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Abstract

In this paper the extended Burgers—Huxley equation with the fourth-order derivative is considered. First, the
convergence to the uniform steady state is proved, which means the solution of the equation with positive initial
data will remain positive for timé sufficiently large. Then, the persistence of the travelling wave solution for the
extended equation on the unbounded domain is investigated. We have proved that this solution will persist under
small perturbation of the equation.
© 2004 Elsevier B.V. All rights reserved.
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1. Background

Almost all branches of mathematics and physics are associated with problems involving nonlinear
partial differential equations. These equations model diverse real-life phenomena in biology, chemistry,
physics, etc., and understanding the behaviour of their solutions provides an important insight in the
dynamics of the underlying problem. A fundamental equation used in modelling of diffusion processes is
the KPP-Fisher equatidi8], which admits travelling front solutions connecting the two steady states.
An area of recent active interest is the improvement of this model by including temporal delay, long-range
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diffusion and higher order nonlinearitigs8,19] One of possible generalisations of the Fisher equation
is the so-called Burgers—Huxley equation which has the following form

Up = Uyy — ottty — u(u — 1(u — ), )

where the real parametersp are positive ang can be of either sign. This equation includes as particular
cases several known evolution equations: wfiea 0 it reduces to the Burgers equation; wheg 0

it is the FitzHugh—Nagumo equatigh2,13], and whern: = 0 andy = —1 it is the Newell-Whitehead
equation16]. Symmetries and integrability of this equation have been addressed by Estévez and Gordoa
[8] (see alsg7,9]). The following analytical expression for the travelling wave solutions connecting the
two steady states=0 andu =1 of Eq. (1) has been recently found with the help of symbolic computations
and relevant nonlinear transformatida®,21}

7l=7
we ) =3-5

r—o

L 1tanh[ (x — cl)] ; (2)

wherer = /o2 + 8§, and the wave speed is defined as
(a—r)2y—1) + 20
Cc = .

3
; 3)
In this paper we consider the extended Burgers—Huxley equation

Up = —OUxxxx + Uxx — ottty — Pu(u — 1)(u — ) (4)

with the parameters> 0, 8> 0, y <0, § > 0, where the fourth-order derivative term is added to account

for long-range effects as they appear, for example, in the studies of population dyha&ytsThe
guestions to be addressed are as follows. First, we consider the Eq. (4) on a finite domain with periodic
boundary conditions and prove the convergence result, namely, that under certain restrictions on the initial
datau (x, 0), the solutions of (4) tend to 1 uniformly ¥ Then we use the geometric singular perturbation
theory to prove the persistence of the travelling wave solutions (2) of the Eq. (1) in the presence of a
small fourth-order derivative terigd < 1). These travelling waves are qualitatively similar to those of the
Burgers—Huxley equation.

2. Nonlinear stability of the uniform steady statex = 1.

In this section we employ the technique used by Bartuccelli §8hto prove the convergence result
for the Eq. (4) in the following setting:

Uy = —OUyyxx + Uxy — ottty — Pu(u — ) —7y), 0<x <L, t>0,

initial conditionu (x, 0) = ug(x),

periodic boundary conditions at=0, L. (5)
We centre Eqg. (5) on the uniform steady state 1 by introducing a functiom(x, r) as

ux,t) =1+ v(x,1) (6)
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and the following time-dependent functionals

2
L (N 2
:f N dx.
) o \ox
Substituting (6) in (5) we obtain an equation for the functidn the form

Vi = —O0Uxxxx + Uxx — 0Ux — a0V — f(1 —p)v — (2 — V)vz - ﬁvs' (7)

If one can show thatv(-, 1)|l.c — 0 ast — oo then this implies a uniform convergence of solutions of
the Eg. (5) to the non-trivial steady state- 1. Thus, we start the analysis by investigating the evolution
equation for thd.?-norm ofv, namely,Jo. DifferentiatingJo with respect to time and inserting the RHS
of (7) after some computations give

1

L L
5 o= —0J2 — Jl—ﬁ(l—V)Jo—ﬂ(Z—V)/ v3dx —ﬂ/ vt dx, (8)
0 0

where thex-terms vanish under the periodic boundary conditions. By using the fact that

N
oxN

JNZI

L
—p2- v)fo v3dx <BR2 — vl Jo
and
L
—,8/ vide< — pL7AE,
0
the Eq. (8) turns into

Tdo< — 00— J1— B —PJo+ 2 —PlvllecJo — BLTLIE. )

Now, the last term to be estimated|ig| ». This can be achieved using the following recent interpolation
inequality with the sharp and explicit constqibd]

3/8 1/2 4\"®

P+ L Y2 e= (=) . (10)
27

Applying this inequality to the fourth term in (9) we arrive at

. 1/8 ,11/8
LJo< = 8J2 — J1 — B =)o+ pe@ — Iy P 0gY

_ 3/2 _
+BR—pLY21% — gL IE. (11)

1/8
lvllso<cdy

1/8 11/8
Jo

Next, we employ Young’s inequality to split the tefn(2 — y)J, into two as follows:

8/7
18,118 1 7 (fc(2—17)) 117
ﬁC(Z—y)JZ Jo §§5J2+ éTJO .

Substituting this expression in (11) one obtains

1. 76 7(Be—¥" 117
§J0< - EJZ —J1—=pA—yJo+ gT-}O
+ B2 =L M2 — pL V.
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By neglecting the first two negative-definite terms one gets the following inequaliti for

1. 7(Be— ¥ 1177
EJO< —pA—yJo+ éTJO
+BR— L Y22 — gL I8 = (Jo). (12)

From assumptions > 0, y < 0 it follows thatf(1 — y) > 0, and we may conclude that fdg small, and
for Jo large the functiony (Jo) is negative. It is easy to check that

NN Vo
FL) = g (ﬁC(251/7y)) L7

hencef (Jp) is positive in some intermediate range. Therefordp®) < J*, whereJ* is the smallest

positive root of f (Jo) = 0, thenJp — 0 ast — oo.
Next, we differentiate the Eq. (7) with respecixtand obtain the following evolution equation féy:

1. L L L L
—J1= — 5/ Uy Uyxrx AX +/ Uy Uyyy dx — oc/ Uy Uyy dx — oc/ VU Uyy Ox
0 0 0 0

2
L L L L
—ocf vfdx—ﬁ(l—y)/ vfdx—Zﬁ(Z—y)/ vvidx—Bﬁ/ vzvfdx.
0 0 0 0

After some computations we obtain

1. 75 7 ruc\87T 117 B(2 — 9)?

) Py Y /Y R (e — B(L— ——" .

51 g /a2t 851/7(2) Jp pA—yJ1+ 3 1
Finally, combining the last two terms gives

1. 75 7 aeN\8/7 117 BOGE—7p+1)

—Nh<——J3— — (= = "5

Sh< -3 J2+851/7<2) e

By omitting the second negative-definite term and using the factthig — Jf’/ 102 we arrive at

1. 76 J3 7 8/7 2yt 1
1 (0626> 111/7+ﬁ(/ y + )J1- (13)

“h< - —2L 4+ ——
215 T g e el ! 3

As it was previously proved]p — 0 ast — oo, and consequently, we may conclude that
J1(t)<constr>0.

With the help of the interpolation inequality fgp| o in the form

1/4 ;1/4 —~1/2 ;1/2
lvlloo <J3/ 057 + L7120/
and employing the above-mentioned results we have |thjit, — 0 asr — oo, and accordingly
lim;_ oou(x, t) = 1 uniformly in x.
Below, we summarise our findings in the following theorem which represents a condition on the initial
data that is sufficient for convergence.
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Theorem 1. Suppose that, 8, 6 > 0 andy < 0. If the initial data satisfy

L
f (u(x,0) — D2dx < J*,
0

whereJ* is the smallest positive root of

7 (B2 — ¥’ _ B
P === o+ 5 T P VT s 2 — LM~ gt =0
with ¢ = (%)1/8, then the solutiom (x, r) of (5) satisfies

lim u(x,t) =1,
—0o0

uniformly inx € [0, L].

3. Travelling waves

In this section, the geometric singular perturbation theory and Fenichel’s invariant manifold theory
[11,15] are used to prove the persistence of the travelling wave solutions for the Eqg. (4) on an infinite
domain. Similar techniques have been used to prove persistence for the delayed Fisher equation in Ashwin
et al.[2] and also for the fourth-order diffusion equation in Akveld and Hulghhf

Itis known that the Burgers—Huxley equation (1) admits travelling wave solutions of the form (2) con-
necting the two steady states= 0 andu = 1. We intend to show that for the extended Burgers—Huxley
equation with the small perturbation parameter multiplying the fourth-order derivative term these travel-
ling wave solutions persist. Lét= &% with ¢ <1, then (4) becomes

Up = — Uy + Uy — Uy — Pu(u —L(u —7y), x € (—00, ). (14)
Looking for the travelling wave solutions of the form

u(x,t)=U(z), wherez=x —ct
and inserting this into (14) we obtain

—2U" +U" —aUU' +cU' — pUU — 1)(U — y) = 0. (15)

By definingU’ = v, v/ = y andey’ = w one can rewrite (15) as the following system of ODEs

U =v,
vV =y,
, 1
y =-w,

&

u/:%(y—OCUU'FCU_ﬁU(U_l)(U_y))’ (16)
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Fig. 1. Qualitative positions of the eigenvalued eft: Spectrum ofdg. Right: Spectrum ofi4.

or, equivalently,

v

U
y v
Y.=F(Y), FY)= . Y=
z (¥Y) (¥) %w y
%(y—och—I—cv—ﬁU(U—l)(U—“/)) w
The equilibrium steady states for this systemfte- (U, v, y, w) = (0, 0, 0, 0) and>1= (U, v, y, w) =
(1,0, 0, 0). The linearisation near the steady stafehas the following properties. Let

0 1 0 0
0 0 1 0
0 0 0 e
—pyle c/e 1l/e O

and the characteristic equation fég is

it =% —ci+py=0. (17)

A0 ¥ DF(x0) =

For ¢ = 0, this equation has two roots in the left complex half-plane. Recallingytkd, one has to
requirec > 2./—pBy to ensure that both of these roots are real. Violation of this condition would result in
oscillations ofU about the origin, which should be excluded since we restrict ourselves to the case of
U >0. Fore > 0, the qualitative positions of the eigenvaluesre pictured irFig. 1 (left). Similarly, the
linearisation near the steady statkis

0 1 0 0
def 0 0 1 0
A= DF(zh = 0 0 0 e

B —D/e (c—o)/e 1/e 0O
with the corresponding characteristic equationAgr
=22+ (—c)i— Py —1)=0. (18)

Positions of’ in this case are displayed Fg. 1 (right). FromFig. 1 one can gain that far sufficiently
small there are the following situations. Let- 0 be defined by (3). Then, far>0, § >0,y <0 the
Eq. (17) has four real roots: three negative and one positive. Likewise, for the same range of parameters,



Y.N. Kyrychko et al. / Journal of Computational and Applied Mathematics 176 (2005) 433—-443 439

the eigenvalues at the steady stateletermined by equation (18) are also all real: two positive and two
negative. Therefore, the sum of the dimensions of stable and unstable manifolds is five, while the phase
space has the dimension four. For this reason these manifolds might intersect along one-dimensional curve
in R*. Below we shall prove the existence of a connection betwfen (0, 0, 0, 0) andx! = (1, 0, 0, 0).

We rewrite the system (16) in the following way:

av
dz

v,

s?j—wzy—och—i—cv—ﬁU(U—l)(U—y) (29)

z

and with{ = z /¢, it becomes
dv _
dc
dv _
dc

v,

ey,
dy B
dc
dw

d—é:y—och-l—cv—ﬁU(U—l)(U—y). (20)

We call this system the “fast system” associated with (19). If in (29D, thenU andv are governed by

w,

d?U  du du du
) +c % ol o BUWU —1)(U —y) =0, v &

while y andw must lie on the set
Mo:={(U,v,y,w)eR*:w=0 and y—oalUv+cv—pUWU — 1)U — ) =0},

which is a two-dimensional submanifold &f'.

We claim that for: sufficiently small there exists a two-dimensional sub-manifdidof R* which is
within ¢(e) of Mg and which is invariant for the flow (19). By Fenichel’s invariant manifold theory such
a perturbed invariant manifoldl, will exist if Mg is “normally hyperbolic”.

Definition (Fenichel[11]). The manifoldMy is said to be normally hyperbolic if the linearisation of the
fast systenrestricted taMp, has exactly dimMg eigenvalues on the imaginary axis, with the remainder
of the system hyperbolic.



440 Y.N. Kyrychko et al. / Journal of Computational and Applied Mathematics 176 (2005) 433—443

The linearisation of the fast system (20), restricted#p(i.e. ¢ = 0) has the matrix

0 0 0

0 0 0 O

0 0 0 1 (21)
s—av c—aU 1 O

with

s = 2ByU — 3BU? + 28U — Py.
This matrix has eigenvalues @ —1, 1. Thus,Mp is normally hyperbolic, and the perturbed manifold
M, exists.

Next, we determine the dynamics &f}. In order to do it let us write

M, ={U,v,y,w) € R*:w =gWU,v,8),y=h(U,v,¢)
+alUv—cv+ pUU — (U —y)}, (22)

where the functiong andh (to be found) satisfy
gU,v,0)=hU,v,0 =0.

Substitution of (22) into (19) gives thg(U, v, &) andh (U, v, ¢) satisfy the following system:

oh o
P [vw + = (it oUv = o+ PUWU = DU =) —ch + c?v — acUv
v

—BeUU — 1)U — ) — 3U%v + 2pyUv + 2pUv — fpv] = g,

08 | %8 iU UW — 1)U = h
e v@+%( +oalUv—cv+pUU - 1)U —7y) | =h.

Now, we expandy andh in Taylor series in the variable
gWU,v,e)=gU,v,0) +¢eg.(U,v,0) + %82g88(U, v,0)+---,
h(U, v, ¢) =h(U,v,0) + eh,(U,v,0) + 321U, v,0) + - - .

Powers of? give
gU,v,00=hU,v,0 =0,

as expected. At the next orderoive obtain

2. (U, v,0) =c?v — acUv — cpUU — 1)(U — y) — Bu[8U% — 2yU — 2U + 9],
he(U,v,0)=0
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and powers of? give
8:(U,v,0)=0,
hes(U, v, 0) = v[c(—av — 3BU? + 2BU (7 + 1) — By) — 6BU + 2By + 28]
+ [—cv + aUv + BUU — 1)(U — Ilc? — acU
— 3BU? + 29U + 2BU — Byl
Thus,
h(U, v, &) =ehi(U, v, ¢),
where
h1(U, v, &) = 3he(U, v, 0) + O(e),
and the system (19) becomes
dv _
dz
dv

G =v— v+ pUU = DU =+ hi(U, v, ). (23)
Z

These equations determine the dynamics on the “slow” manild

v,

4. The flow on the manifold M,

Whene=0, system (23) reduces to a system of coupled first-order ODEs for the travelling front solution
of the Burgers—Huxley equation (1). This system has the following equilibria of intétést) = (0, 0)
and(U, v) = (1, 0). Let (Uo, vo) be the solution of (23) when= 0, then in the(U, v) phase plane this
solution is a connection betweéh, 0) and(0, 0). We now employ the Fredholm theory to show that for
¢ > 0 sufficiently small there exists a heteroclinic connection between the critical gjitsand(0, 0)
of (23). This connection corresponds to a travelling wave solution of (14).

To seek such a connection, set

U=Uo+82l7, v=vo+82f}

and substitute into (23). To the lowest ordet ithe system governing’, ) is

d /oy 0 1 U\ _ 0 (24)
dz \ 0 3BUS — 2B(y + DUo+ Py +ovg alUo—c )\ 3 )~ \ h1(Uo, vo, 0)
and we want to prove this system has a solution satisfying

U, — 0asz — +oo.

By Fredholm theory, the system (24) has a square-integrable solution iff the following compatibility
condition holds

o 0
/_oo (X(Z)’ (h1<Uo<z), %00, 0>>) dz =0,



442 Y.N. Kyrychko et al. / Journal of Computational and Applied Mathematics 176 (2005) 433—443

for all functionsx(z) in the kernel of the adjoint of the operator defined by the left-hand side of (24). The
adjoint system for (24) has the form

dx (0 —3BUG+2B(+ HUo — fy — awo
x_ (_1 A X. (25)

As z — oo we havelUy — 0, vg — 0, and the matrix in (25) is then a constant matrix with eigenvalues
A satisfying

22— ci—py=0. (26)

From (26) we can see that both eigenvalues are positive or have a positive real payt{<stige> 0), and

asz — oo any solution of (26), other then the zero solution, must grow exponentially. The only solution
in L? is therefore the zero solution(z) = 0, and consequently the Fredholm orthogonality condition
holds. Thus, we have proved the existence of the desired connection on the mafifdldese results

are summarised in the following theorem.

Theorem 2. For ¢ > 0 defined in(3), there exists;p such that for every € (0, ¢], Eq. (14) admits a
travelling wave solutiom (x, 1) = U(z) satisfyingU (—oo) = 1 andU (oco) = 0, wherez = x — ct.

5. Conclusions

Starting with the Burgers—Huxley equation (1) we extended it by adding a fourth-order derivative term
and addressed the following two questions: under what conditions on the initial data will the solutions
of the perturbed equation converge to the uniform steady statel, and if the coefficient near the
fourth-order derivative term is sufficiently small, what would happen with the travelling wave solutions
(2).

The equations similar to the Burgers—Huxley equation (1) with fourth-order derivative have been
considered in the context of population biolddy,4], the theory of phase transitiof§], the studies of
the second order materidls,17], etc. Positivity of solutions for such equations is always particularly
important since little is known about the sign of the fourth-order derivative term in the evolution and
the maximum principl¢20] does not apply. We establish the eventual positivity of the solutions for all
sufficiently large by proving the uniform convergence of the solutions to the positive steady stdte
under certain restrictions on tiie&-norm of the initial data. These results are accumulated in Theorem 1.

Since travelling wave solutions are always important for the above-mentioned equations, therefore it
is natural to ask a question about persistence of the travelling wave solution (2) in the extended equation
(4). Considering equation (14) with the help of the invariant manifold theory and geometric singular
perturbation theory we have proved (fog 1) the persistence of the solutions (2).

In general, the techniques used in this paper can be employed for various other equation, for example,
the generalised Fisher equatid®]

Ur = _gzuxxxx +uxx + pu(l— ur)(q +u"),
or the generalised Burgers—Huxley equafi®y21]

W = Wyy — ow" wy + pw(d —w™)(w™ — 7).
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