
dRe(n) o[l + ot cos(wT)] (29)
dt (1 +atcos(wr))? + (at sin(wr))?’

Using the first equation of (19) yields
l4+atcos(wr) =141tk £8) > 1+ 10,

whichimplies that 1 4+t > 0ift > —1/«, and sincea < 0, we conclude that for t =
Teven, thereisaroot A = A(7) = a (1) Tiw(7) satisfying o (Tepen) = 0, @ (Tepen) = @
and dRe(A)/dt |T:Teven > 0. This root crosses the imaginary axis at T = Ty, from
left to right if T > —1/«, which completes proof. O

Theorem 8 For the system (1) with delta distributed kernel g(s) = 5(s) when n is
odd, the following statements hold.

(i) Fora < 0and B > 0, the trivial steady state is asymptotically stable if f <
Kk —aand T < —1/a. When B increases through the line B = k — «, a steady-
state bifurcation occurs. If B < k — «, the trivial steady state is stable if T €
[—1/a, Toqaa), unstable if t > T,q4, and undergoes a Hopf bifurcation at t = Tyq44.
Fora < 0and B < O, the trivial steady state is stable if T € [0, Tyqq), unstable if
T > To4d, and undergoes a Hopf bifurcation at T = t,44. For @ < —k, the trivial
steady state is unstable independent of B for T > 19 = cos” ! (k/a) /v a? — k2.

(i) For 0 < o < k and B > 0, the trivial steady state is asymptotically stable if
B < k — a and loses stability via a steady-state bifurcation when B is increased
through the line B = k — «, independently of the time delay t. For 0 < a < k
and B < O, the trivial steady state undergoes a Hopf bifurcation at T = Tyqq.

Proof Similarly to the proof of Theorem 7, existence of the steady-state bifurcation
follows directly from stability results for a general distribution kernel, as stated in
Theorem 4 and Remarks 2 and 3 . In order to show the occurrence of a Hopf bifurcation
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@ (6) ©
B4 B=r—a = B4 B=x—a E; . B4 poa  E
) —_ Teven
E2 ES\M‘“V., _ E2 E3 ——— E2
7 ”é;}ven K " i’e’venr ° T
f=—(1-o) B=—(x—a) E, B=—(k—0x) E,

Fig. 6 Stability boundary of the trivial steady state of the system (1) with Dirac delta distributed kernel
in (7, B) parameter space when n is even. The trivial steady state is unstable in region E1, asymptotically
stable in region E7, and stable in region E3 for t < tepen. a2 < —k.b—k <a <0.c0 <o <«

" ®) (c)
g N ° B p=x-a O, B4 B=x-a Oy
Oy |~ o 0—2’ |t =
/ ’/’ Todd 01 ,O T
% ) |

Fig.7 Stability boundary of the trivial steady state of the system (1) with Dirac delta distributed kernel in
the (t, B) plane when n is odd. The trivial steady state is unstable in region O, asymptotically stable in
region Oj, and stable in region O3 fort < tyyq. a0 < —k.b—k <o <0.c0<a <«

in (i) and (ii), when t = t,y¢,, we differentiate Eq. (18) implicitly with respect to t
to obtain

di ae T
—_—=—— 30
dt 1 +ate?t (30)
which then gives
dRe(A) —o[l + at cos(wt)] 31)
dt (14 atcos(wr))? + (at sin(wt))?’

Fora < 0and 0 < B < k — «, using the first Eq. of (25) we obtain —a[l +
atcos(wtr) = —a[l + 17k — B)] > —a(l + ) > 0if 7 > —é. For @« < 0 and
B < 0,wehave | + at cos(wt) =1+ t(k — B) > 0, which completes the proof. O

Theorems 7 and 8, illustrate the full stability region in (r, B) parameter plane.
For a Dirac delta distribution, the condition for a general distributed kernel 7 <
[(k —a)E — 1]/« reduces to T < —1/«a, and the stability region has three different
shapes in the parameter plane depending on values of other parameters. When 7 is even
and o < 0, as illustrated in Fig. 6a, b, the trivial steady state is asymptotically stable
if |B] < k —a and T < —1/«, it is further stable for 7 € [—é, Teven), and undergoes
a Hopf bifurcation at T = t,y.,. As we discussed in previous section and shown in
Fig. 6a, if « < —«, for large enough values of t the trivial steady state is unstable
independently of 8. When 0 < « < «, as shown in Fig. 6c, there is no difference
in stability regions between a delta function distribution and a general distribution.
When 7 is odd, again it gives three boundary regions. The shape of stability regions
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when 7 is odd and S > 0 is the same as for the case when 7 is even. The asymmetry
in stability regions arises when 8 < 0 for all three scenarios shown in Fig. 7.

4 Weak gamma distributed delay

Another commonly used delay distribution is the so-called Gamma distribution, which
can be written as follows,

p=1,,p,—vu
g(u) = % (32)

where y, p > 0 and p is integer. For p = 1 this is an exponential distribution, also
called a weak delay kernel. Weak delay distribution has the mean delay

* p
Ty = / ug(m)ydu = —, (33)
0 14
and the variance
o p
o’ = f (u — tp)?gw)du = o (34)
0

Laplace transform of the weak delay distribution kernel has the form

GO r ) 35
()—(m)' (35)

Substituting this Laplace transform into Eqgs. (6) and (7) shows that the the character-
istic equation in this case becomes

A+ pia+ pr+ (@ih+goe T =0, (36)

where

(k £ B)y if n is even,
PL=yti q=-o g=-ay pz:{(lc—g)lJj if n is odd. 37)

In order to determine the boundaries of stability of the trivial steady state of the
system (1), we investigate the distribution of roots of characteristic Eq. (36), and more
specifically, look for roots with zero real part. This can happen either when A = 0,
or when A = iw (w > 0). As was shown in Lemma 1 for any distribution kernel,
A = 0 is a solution of the characteristic Eq. (36) if and only if || = x — « when n
is even, and § = xk — « when n is odd. In order to find the complete boundaries of
the stability region, we look consider a situation when the characteristic equation has
a pair of purely imaginary roots. Substituting A = iw into Eq. (36) gives

— @ + proi + p2 + (qroi + g2)(cos(wt) — i sin(wt) = 0. (38)
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Separating real and imaginary parts of this equation yields

w? — P2 = g2 cos(wt) + qrwsin(wt),
. (39)
p1o = g2 sin(wt) — gjw cos(wT).

Squaring and adding these two equations, one obtains a quartic equation
o' = (qf +2p2 — D’ + p3 — 43 =0, (40)

whose solutions can be readily found as

@} +2p2— pD %/} +2p2 — PP~ 4(p3 — 4))

5 (41)

R =

Let us define @ = (ql2 +2psy — p%)2 —4( p% — qzz) < 0. We now distinguish between

the following cases:

(H1) p3 — g3 > Oand g} +2p> — p7 < 0 or @ < 0. In this case, Eq. (40) has no
real roots.

(H2) p% — q22 <Oor q12 +2py — p% > 0 and @ = 0. In this case, Eq. (40) has one
positive root w4 given by

V2 1
o = -lgt +2p2 = pi + VP12,
(H3) p% — q22 > 0, ‘112 +2py — pf > 0 and @ > 0. In this case, Eq. (40) has two
positive roots w4 = 4[5112 +2pr — p% + \/5]%

If either of the hypotheses (H2) or (H3) holds, the characteristic Eq. (36) has purely
imaginary roots for some T = r]i. To find these values of 7, we solve the system (39)
for sin(wt) and cos(wt) and then divide those to obtain the following expressions for
the critical time delays

1 o+ (1ot + —
ng:_{tan_l(_ +(q101 + p1g2 pqu))+jn}’ =012,

7wy PIqIod — 0% + pagn
(42)

Here we define
s op— o+
Tweak = mm{fo » To }

as the first critical time delay. Note that when 7 = 0, the system (1) with gamma
distribution (32) reduces to a system of ODEs with a characteristic equation

A4 (pr4+qDr+pr+q=0. (43)
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Lemma 3 Assume that (H4) p1 + q1 > 0 and py 4+ g2 > 0. Then all roots of the
Eq. (43) with T = 0 have negative real parts.

Lemma4 Suppose that (H4) holds, and wi and tji are defined by Egs. (41) and (42),
respectively.

(1) If (H1) is satisfied, then there are no roots of Eq. (36) with positive real part for
any T > 0.
(i) If (H2) is satisfied, then there are no roots of Eq. (36) with positive real part for
for T € [0, Tyeak), and there is a pair of simple purely imaginary roots £iw, at
T = Tj+.
(iii) If (H3) is satisfied, then there are no roots of Eq. (36) with positive real part for
for T € [0, Tyeqk), and there is a pair of simple purely imaginary roots tiw4 at

T = ‘L’]:-t, respectively.

Under the hypothesis (H3), the characteristic Eq. (36) has two pairs of purely imaginary
roots iw+ with w1 > w_ > 0 defined by (41). In order to establish whether stability
of the trivial steady state actually changes as t varies, we calculate the sign of the
derivative of Re(A) at the points where A(t) is purely imaginary.

Lemma5 The following transversality conditions are satisfied

I:dRe{)\(r)}i| -0 |:dRe{A(t)}:| <0
dt gt ’ dr S '

Proof Differentiating the characteristic Eq. (36) implicitly with respect to t, we find

[dx]‘l _ 2k prt@ie — @At q)reT  Qht et a T
dt (@11 + g2)he™*T (@r+g)r (@i +g)r A

Now, we can compute

dRepo 17! [(2A+p1)e“} { } _ :
[ v e = RO Guraor [+ TRE e it Ref{f}, .«
J J

J
. Qei+p1)(cos(@+T;) =i sin(w+T})) 7
=Re { (Gro+i+q2)w+i +Re { (qro+i+g)o+i }

2qrw+ cos(witji)+p1q2 sin(wiri) P10+ cos(wirji)+2q1w:2t sin(wirji) ql
(QQ +41 wz)wi (q; +q1 wi)
Qg2 pigDw cos(@+T7)+(p1g2+2g10%) sin(@L T ) —qfox }

(g3 +qio1)
{=va}.

—m{zwi‘i‘(l’l 2p2y—q )}

2+q P

where A is the discriminant of Eq. (40). Thus, if A # 0, we have

dRe{A(1)) C[dRe(A@)} ]t
[ dt ]T:ﬁ B [ dt ]T:# @3+ qia? {ﬂ} =0
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and
dRe{\ (1)} dRe{n (1)} ]! 1
[T 7: T 7:—m{\/Z]<O,
T=1; T=1; > T 44
which completes the proof. O

To apply these results to investigating stability of the trivial solution of the system
(1) with a weak distribution kernel (32), we start by noting that for t = 0, all roots of
(43) have negative real parts if and only if (H4) is satisfied, which has explicit form

o <k +|Bl, ifniseven. 44)

{oc</(—/3, if n is odd,
It, therefore, follows that the trivial steady state of a ring neuron system (1) without
delay in self-connection is asymptotically stable if and only if the conditions (44)
are satisfied. To explore the effects of the self-connection delay on stability, we now
check the hypotheses (HI-H3) by substituting p1, p2, g1, and g. Substituting the
expressions for these parameters from (37) into conditions p% - q22 > 0 and q]2 +
2p1 — pf < 0 of (H1), one finds

o <k + |8l 45)

and

l| <« and B> —%. (46)

Similarly, the condition p% — q22 < 0 in (H2) now takes an explicit form
a > |k —pB|, ifnisodd,
{ o > |k £ B, ifniseven. “7)

Finally, the condition p3 —g35 > 0in (H3) is the same as the condition (45), whereas
conditions ql2 +2p1 — p% >0, ® > 0 give (47) and

% (48)

la| > kand B < —%,  if nisodd,
le| > kand |B] < —%, if niseven.

Using Lemmas 4 and 5, one can draw the following conclusions about the stability
of the trivial steady state.

Theorem 9 For the system (1) with weak gamma distributed delayed kernel (32) with
p = 1, when n is even, and t;[ being defined in (42), the following results hold.

(1) The trivial steady state is unstable if |B| > k — «.
(ii) The trivial steady state is asymptotically stable if ¢ < k + |B| and |«| < k.
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Fig. 8 Stability boundary of the trivial steady state of the system (1) for weak gamma distributed kernel
with n even (a), or n odd (b). The trivial steady state is unstable in regions E1/01, asymptotically stable in
regions E5/O; for any 7, and stable in regions E3/03 for t € [0, Tyeqk)

(iii) The trivial steady state is stable if « < k + |B|, « > —k and T € [0, Tyeak),
unstable if T > Tyeqk, and undergoes a Hopf bifurcation at T = Tyeqk-

Theorem 10 For the system (1) with weak gamma distributed delayed kernel (32) with
p =1, odd n, and Tj:-t being defined in (42), the following resuls hold.

(1) The trivial steady state is unstable if B > k — a and @ > k.
(ii) The trivial steady state is asymptotically stable if ¢ < k + |B| and |«| < k.
(iii) The trivial steady state is stable if B < k —a and o < k and © € [0, Tyeak),
unstable if T > Tyeak, and undergoes a Hopf bifurcation at T = Tyeqk-

Figure 8 illustrates stability regions of the trivial steady state of the system (1) in
the case of weak gamma distribution. The trivial steady state is stable inside shaded
triangular regions E»> and O that are larger compared to the case of the delta distributed
kernel. Similar to the case of the delta distribution kernel, the stability region extends
to the left of the triangle and remains symmetric along «-axis for an even number
of neurons, and becomes asymmetric for negative values of 8 for an odd number of
neurons.

Theorem 11 For the system (1) with weak gamma distribution kernel (32) with p = 1,
when n is even, and rji being defined in (42), the following results hold.

(1) For a < 0, the trivial steady state is asymptotically stable if |B| < k — «
and T < (¢ — k — y)/(ay). As B is increased (decreased) through the line
Bl = k — «, the trivial equilibrium loses its stability through a steady-state
bifurcation. Furthermore, the trivial steady state is stable if |B| < k — «a and
T € [(O{ — Kk —y)/(@yY), Tweak), unstable for T > Tyeqk, and undergoes a Hopf
bifurcation at T = Tyeqr- For a« < —k, the trivial steady state is unstable inde-
pendently of B for T > 19 = cos” ! (k/a) /v a? — k2.

(i) For0 < a < k, the trivial steady state is asymptotically stable if || < k —«, and
loses its stability through a steady state bifurcation when f3 is increased (decreased)
through the line |B| = k — «, becoming unstable for |B| > k — a.
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Theorem 12 For the system (1) with weak gamma distribution kernel (32) with p = 1,
when n is odd, and tji being defined in (42), the following results hold.

(1) Fora < —k and B > 0, the trivial steady state is asymptotically stable if B < Kk —«
and v < (¢ — k — y)/(ay). When B is increased, once it passes the value of
B = k —«, the trivial steady state loses its stability via a steady-state bifurcation.
The trivial steady state is stable if f <k —a andt € [(¢ —k —y)/(@Y), Tweak),
unstable if T > Tyeak, and undergoes a Hopf bifurcation at T = Tyeqk. Fora < 0
and B < 0, the trivial steady state is stable if T € [0, Tyeak), unstable if t > Tyeak,
and undergoes a a Hopf bifurcation at T = tyeqk. For @ < —k, the trivial steady
state is unstable independent of B for T > 19 = cos™ ! (k /o) //a? — k2.

(i) For 0 < o < k and B > 0, the trivial steady state is asymptotically stable if
B < k — «a, and loses its stability via a steady-state bifurcation as B is increased
through the line B = k — «, independently of the time delay t. For 0 < a < k
and B < 0, the trivial steady state is stable if T € [0, Tyear), a Hopf bifurcation
occurs at T = Tyegk-

Similar to the case of the general distribution kernel and delta distributed kernel,
the stability boundary in (z, B) plane is similar to Figs. 6 and 7 for n even and odd,
respectively. Substituting the mean time delay £ = 1/y into the condition 7 <
[(k —a)E —1]/a turnsitinto T < (¢ — k — y)/(ay) which determines the range of
T values, for which the trivial steady state is stable, and now it depends not only on «,
but also on y and k.

5 Examples and numerical simulations

In order to illustrate our analytical findings, in this section we consider two specific
examples when n is even, and when #n is odd in (1) for the cases when the delay
distribution kernel is taken as Dirac delta function and in the form of a weak gamma
distribution. We shall use a traceDDE toolbox (Breda et al. 2006) to compute the
characteristic roots and determine stability regions for the trivial steady state of the
system (1). We will also perform direct numerical simulations of the fully nonlinear
system using dde23 suite in Matlab.

5.1 Example: even number of ring-coupled neurons

As an example, we consider the system (1) with the smallest even number of neurons,
namely, n = 2, as shown schematically in Fig. 9.

Figure 10a—c show numerically computed stability regions for the trivial steady
state of the system (1) with delta distributed kernel and n = 2 in the («, §) plane, with
colour representing [— max{Re(A)}]. It can been seen that the shape of the stability
area is symmetric across «c-axis in direct agreement with Theorem 5. As time delay 7 is
increased, the stability region becomes smaller while retaining a roughly quadrangular
shaper. In Fig. 10d—f, the stability area is computed in the (z, B) plane for several values
of «. For negative values of «, the steady state undergoes both Hopf and steady-state
bifurcations, as shown in Fig. 10d—e), as described by Theorems 3 and 7. Figure 10f

@ Springer



1640 B. Rahman et al.

(6,9(s))

(6,9(s))

Fig.9 A schematic sketch of two unidirectionally-coupled neurons with distributed delays and a discrete-
delayed self-connection

(b) (c)
6 5 : 6 5 : 6
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3 0 3 0 3
0 5 0 5 0
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3 2 : 0
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Fig. 10 Stability region for the trivial steady state of the system (1) with delta distributed kernel g(s) = 8(s)
and n = 2. Colour code denotes [— max{Re(A)}] for max{Re(A)} <0.afx =1.a7=02.b7r=04.¢
1=06de=—-12(u< —«k).ea=—-08(—« <a<0).fa=0.2(0 <a < k) (color figure online)

corresponds to the case of positive values of « € [0, «], where the steady state can
only undergo a steady-state bifurcation as per Remark 1.

In order to illustrate different types of dynamics that can be observed for various
parameter combinations, we have also performed direct numerical simulations of the
full nonlinear system (1) with n = 2 and a delta distributed kernel. Choosing the
transfer function as f(-) = tanh(-), which implies that f/(0) = 1, we can rewrite
system (1) forn = 2 and g(s) = §(s) as follows,

11(t) = —ku1(t) + atanh(u(t — t)) 4+ btanh(uy(1)), 49
ir(t) = —kuo(t) + atanh(ur(t — t)) + btanh(u(2)). “49)

From Theorem 7(i) and (ii), it follows that whenever o < 0, the trivial steady state
is stable if || < k —a and T € [—1/«, Tepen). Here, we take k = 1, b = +£1,
a = —0.8, which gives the first critical value of the time delay, for which the trivial
steady state loses its stability, as Teyen, = 1.96. In Figs. 11a and 12a, the trivial steady
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(a) (b)
0.3 0.6
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time(t) time(t)
(c) (d)
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i ui
0 [ 0
03 20 40 T 30 60
time(t) time(t)
Fig. 11 a, b Numerical solution of the system (49) for @ < 0. Parameter valuesarex = 1,b = 1,a = —0.8,

and tepen = 1.96.20 < 7 = 1.8 < Tepen- b 7 = 2.2 > Topen- €, d Numerical solution of the system (49)
in the case when o > 0. Parameter valuesarek = 1,a =0.2, 7 =05.¢b=0.6.db =1

a b
0.3 ( ) 0.6 ( )
u. u.
of e A
03 70 . 140 08 100 ] 200
time(t) time(t)
(c) (d)
0.3 1
u. u.
"o ‘o
03 50 ] 100 1 50 ] 100
time(t) time(t)
Fig. 12 a, b Numerical solution of the system (49) in the case when o < 0. Parameter values are k = 1,
b=—1,a=—-0.8and Tepen = 1.96.20 < 7 = 1.8 < Tepen. b T = 2.2 > Topen. ¢, d Numerical solution
of the system (49) in the case when o > 0. Parameter values are k = 1,a = 0.2, 7 =0.5.¢ b = —0.6. d
b=-—1

state is stable for 1.25 < t < 1.96, and undergoes a Hopf bifurcation at 7.y, = 1.96,
giving rise to a stable periodic solution, as shown in Figs. 11b and 12b. Note that
when 8 > 0 and © > T.ye,, We observe an isochronal synchronous state illustrated
in Fig. 11b, while for 8 < 0 and T > 7.y, there is an anti-phase synchronous state
presented in Fig. 12b.

The result from Theorem 7(iii) indicates that when 0 < « < «, the trivial steady
state is stable if || < k¥ — o, which is satisfied for parameter values k = 1, a = 0.2,
b = +£0.6, and the corresponding solutions are shown in Figs. 11cand 12¢.If 8 > S,
where S, satisfies |8.| = k — «, the trivial steady state is a repeller, and there exists
another stable non-trivial steady state, as illustrated in Figs. 11d and 12d.

Next, we consider the system (1) with a weak gamma distributed kernel. Following
an idea of the linear chain trick (MacDonald 1978), we introduce two new variables

o0
u3(t) =/ ye VSui(t —s)ds,
0

o0
usg(t) =/ ye us(t — s)ds,
0
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(a) (b) ©

0 2
T T T

Fig. 13 Stability of the trivial steady state of the system (1) with weak gamma distributed kernel and n = 2.
Colour code denotes [— max{Re())}] for max{Re(1)} < 0. a—c Stability region in («, 8), for parameters
k=1, y=1latr=02.bt =0.4.ct = 0.6.d-f Stability region in (7, B), for parametersk = 1, y = 1.
do=-12(u<—«k).ea=—-08(—« <a<0).fa=02(0 <« < k) (color figure online)

which allows us to equivalently rewrite the system 1 with n = 2 in the following way
i1(t) = —kui(t) + atanh(u(t — 7)) + btanh(us(t)),

ir(t) = —kuo(t) + atanh(ur(r — 1)) + btanh(us(t)),
(50)
uz(t) = yur(t) — yus(t),

ug(r) = yua(t) — yus(?).

The stability region of the trivial steady state for the case of weak gamma distributed
kernel in («, B) parameter plane is shown in Fig. 13. This figure suggest that the
stability region is larger compared to the case of delta distributed kernel for larger
values of 7, but similarly to that distribution, for increasing t, this stability region
also shrinks while retaining symmetry with respect to «-axis, as shown in Fig. 13b, c.
Similarly to the case of delta distributed kernel, in this case, there are three different
boundary regions in (t, 8) parameter space depending on the values of «, and they
are all symmetric with respect to the B-axis as plotted in Fig. 13d, f. This suggests
that is it rather the absolute value of the coupling strength than its sign that determines
stability of the trivial steady state, which for negative values of « can lose its stability
via both a steady-state bifurcation, as well as a Hopf bifurcation, whereas for positive
values of « only a steady-state bifurcation is possible.

Figure 14 illustrates the boundary of the stability region of the trivial steady state in
B, T and y parameter space for the weak distribution kernel. If « = 1 and @ = —1, the
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(b)

—pB=+0.8 ---p=t0.4 --p=10.1

Fig. 14 Stability boundaries of the trivial steady state of the system (1) with weak gamma distributed kernel
and n = 2. Parameter values are k = 1, « = —1. The trivial steady state is stable inside the region restricted
by the boundaries in a, and to the left of the boundary curves in b

a b

0.5 (@) 0.5 ®)

u. u.

io ho

‘0'50 100 , 200 _0'50 150 , 300
time(t) time(t)

(c) (d)

0.4 1

u. u.

i 0 i 0/

04 20 i 40 1 40 i 80
time(t) time(t)

Fig. 15 a, b Numerical solution of the system (50) in the case when o < 0. Parameter values are k = 1,
b=1,a=—-0.8,y =1,and tyeur ®4.14.20 < 7 = 3.8 < Tyeak- b T = 4.3 > Tyeqk- ¢, d Solution of

the system (50) in the case when o > 0. Parameter values are k = 1,a = 0.2,y = 1,7 =0.5.¢ b = 0.6.
db=1

condition —«x < o < 0 is satisfied, which means that the trivial steady state is stable
inside the region bounded by symmetric surfaces shown in Fig. 14a, and unstable
outside of this region. It can be observed in Fig. 14b that as the coupling strength g
between the two neurons decreases, the region of stability of the trivial steady becomes
larger.

From Theorem 11, when o < 0, the trivial steady state is stable if || < ¥k —« and
T € [(¢ —k —y)/(@y), Tweak)- For parameter values k = 1, b = +1,a = —0.8,
y = 1, the first critical time delay in (42) is Tyeak =~ 4.14. Thus, for 7 € [3.5,4.14)
the trivial steady state is stable, as shown in Figs. 15a and 16a, at tyeqr & 4.14 a Hopf
bifurcation occurs, and for 7.k > 4.14 periodic solutions are observed.

Moreover, similar to the delta distribution, Figs. 15b and 16b display isochronal
and anti-phase states, respectively. If « = 1, a = 0.2, b = £0.6, then the conditions
0 <o <« and |B| < k — « are satisfied, as required by Theorem 7(iii), thus ensuring
the stability of the trivial steady state, as illustrated in Figs. 15c and 16c¢. If « = 1,
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Fig. 16 a, b Numerical solution of the system (50) in the case when o < 0. Parameter values are k = 1,
b=—-1,a=—-0.8,y =land tyeqx ®4.14.20 <7 =3.8 < Typak.- b7 = 4.3 > T4k ¢, d Solution
of the system (50) in the case when « > 0. Parameter values are k = 1,a = 0.2,y = 1,7 = 0.5. ¢
b=-06.db=—1

a =0.2,b==20.6,and B8 > £0.8, then the condition |8| > k — « is satisfied, and
the trivial steady state becomes unstable through a steady-state bifurcation, in which
case the system (50) tends to one of its stable non-trivial steady states, as shown in
Figs. 15d and 16d. One should note that it is possible for this system to simultaneously
have multiple stable steady states for the same parameter values, and the solutions will
approach one of them depending on initial conditions.

5.2 Example: odd number of ring-coupled neurons

For the second example, we consider three unidirectionally-coupled neurons with
self-connections as shown in the diagrammatic sketch shown below in Fig. 17. If the
distribution kernel is chosen as a delta function, i.e. g(s) = §(s), the system (1) takes
the form

w1 (t) = —kuy(t) + atanh(u((t — v)) + btanh(usz(1)),
1y(t) = —kuo(t) + atanh(ur(t — t)) + btanh(uy()), (51)
13(t) = —kus(t) + atanh(uz(t — 7)) + b tanh(u(1)).

Figure 18a, ¢ show the stability region of the trivial steady state for delta distributed
kernel g(s) = 8(s) in («, B) parameter plane when n = 3. Similarly to the case of
delta function with n = 2, the region of stability becomes smaller with increasing
time delay 7, but unlike the case of the even number of neurons, here the region of
stability is asymmetric with respect to a-axis.

Figure 18d, fillustrate stability boundaries of the trivial steady state in (t, 8) param-
eter plane for different values of «. In Fig. 18d, e, when o« < 0 and 8 > 0, similarly to
the case when n = 2, the boundary of stability region consists of two different parts,
which describe the trivial steady state losing its stability via a steady-state and a Hopf
bifurcation, respectively. In contrast, for positive values of o and g, the trivial steady
state can only undergo a steady-state bifurcation, as shown in Fig. 18f. Unlike the case
of an even number of neurons, when 8 < 0, the trivial steady state can only lose its
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Fig. 17 A diagrammatic sketch of the unidirectionally coupled three neurons with distributed delays and a

discrete-delayed self-connection

(b)
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—_

(c)
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()
2
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0

Dl
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0 2 4

0.8
H 0.4
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Fig. 18 Stability boundary of the trivial steady state of the system (1) with delta distributed kernel g(s) =
8(s), n = 3 and k = 1. Colour code denotes [— max{Re(1)}] for max{Re(A)} < 0. a—c Stability region
in (o, B) parameter plane. Parameter values are a ¢ = 0.2, b 7 = 0.4, ¢ T = 0.6. d-f Stability region
in (t, B) parameter plane. Parameter values are d « = —1.2(0¢ < —k). e = —0.8(—k <o < 0). f

a =0.2(0 < a < «) (color figure online)
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Fig. 19 a, b Numerical solution of the system (51) in the case when o < 0. Parameter values are k = 1,
b=1,a=-08and 7,50 ®# 1.96.2a0 <17 =18 < 1554. b1 =22 > 7,44. ¢, d Numerical solution
of the system (51) in the case when o > 0. Parameter values are k = 1,7 = 0.5,a =02.¢b =09.d
b=13

(b)
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100 ’ 100
time(t) time(t)
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| W"‘0l0‘0‘"Q‘0‘0‘|‘0""‘"!"‘"!.0‘"!.0‘""0‘l‘|"‘0‘!"‘0‘!‘!l0‘"!‘0'"Q‘0".!'0‘0‘!‘?‘0‘""0"‘!'0‘0".0‘0"‘0‘0‘

time(t) time(t)

O

Fig. 20 a, b Numerical solution of the system (51) in the case when o < 0. Parameter values are k = 1,
b=—1l,a=—-08and t,qq ® 1.56.a0 <7 = 1.3 < 7544. (b) T = 1.8 > 7,44 ¢, d Numerical solution
of the system (51) in the case when o > 0. Parameter valuesare k = 1,7 =0.5,a =0.2.¢b = —-1.5.d
b=-1.8

stability via a Hopf bifurcation, resulting in asymmetry of the stability region with
respect to o-axis.

From the analysis in Sect. 3 for an odd number of neurons, stability of the trivial
steady state depends on whether the coupling strength 8 is positive or negative. For
B > 0 the analysis is similar to that in the case of an even number of neurons. If
a=af'(0)=-08 <0,8=>bf'(0) =1> 0,k = 1, the condition B < Kk — « is
satisfied, and from Eq. (27), we obtain 7,44 & 1.96. This suggests thatfor t € [0, T,44)
the trivial steady state is stable, as shown in Fig. 19a, and for t > 7,44 it is unstable,
and the system displays synchronised periodic oscillations, as shown in Fig. 19b. In
the case when ¥ = 1, a = 0.2, the condition 0 < o < « holds, and for b = 0.9,
solutions tend to the trivial steady state, as illustrated in Fig. 19c, while for b = 1, the
solutions converge to a non-trivial steady state, as shown in Fig. 19d.

Next, we consider negative values of 8. If « = 1, b = —1, a = —0.8, then
Todd ~ 1.56, and the trivial steady state is stable for 0 < t < 7,44 and unstable
for T > 7,44, with the system exhibiting a splay-state periodic solution in the latter
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case, as shown in Fig. 20a, b. A similar situation is observed when o > 0, where
fixing k = 1, a = 0.2, we observe that solutions approach the trivial steady state for
b = —1.5 (Fig. 20c), and for a more negative b = —1.8, they again exhibit splay-state
periodic oscillations around the trivial steady state (Fig. 20d), indicating a difference
from the case n = 2, where periodic solutions were synchronised.

Using the same linear chain trick as for n = 2, in the case of the weak gamma
distributed kernel, we introduce the new variables

o0

ug (1) =/ ye ui(t — s)ds,
OOO

us(t) :f yve VSuy(t — s)ds,
0

o0
ug(t) =/ ye Yuz(r — s)ds,
0

and replace the system (1) with n = 3 by an equivalent six-dimensional system with
only discrete time delays as follows,

i1 (t) = —kuy(t) + atanh(u; (t — 7)) + b tanh(ug(1)),
ir(t) = —kuy(t) + atanh(ur(t — 7)) + b tanh(us(t)),
u3(t) = —ku3(t) + atanh(uz(t — t)) 4+ b tanh(u4(1)),
ug(t) = yur(t) — yus(t),
us(t) = yua(t) — yus(t),
ue(t) = yus(t) — yue(t).

(52)

Figure 21a, ¢ show the stability region of the trivial steady state in (¢, 8) parameter
plane for the weak gamma distributed delay kernel. Similarly to the case of n =
2, increasing the time delay t reduces the size of the stability region, but now, for
an odd number of neurons, it also loses its symmetry with respect to the «-axis.
Figure 21d, f illustrate stability regions in (t, B) plane for different values of «. One
observes that changing « from negative to positive results in a trivial steady state
undergo both steady-state and Hopf bifurcation for positive 8, or only a steady-state
bifurcation.

Figure 22 illustrates the stability region in the parameter space of 8, 7, and y for the
weak gamma distributed kernel and n = 3. The steady state is stable between the two
surfaces in Fig. 22a, and unstable everywhere else. Fig. 22b, c illustrate the stability
region in (7, y) plane, suggesting that the stability area grows as the coupling strength
B > 0is decreased, or 8 < 0 is increased.

As can be seen in Figs. 23a and 24a, the trivial steady is stable for T < Tyeqk. AS
the value of the time delay t exceeds its critical value T = tTyeqk, the trivial steady
state loses its stability, giving rise to synchronised or splay-state oscillations shown in
Figs. 23b and 24b, respectively. It is worth noting that depending on the sign of the
coupling strength S, increasing it results in the solutions of the system moving away
from the trivial steady state to either another non-trivial steady state for positive S, as
shown in Fig. 23d, or to a periodic solution around the trivial steady state for negative
B, as in Fig. 24d.
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Fig.21 Stability of the trivial steady state of the system (1) with weak gamma distributed kernel and n = 3.
Colour code denotes [— max{Re(})}] for max{Re(1)} < 0. a—c Stability region in (c, 8), for parameters
k=1 y=1lar=02bt=0.4.ct = 0.6.d-f Stability regionin (z, B), for parametersk = 1, y = 1.
do=-12(a<—«k).ea=—-08(—k <a<0).fa=0.2(0 <a < k) (color figure online)

6 Discussion

In this paper, we have analysed a unidirectionally-coupled ring neural network with n
neurons with delay-distributed connections between neurons, and a discrete delayed
self-feedback. We have analytically studied stability properties of the trivial steady
state of the system in the case of a general distribution kernel, considering separately
the cases of even and odd number of neurons in the system. Having identified subsets
of stability regions, and in order to make further analytical progress and understand
the dynamical behaviour of the system, we have focused on specific cases of delta and
weak gamma distributed kernels.

In the case of Dirac delta distribution kernel, we have obtained analytical conditions
for stability of the trivial steady state in terms of «, «, B8, and t. For an even (odd)
number of neurons, the stability region of the trivial solution reduces symmetrically
(asymmetrically) along «-axis with increasing time delay 7 in the « — 8 plane. In
the case of weak gamma distribution, the stability region occupies a larger area in the
o — B parameter plane compared to the case of the delta distributed kernel. In the 7 — 8
parameter plane, changing the sign of the synaptic weight « can result in the trivial
steady state to losing its stability via steady-state bifurcation, giving rise to a stable
non-trivial steady state, and/or via a Hopf bifurcation giving rise to a stable periodic
solution.

We have also performed direct numerical simulations that support and illustrate
our analytical results. Choosing parameter values both inside and outside stability
regions, we were able to further explore the dynamics of the system for both delta and
weak gamma distributions, and both even and odd numbers of neurons in the network.
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Fig.22 Stability boundary for the trivial steady state of the system (1) with weak gamma distributed kernel
and n = 3. Parameter values are k = 1, @ = —1. The trivial steady state is stable inside the region restricted
by the boundaries in a, and to the left of the boundary curves in b, ¢
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Fig. 23 a, b Numerical solution of the system (52) in the case when o < 0. Parameter values are k = 1,
b=15,a=—-08,y =land tyeqx ~ 1.87.20 < 7 = 1.5 < Tyeak- b T =4 > Tyeqk- ¢, d Numerical
solution of the system (52) in the case when « > 0. Parameter valuesarex =1,y = 1,7 =0.5,a =0.2.
ch=06.db=1

We have observed isochronal synchronous, anti-phase synchronous and splay-state
synchronous periodic oscillations when the time delay exceeds a certain critical value,
and a trivial steady state loses its stability.

@ Springer



1650 B. Rahman et al.

Moo A
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Fig. 24 a, b Numerical solution of the system (52) in the case when o < 0. Parameter values are k = 1,
b=—1l,a=—-0.8,y =land tyeqr ®2.13.20 <7 = 1.8 < Tyear-b T = 2.2 > Tyeqk. ¢, d Numerical
solution of the system (52) in the case when « > 0. Parameter valuesarex =1,y = 1,7 =0.5,a =0.2.
chb=-09.db=-1.2

There are several directions in which the work presented in this paper could be
extended. One interesting possibility is to considering a similar architecture but with a
bidirectional delay-distributed coupling between neurons, which would generalise an
earlier work considered in Yuan and Campbell (2004), Campbell et al. (2005), Huang
and Wu (2003) and Xu (2008). Another direction is to extend the work of Mao (2012)
and Mao and Wang (2015) on low-dimensional neural subnetworks with discrete delay
coupling to systems of multiple unidirectionally-coupled rings of neurons.
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