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Abstract: This paper considers a predator-prey model with discrete time delay
representing prey handling time and assumed equal to the predator maturation
period, and a distributed time delay describing intra-species interactions. We
show that due to the delayed logistic growth of the prey, it is impossible for the
species to become extinct through predation. Conditions for existence and local
stability of the co-existence equilibrium are derived in terms of system parameters.
Using techniques of centre manifold reduction and the normal form theory, we
establish the direction of Hopf bifurcation of the co-existence equilibrium, as
well as the stability of the bifurcating period solution. Numerical bifurcation
analysis and simulations are performed to illustrate regions of stability of the
co-existence equilibrium, to investigate how the amplitude and the period of
bifurcating periodic solutions depend on parameters, and to demonstrate different
types of dynamics of the system.
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1 Introduction

Predator-prey models are known to play a very important role in a number of areas of
mathematical biology and ecology, it is therefore no surprise that the classical model of a
single predator-prey species, first proposed by Lotka in 1910 and further investigated by
both Lotka and Volterra, is one of the most universally recognised models in mathematics,
Lotka (1926) and Volterra (1927). Sustaining a healthy and balanced biosphere is not only
biologically important but absolutely crucial to Earth’s biodiversity and arguably necessary
for the survival of the human species. This is evident, as any changes in ecology and
environment can often have devastating and unpredictable effects on the population growth
of many different species (Xu and Liao, 2014). To mitigate this, the Lotka-Voltera family
of models can often be used to study population dynamics, and due to their significance
they can provide a valuable tool in controlling the delicate balance of the ecosystem.

There are many ways of making the classical Lotka-Volterra model more realistic and
tractable both biologically and mathematically, with each addition or extension often leading
to more interesting mathematical results (Xu et al., 2011). One option, is to include some time
delay in the biological interactions (Xu and Liao, 2014). For example, in the classical model,
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the intrinsic time delay for the conversion of biomass from prey to predator population
is ignored. From a biological perspective, the delay could represent the time necessary
to mature or reproduce, i.e., from mating to new offspring, which is further complicated
by the variety of body size growth rates and reproductive capabilities for each individual
within the population (Turchin, 1990). In a similar way, time delays can also be used as a
way to account for the density dependence of the growth rate of several insect and plant
species (Turchin and Taylor, 1992). Some ecologists have also suggested that the inclusion
of a delay could help to explain certain phenomena observed in long population cycles
(Boonstra et al., 1998). Although this practice makes the analysis of these models more
difficult, it broadens the spectrum of possible behavioural regimes and allows for more
realistic results.

Many theoreticians and experimentalists have analysed the stability of predator-prey
systems and, more specifically, have done so with time delays incorporated into the models
(Xu and Li, 2015; Xu and Liao, 2013). Such delayed systems received great attention since
it became fairly obvious that time delays can often have a very complicated impact on the
dynamical behaviour of the system, such as a periodic and chaotic dynamics. In a variety of
specific contexts, it is not only appropriate but also instructive to include time delays in such
models to correctly account for certain individual biological properties of the dynamics.
Time-delayed predator-prey models go back to the early works of Volterra (1927); Volterra
and Brelot (1931), and they have been extensively discussed in a number of monographs,
such as those by Cushing (2013), MacDonald (1978), Gopalsamy (2013) and Kuang
(1993). Main advantage of including time delays lies in the fact that such models provide
higher degree of biological realism, but at the same time they make mathematical analysis
more challenging, as the phase space of time-delayed systems is infinite-dimensional, and
compared to models without time delays they can exhibit a number of complex dynamical
behaviours, such as Hopf bifurcations of multiple equilibria, Bogdanov-Takens bifurcation
and chaos, see, e.g., Xiao and Ruan (2001), Nakaoka et al. (2006), Dadi (2017) for details.
A review by Ruan (2009) surveys a number of predator-prey models with discrete time
delays and different types of functional response, and discusses the distribution of zeros for
transcendental polynomials representing characteristic equations for such models.

Time delays in predator-prey models can represent a number of different biological
features, and their effects on the dynamics also depend on the type of functional response
being considered by Ruan (2009). May (1973) has proposed and briefly discussed a model
with a single discrete time delay in the prey population representing time associated with
growth to maturity. More recently, Song and Wei (2005) have analysed the dynamics of that
system using centre manifold reduction and normal form theory developed by Hassard et al.
(1981). Nakaoka et al. (2006) and Karaoglu and Merdan (2014) have considered the case
when both prey and predators can have different discrete time delays associated with intra-
specific competition, while Faria (2001) has analysed the case when predate is characterised
by two distinct time delays for prey and predator. Yan and Zhang (2008) have studied the
situation where both intra-specific and predation terms are characterised by the same discrete
time delay. Yan and Li (2006) and Yuan and Zhang (2010) have investigated stability and
a global Hopf bifurcation in the case where predation is instantaneous, but intra-specific
terms have equal discrete time delay.
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In this paper, we consider a predator-prey model with discrete and distributed time
delays of the form

ẋ1(t) = x1(t)

[
r1 − a11

∫ t

−∞
F (t− s)x1(s)ds− a12x2(t− τ)

]
,

ẋ2(t) = x2(t)

[
−r2 + a21x1(t− τ)− a22

∫ t

−∞
F (t− s)x2(s)ds

]
.

(1)

Here, x1(t) and x2(t) denote the population densities of prey and predator at time t,
respectively, r1 > 0 is the constant growth rate of the prey in the absence of predation,
a11 > 0 is the self-regulation rate for the prey, a12 > 0 is the rate of predation, r2 > 0 is
the constant death rate of the predators when there is no prey, a21 > 0 is the conversion
rate for predators, and a22 ≥ 0 is the intra-specific competition among the predators. The
discrete time delay τ represents prey handling time (or hunting delay), which is taken to be
the same as the predator maturation time (c.f. the work by Faria (2001) where they were
taken to be distinct, but that work assumed instantaneous intra-specific interactions). F (·)
is a non-negative continuous delay kernel defined and integrable on the interval [0,∞),

F (s) ≥ 0 for s ≥ 0,

∫ ∞

0

F (s)ds = 1,

which describes intra-specific competition, i.e., weighting of available resource with respect
to past prey and predator densities. For simplicity, this kernel is taken to be the same for
both prey and predators. In the trivial case τ = 0 and F (s) = δ(s), the system (1) reduces
to a Lotka-Volterra system with logistic growth in prey. Several related models have already
been studied in the literature. Song amd Yuan (2006) have analysed the situation when
the intra-specific terms are instantaneous, while the predation term is represented by a
discrete time delay in the prey equation and a distributed delay in the predator equation.
Ma et al. (2009) have considered a model where both intra-specific and predation terms all
have the same discrete time delay, and the prey population has an additional intra-specific
competition term with a distributed delay. Xu and Shao (2012) have recently analysed a
model where predation term in the prey equation and an intra-specific predator competition
have the same discrete time delay, and the predation term in the predator, as well as an
intra-specific prey competition have the same distributed delay.

As it has been mentioned above, several authors have considered the delay kernel in
the form of Dirac δ-function, which results in an intra-specific competition which is either
instantaneous or has a discrete time delay. Another biologically realistic choice for the delay
kernel is given by a gamma distribution (Cushing, 2013)

F (s) =
sp−1αpe−αs

(p− 1)!
, (2)

for some integer power p. Models with gamma distributed time delay have been originally
proposed in the context of population biology (Blythe et al., 1985; Cooke and Grossman,
1982; Cushing, 2013) and have subsequently been used to study intracellular dynamics
of HIV infection (Mittler et al., 1998), epidemics (Blyuss and Kyrychko, 2010), neural
network (Rahman et al., 2015), traffic dynamics with delayed driver response (Sipahi et al.,
2007) and time-delayed feedback control (Kyrychko et al., 2011, 2013; Xu and Li, 2018).
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The mean time delay for a gamma distribution is given by

τm =

∫ ∞

0

sF (s)ds = p/α,

so the distribution parameter α plays the role of the inverse time delay. For a particular
choice of p = 1 known as the weak kernel, gamma distribution becomes an exponential
distribution

F (s) = αe−αs, α > 0, (3)

with the largest contribution to intra-specific competition coming from the present values
of prey and predator densities. When p > 1 (which in the case of p = 2 is usually referred
to as the strong kernel), the largest contribution comes from prey and predator densities
evaluated at t− (p− 1)/α.

The outline of this paper is as follows. Section 2 presents linear stability analysis of the
steady states of the system (1) with a weak distribution kernel and established conditions
for the existence of Hopf bifurcation of a co-existence steady state. In Section 3, explicit
formulae are derived for determining the stability of the bifurcating periodic solutions and
the direction of the Hopf bifurcation using the normal form theory and the center manifold
reduction. Section 4 contains results of numerical simulations of the model, and the paper
concludes in Section 5 with discussion of results.

2 Steady states and linear stability analysis

In the rest of this paper we will be concerned with the analysis of system (1) with the weak
kernel (3). It is possible to convert a scalar delay differential equation with a distributed
delay into a non-delayed system of equations by using the so-called linear chain trick
described in MacDonald (1978). The linear chain trick allows one to replace the system
with distributed delays by the system of ordinary differential equations. Suppose that F (s)
in (2) is a general gamma distribution, and let

x3(t) =

∫ t

−∞
αe−α(t−s)x1(s)ds,

x4(t) =

∫ t

−∞
αe−α(t−s)x2(s)ds.

(4)

Differentiate x3(t) and x4(t) in (4) with respect to t

ẋ3(t) = αx1(t)−
∫ t

−∞
α2e−α(t−s)x1(s)ds = α[x1(t)− x3(t)],

ẋ4(t) = αx2(t)−
∫ t

−∞
α2e−α(t−s)x2(s)ds = α[x2(t)− x4(t)].

(5)
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The model (1) with gamma distributed kernel now becomes

ẋ1(t) = x1(t)[r1 − a11x3(t)− a12x2(t− τ)],

ẋ2(t) = x2(t)[−r2 + a21x1(t− τ)− a22x4(t)],

ẋ3(t) = α[x1(t)− x3(t)],

ẋ4(t) = α[x2(t)− x4(t)].

(6)

The system (6) has at most three equilibria: a trivial steady state E0
1 = (0, 0, 0, 0)

corresponding to extinction of both prey and predators, a single-species steady state E0
2 =

(r1/a11, 0, r1/a11, 0) characterised by the absence of predators, and a non-trivial steady
state E∗ = (x∗1, x

∗
2, x

∗
3, x

∗
4) with

x∗1 = x∗3 =
r1a22 + r2a12
a11a22 + a12a21

,

x∗2 = x∗4 =
r1a21 − r2a11
a11a22 + a12a21

.

The co-existence steady stateE∗ is only biological feasible if the following relation between
system parameters holds

r1a21 > r2a11. (7)

As a first step, we analyse the stability of the trivial steady state E0
1 = (0, 0, 0, 0). The

characteristic equation of the linearisation near this steady state is given by

(λ− r1)(λ+ r2)(λ+ a)2 = 0,

which immediately implies that this steady state is unstable for any values of system
parameters. Biologically, this means that provided one starts with non-zero numbers of
prey and predators, it is impossible for both the prey and predators to become extinct,
independently of the strength of predation. The reason behind this is the fact that in the
absence of predation, prey experience logistic growth with time-delayed intra-specific
competition, and this is what keeps them away from extinction, and in turn provides resource
for predators.

Similarly, the characteristic equation of the linearisation of the system (6) about the
single-species steady state E0

2 = (r1/a11, 0, r1/a11, 0) has the form

λ4 + b0λ
3 + b1λ

2 + b2λ+ b3 = 0.

where b0 = 2α− l2, b1 = α2 − (2l2 + l1)α, b2 = (l2 − α)αl1 − l2α
2, b3 = l1l2α

2,
l1 = −r1, l2 = a21

a11
r1 − r2.Using Routh-Hurwitz criterion (Murray, 2002), conditions for

stability of the steady state E0
2 can be found as follows

B0 = 2α− l2 > 0,
B1 = 2(α− l2)

2 − l1α > 0,
B2 = (2α− l1)(α− l2)(l

2
2 − (l1 + l2)α) > 0,

B3 = l1l2α
2 > 0.
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Since r1 > 0, this implies that l1 < 0, which implies B1 > 0 for any parameter values. In
the light of this, the only possibility to satisfy the condition B3 > 0 is by requiring l2 < 0,
which then implies that B0 > 0 and B2 > 0. Hence, for stability of the steady state E0

2 it
is necessary and sufficient to require

l2 < 0 =⇒ r1a21 < r2a11.

It is noteworthy that this condition for stability of the single-species steady state E0
2 is

independent of the time delay τ and the inverse mean time delay α. It is also the condition
that ensures the co-existence steady state E∗ is not biologically feasible, as determined by
the condition (7).

Next, we assume that the condition (7) is satisfied and consider the co-existence
equilibriumE∗. Linearisation of the system 6 near this steady stateE∗ yields the following
characteristic equation

λ4 + p0λ
3 + p1λ

2 + p2λ+ p3 + (q0λ
2 + q1λ+ q2)e

−2λτ = 0, (8)

where

p0 = 2α, p1 = α2 − α(m3 + n4), p2 = −α2(m3 + n4), p3 = α2m3n4,
q0 = −m2n1, q1 = −2αm2n1, q2 = −α2m2n1.

(9)

and

m2 = −a12x∗1,m3 = −a11x∗1, n1 = a21x
∗
2, n4 = −a22x∗2,

In the case of instantaneous intra-specific competition (τ = 0), the characteristic equation
(8) reduces to

λ4 + p0λ
3 + (p1 + q0)λ

2 + (p2 + q1)λ+ (p3 + q2) = 0. (10)

By using the Routh-Hurwitz criteria, we have the following necessary and sufficient
conditions for all roots of the equation (10) to have negative real part

H1 = p0 > 0,
H2 = p0(p1 + q0)− (p2 + q1) > 0,
H3 = p0[(p1 + q0)(p2 + q1)− p0(p3 + q2)]− (p2 + q1)

2 > 0,
H4 = p3 + q2 > 0.

Since p0 = α, this means that the conditionH1 > 0 is always satisfied. Using the definitions
of pi and qi in equation (9), one can find

H2 = α2[2α− (m3 + n4)] > 0, H4 = α2(m3n4 −m2n1) > 0,

and

H3 = −α3
[
2α2(m3 + n4)− α(m3 − n4)

2 − 2m2n1(m3 + n4)
]
> 0.

This means that whenever the co-existence steady state E∗ exists, it is linearly
asymptotically stable for τ = 0.
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Now that it has been established that the steady state E∗ is linearly asymptotically
stable for τ = 0, the next question is whether this steady state can lose stability for τ > 0.
Substituting λ = 0 into the characteristic equation (8) gives the left-hand side as p3 + q2,
which is always strictly positive. This means that a steady state bifurcation of E∗ cannot
happen, hence, the only possibility for the steady state E∗ to lose stability is via Hopf
bifurcation, in which case a pair of complex conjugate roots crosses the imaginary axis for
some value of the time delay τ . To identify this critical value of the time delay, we look for
roots of the characteristic equation (8) in form λ = iω (ω > 0). Substituting this into the
characteristic equation (8) gives

ω4 − ip0ω
3 − p1ω

2 + ip2ω + p3

+(−q0ω2 + iq1ω + q2) [cos(2ωτ)− i sin(2ωτ)] = 0.
(11)

Separating this equation into real and imaginary parts yields

ω4 − p1ω
2 + p3 = (q0ω

2 − q2) cos(2ωτ)− q1ω sin(2ωτ),

p0ω
3 − p2ω = (q0ω

2 − q2) sin(2ωτ) + q1ω cos(2ωτ).
(12)

Squaring and adding both sides of the above system, we have the following equation for
the Hopf frequency ω

ω8 + s0ω
6 + s1ω

4 + s2ω
2 + s3 = 0, (13)

where s0 = p20 − 2p1, s1 = p21 + 2p3 − 2p0p2 − q20 , s2 = p22 + 2q0q2 − 2p1p3 − q21 , s3 =
p23 − q22 . Introducing an auxiliary variable z = ω2, the equation (13) can be recast in the
form

h(z) = z4 + s0z
3 + s1z

2 + s2z + s3 = 0. (14)

Differentiating function h(z) gives

dh(z)

dz
= 4z3 + 3s0z

2 + 2s1z + s2 = g(z).

Using Cardano’s formulas, the roots of g(z) can be found as follows,

z1 = K1 +K2 −
s0
4
,

z2 = −K1 +K2

2
− 3s0

12
+
i
√
3

2
(K1 −K2),

z3 = −K1 +K2

2
− 3s0

12
− i

√
3

2
(K1 −K2),

(15)
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where

K1 =
3

√
R+

√
D, K2 =

3

√
R−

√
D,

and

D = Q3 +R2, Q =
24s1 − 9s20

144
, R =

216s0s1 − 432s2 − 54s30
3456

.

When D > 0, the equation g(z) = 0 has one real root, namely, z∗1 = z1 and two complex
conjugate roots; if D = 0, then all roots of g(z) = 0 are real, and at least two are equal,
namely, z∗1 , z

∗
2 = z∗3 , where z∗2 = max{z1, z2}; ifD < 0, then all roots of g(z) = 0 are real

and distinct, namely, z∗1 , z
∗
2 , z

∗
3 , where z∗3 = max{z1, z2, z3}.

Using Lemma 2.2 in Li and Hu (2011), we now have the following

Lemma 1:
1) If s3 < 0, then equation (14) has at least one positive root.

2) If s3 ≥ 0, then equation (14) has no positive roots if and only if one of these conditions
holds:

(a) D > 0 and z∗1 ≤ 0; (b) D = 0 and z∗2 ≤ 0; (c) D < 0 and z∗3 ≤ 0.

3) If s3 ≥ 0, then equation (14) has at least one positive root if and only if one of these
conditions holds:

(a) D > 0, z∗1 > 0, and h(z∗1) < 0; (b) D = 0, z∗2 > 0 and h(z∗2) < 0;
(c) D < 0, z∗3 > 0 and h(z∗3) < 0.

Without loss of generality, let us suppose that equation (14) has four distinct positive real
roots, given by z1, z2, z3, z4. In this case, equation (13) also has positive real roots, namely,
ω1 =

√
z1, ω2 =

√
z2, ω3 =

√
z3, ω4 =

√
z4.

Returning to the system (12), one find the critical time delay τ0 as follows

τn,j =
1

2ωn

[
arctan

{
q1ωn(ω

4
n−p1ω

2
n+p3)+(q0ω

2
n−q2)(p0ω

2
n−p2ωn)

q1ωn(p0ω3
n−p2ωn)+(q0ω2

n−q2)(ω4
n−p1ω2

n+p3)

}
+ jπ

]
,

where n = 1, 2, 3, 4, j = 0, 1, 2, .... Then τn,j are solutions of (11), and λ = ±iωn are a
pair of purely imaginary roots of the characteristic equation (8) with τ = τn,j . If we define

τ0 = τn0,0 = min
1≤n≤4

{τn,0}, ω0 = ωn0 , n0 ∈ {1, 2, 3, 4},

then τ0 is the first value of the time delay τ such that the characteristic equation (8) has
purely imaginary roots.
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Let λ(τ) = γ(τ)± iω(τ) be the root of the characteristic equation (8) in the
neighbourhood of τ = τn,j , satisfying γ(τn,j) = 0, ω(τn,j) = ωn, n = 1, 2, 3, 4, j =
0, 1, 2.... Then the following result holds.

Lemma 2: Suppose h
′
(zn) ̸= 0 (n = 1, 2, 3, 4), where h(z) is defined by equation (14),

then the following transversality condition holds:

sgn
{

dRe{λ(τ)}
dτ

} ∣∣∣∣∣
τ=τn,j

= sgn[h
′
(zn)] ̸= 0.

Proof: Substitutingλ = λ(τ) into the characteristic equation (8) and taking derivative with
respect to τ gives{

dλ(τ)

dτ

}−1

=

(
4λ3 + 3 p0λ

2 + 2 p1λ+ p2
)
e2λ τ + 2 q0λ+ q1

2
(
q0λ

2 + q1λ+ q2
)
λ

− τ

λ
.

Taking real part of this equation, one obtains

{
dRe{λ(τ)}

dτ

}−1

τ=τn,j

= Re
{
(4λ3+3 p0λ

2+2 p1λ+p2)e2λ τ+2 q0λ+q1

2( q0λ2+ q1λ+ q2)λ

}
τ=τn,j

=
(4ωn

5q0−4ωn
3q2−2 p1ωn

3q0+2 p1ωn q2+3 q1ωn
3p0−q1ωn p2) cos(2ωn τn,j)

2(q12ωn
2+q02ωn

4−2 q0ωn
2q2+q22)ωn

+
(3 q0ωn

4p0−3 q2p0ωn
2−q0ωn

2p2+q2p2−4 q1ωn
4+2 q1ωn

2p1) sin(2ωn τn,j)

2(q12ωn
2+q02ωn

4−2 q0ωn
2q2+q22)ωn

+ −2 q0
2ωn

3+2 q0ωn q2−q1
2ωn

2(q12ωn
2+q02ωn

4−2 q0ωn
2q2+q22)ωn

.

(16)

Solving equation (12) yields

cos(2ωnτn,j) =
q1ωn(p0ω

3
n−p2ωn)+(q0ω

2
n−q2)(ω

4
n−p1ω

2
n+p3)

q21ω
2
n+(q0ω2

n−q2)2
,

sin(2ωnτn,j) =
q1ωn(ω

4
n−p1ω

2
n+p3)+(q0ω

2
n−q2)(p0ω

2
n−p2ωn)

q21ω
2
n+(q0ω2

n−q2)2
.

Substituting these values together with the definitions of pi and qi from (9) into equation
(16), we find

{
dRe{λ(τ)}

dτ

}−1

τ=τn,j

= 1
κ

[
4ωn

6 +
(
6α2 + 6αn4 + 6αm3

)
ωn

4

+(2α4 + 4α3n4 + 4α3m3 + 2α2n4
2 + 4α2m3n4 − 2n1

2m2
2α2m3n4

+2α2m3
2)ωn

2 − 2n1
2m2

2α4m3n4 + α4n4
2 + α4m3

2 + 2α4n4m3

]
= 1

κ [4z
3
n + 3s0z

2
n + 2s1zn + s2] =

1
κh

′
(zn),
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where κ = 2α2n21m
2
2n4m3

(
α2 + ω2

)2
. Sincen4 < 0 andm3 < 0, this implies that κ > 0,

and, therefore,

sgn
{

dRe{λ(τ)}
dτ

}
τ=τn,j

= sgn
{

dRe{λ(τ)}
dτ

}−1

τ=τn,j

= sgn
[
1
κh

′
(zn)

]
= sgn[h

′
(zn)] ̸= 0,

which completes the proof. �

The above analysis can be summarised as follows.

Theorem 3: Suppose condition (7) holds. Then the co-existence steady state E∗ is
biologically feasible, and we have the following.

• The co-existence steady state E∗ is linearly asymptotically stable for any values of
the time delay τ ≥ 0 if s3 ≥ 0 and one of these conditions holds:

(a) D > 0 and z∗1 ≤ 0; (b) D = 0 and z∗2 ≤ 0; (c) D < 0 and z∗3 ≤ 0.

• The co-existence steady state E∗ is linearly asymptotically stable for τ ∈ [0, τ0) if
s3 < 0, or if s3 ≥ 0 and one of the conditions below holds:

(a) D > 0, z∗1 > 0, and h(z∗1) < 0; (b) D = 0, z∗2 > 0 and h(z∗2) < 0;
(c) D < 0 z∗3 > 0 and h(z∗3) < 0.

If additionally the condition of Lemma 2.2 holds, the co-existence steady state E∗

undergoes Hopf bifurcation at τ = τ0.

Figures 1 and 2 illustrate regions of stability of the co-existence steady stateE∗ in the (τ , α)
parameter plane, they are show that the maximum real part of the characteristic eigenvalues
computed using pseudospectral approximation and implemented in the traceDDE suite
(Breda et al., 2006). These figures suggest that increasing the rate of prey self-regulation
a11 or decreasing the rate of predation a12 leads to an increase in the size of the parameter
region where the steady state E∗ is stable. Although the analysis presented earlier suggests
that it may be possible for the steady stateE∗ to regain stability for higher values of the time
delay through further Hopf bifurcations, numerical computation of the eigenvalues shown
in Figures 1 and 2 suggests that this does not happen, and once stability is lost, this steady
state remains unstable for arbitrarily large values of τ .

To better understand the behaviour of the system after Hopf bifurcation, we have used a
numerical bifurcation software DDE-BIFTOOL to perform continuation of periodic orbits
emerging at the Hopf bifurcation of E∗. These results are shown in Figures 1(c), 1(f)
and 2(c), 2(f), and they suggest that once E∗ undergoes Hopf bifurcation, both amplitude
and period of the bifurcating periodic solution are growing with increasing discrete time
delayτ .
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Figure 1 (a), (b), (d) and (e) Stability region for the steady state E∗ in the (τ , α)-plane, colour
code denotes [−max[Re(λ)]] for max[Re(λ)] ≤ 0. Parameter values are r1 = 1,
r2 = 1, a12 = 0.6, a21 = 2, a22 = 0.5. (a) a11 = 1, (b) a11 = 1.2, (d) a11 = 1.4,
(e) a11 = 1.6, (c) and (f) illustrate the amplitude and period of periodic solutions,
respectively, for α = 5 (see online version for colours)

Figure 2 (a), (b), (d) and (e) Stability region for the steady state E∗ in the (τ , α)-plane, colour
code denotes [−max[Re(λ)]] for max[Re(λ)] ≤ 0. Parameter values are r1 = 1,
r2 = 1, a11 = 1 , a21 = 2, a22 = 0.5. (a) a12 = 0.4, (b) a12 = 0.32, (d) a12 = 0.29,
(e) a12 = 0.26, (c) and (f) illustrate the amplitude and period of periodic solutions,
respectively, for α = 5 (see online version for colours)

3 Direction and stability of Hopf bifurcation

In this section, we investigate properties of the Hopf bifurcation of the coexistence steady
stateE∗, namely, its direction, the period of oscillations, as well as stability of the bifurcating
periodic solution for the system (6) at the critical value τ0. To make analytical progress,
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we employ the methodology of centre manifold reduction and normal form analysis, as
discussed in Hassard et al. (1981).

We begin by rescaling time as xi(t) = xi(τt) and consider τ = τ0 + σ, where τ0 is the
critical value of the time delay at which the steady state E∗ undergoes Hopf bifurcation,
and σ ∈ R. Then the system (6) transforms into a functional differential equation in C ∈
C([−1, 0],R4) as follows

Now, we rescale time by xi(t) = xi(τt) and consider τ = τ0 + σ, where τ0 is the value
of the time delay at which the steady stateE∗ undergoes Hopf bifurcation, and σ ∈ R. Then
the system (6) transforms into a functional differential equation in C ∈ C([−1, 0],R4) as
follows

ẋ(t) = Lσ(xt) + F (σ, xt), (17)

where x(t) = (x1(t), x2(t), x3(t), x4(t))
T ∈ R4 and Lσ : C → R, F : R× C → R are

given below:

Lσϕ = L1ϕ(0) + L2ϕ(−1),

where L1 and L2 are

L1 = (τ0 + σ)


0 0 m3 0
0 0 0 n4
α 0 −α 0
0 α 0 −α

 , L2 = (τ0 + σ)


0 m2 0 0
n1 0 0 0
0 0 0 0
0 0 0 0

 ,

and

F (σ, ϕ) = (τ0 + σ)


−a11ϕ1(t)ϕ3(t)− a12ϕ1(t)ϕ2(t− 1)
a21ϕ2(t)ϕ1(t− 1)− a22ϕ2(t)ϕ4(t)

0
0

 ,

where ϕ(θ) = (ϕ1(θ), ϕ2(θ), ϕ3(θ), ϕ4(θ))
T ∈ C. By the Riesz representation theorem,

there exists a function η(θ, σ) of bounded variation for θ ∈ [−1, 0], such that

Lσϕ =

∫ 0

−1

dη(θ, σ)ϕ(θ), for ϕ ∈ C.

We can choose

η(θ, σ) = L1δ(θ)− L2δ(θ + 1),

where δ(θ) is the Dirac delta function defined as δ(θ) =

{
0, θ ̸= 0,
1, θ = 0

. For ϕ ∈

C1([−1, 0],R4), we define

A(σ)ϕ =


dϕ(θ)
dθ , θ ∈ [−1, 0),∫ 0

−1
dη(s, σ)ϕ(s), θ = 0,

R(σ)ϕ =

 0, θ ∈ [−1, 0),

F (σ, ϕ), θ = 0,
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which allows us to rewrite the system (17) as follows,

ẋt = A(σ)xt +R(σ)xt,

where xt(θ) = x(t+ θ), for θ ∈ [−1, 0).
For any function ψ ∈ C1([0, τ ], (R4)∗), we define

A∗ψ(s) =


−dψ(s)

ds
, s ∈ (0, 1],

∫ 0

−1

dη(t, 0)Tψ(−t), s = 0,

and a bilinear inner product

⟨ψ(s), ϕ(θ)⟩ = ψ
T
(0)ϕ(0)−

∫ 0

−1

∫ θ

ξ=0

ψ
T
(ξ − θ)dη(θ)ϕ(ξ)dξ,

where we have used an abbreviation η(θ) = η(θ, 0). It follows that A = A(0) and A∗

are adjoint operators. We know that ±iω0τ0 are eigenvalues of A, hence, they are also
eigenvalues of A∗. As a next step, one has to compute the eigenvectors of A and A∗

corresponding to iωτ and −iωτ , respectively. Direct computations yield the following
result.

Lemma 4: q(θ) = (1, ρ1, ρ2, ρ3)
T eiω0τ0θ and q∗(θ) = D(1, ρ∗1, ρ

∗
2, ρ

∗
3)e

iωτ0θ are
eigenvectors of A and A∗ corresponding to eigenvalues iω0τ0 and −iω0τ0, respectively,
and ⟨q∗(s), q(θ)⟩ = 1 and ⟨q∗(s), q(θ)⟩ = 0, where

ρ1 =
(iω0 + α)n1e

−iω0τ0

(iω0 + α)iω0 − αn4
, ρ2 =

α

iω0 + α
, ρ3 =

n1αe
−iω0τ0

(iω0 + α)iω0 − αn4
,

ρ∗1 = − (iω0(α− iω0) + αm2)

n2(α− iω0)eiω0τ0
, ρ∗2 =

m2

α− iω0
, ρ∗3 = − ρ∗0n3

iω0 − α
,

and

D =
1

1 + ρ1ρ
∗
1 + ρ2ρ

∗
2 + ρ3ρ

∗
3 + τ0(ρ1m2 + ρ∗1n1)e

iω0τ0
.

As a next step, we use the methodology described in Hassard et al. (1981) (see also Ma et al.
(2009), Song amd Yuan (2006) and Xu and Shao (2012)) to compute the coordinates
describing centre manifoldC0 at σ = 0. Let xt be the solution of equation (17) when σ = 0
and define

z(t) = ⟨q∗, xt⟩, W (t, θ) = xt(θ)− 2Re[z(t)q(θ)]. (18)
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On the centre manifold C0 we have

W (t, θ) =W (z(t), z(t), θ) =W20(θ)
z2

2
+W11(θ)zz +W02(θ)

z2

2
+ ...

where z and z are local coordinates for centre manifold C0 in the directions of q∗ and q∗,
respectively. Note that W is a real when xt is real, and we considering only real solution
xt ∈ C0 of equation (17), since σ = 0, we have

ż(t) = iτ0ω0z + g(z, z),

where

g(z, z) = g20
z2

2
+ g11zz + g02

z2

2
+ g21

z2z

2
+ . . . . (19)

Then,

g(z, z) = q∗
T
(0)F (0, z, z)

= τ0D[−a11ϕ1(0)ϕ3(0)− a12ϕ1(0)ϕ2(−1)]
+τ0Dρ∗1[a21ϕ2(0)ϕ1(−1)− a22ϕ2(0)ϕ4(0)].

(20)

On the other hand, equation (18) indicates that

xt(θ) =W (z, z, θ) + 2zq(θ) + 2zq(θ),

from which we have

ϕk(0) = ρk−1z + ρk−1z +W
(k)
20 (0) z

2

2 +W
(k)
11 (0)zz

+W
(k)
02 (0) z

2

2 +O(|(z, z)|3), (k = 1, 2, 3, 4),

ϕl(−1) = ρl−1e
−iω0τ0z + eiωτ0ρl−1z +W

(l)
20 (−1) z

2

2 +W
(l)
11 (−1)zz

+W
(l)
02 (−1) z

2

2 +O(|(z, z)|3), (l = 1, 2),

(21)

where ρ0 = ρ0 = 1, ϕ = (ϕ1, ϕ2, ϕ3, ϕ4), W = (W (1),W (2),W (3),W (4)).
Substituting equation (21) into equation (20) and matching the coefficients in this

expressions with those in (19) yields

g20 = 2τ0D
[
ρ1ρ2a12e

−iω0τ0 − ρ1a12e
−iω0τ0 − ρ2a11 − ρ1ρ1a22

]
,

g11 = τ0D
[
ρ1a21(ρ1e

iω0τ0 + ρ1e
−iω0τ0)− a12(ρ1e

iω0τ0 + ρ1e
−iω0τ0)

−a11(ρ2 + ρ2)− a22(ρ1ρ3 + ρ1ρ3)
]

g02 = 2τ0D[ρ1
2a21e

iω0τ0 − ρ1a12e
iω0τ0 − ρ1a11 − ρ1

2ρ3a22]

g21 = τ0D

{
ρ1a21

[
2ρ1W

(1)
11 (−1) + ρ1W

(1)
20 (−1) + eiω0τ0W

(2)
20 (0)

+2e−ω0τ0W
(2)
11 (0)

]
−a12

[
2W

(1)
11 (−1) +W

(2)
20 (−1) + ρ1e

iω0τ0W
(1)
20 (0) + 2ρ1e

−ω0τ0W
(1)
11 (0)

]
−a11

[
2W

(1)
11 (0) +W

(3)
20 (0) + ρ2W

(1)
20 (0) + 2ρ2W

(1)
11 (0)

]
−ρ1a22

[
2ρ1W

(4)
11 (0) + ρ1W

(4)
20 (0) + ρ3W

(1)
20 (0) + 2ρ3W

(2)
11 (0)

]}
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In order to determine g21, we need to find W11,W20. The detailed calculation procedure
can refer to Appendix 1. Thus, we can compute the following important quantities:

c1(0) =
i

2ω0τ0

(
g11g20 − 2|g11|2 −

|g02|2

3

)
+
g21
2
,

µ2 = − Re{c1(0)}
Re{λ′

(τ0)}
, β2 = 2Re{c1(0)},

T2 = − Im{c1(0)}+ µ2Im{λ
′
(τ0)}

ω0τ0
,

(22)

which determine the characteristics of the bifurcating periodic solution at τ = τ0. More
specifically, µ2 shows the direction of the Hopf bifurcation, i.e., the periodic solution is
supercritical (subcritical) if µ2 > 0 (µ2 < 0), and the bifurcating periodic solution exists
for τ > τ0 (τ < τ0); β2 determines the stability of the bifurcating periodic solution: the
bifurcating periodic solutions are stable (unstable) if β2 < 0 (β2 > 0); T2 shows the period
of the bifurcating periodic solutions: the period increase (decrease) if T2 > 0 (T2 < 0).

4 Numerical simulations

From the analysis in Section 3, it follows that once the values of α, ri, aij , (i, j = 1, 2) and
τ0 are known, it is possible to compute the values ofµ2 and β2 which show the direction and
stability of the periodic solutions bifurcating from the positive equilibriumE∗ at the critical
value of the time delay τ = τ0. Fixing the mean time delay of the gamma distribution as
τm = 0.2, i.e., α = 5, we consider the following system:

ẋ1(t) = x1(t)[1− x3(t)− 0.6x2(t− τ)],

ẋ2(t) = x1(t)[−1 + 2x1(t− τ)− 0.5x4(t)],

ẋ3(t) = 0.5[x1(t)− x3(t)],

ẋ4(t) = 0.5[x2(t)− x4(t)],

(23)

This system has a positive equilibriumE∗ = (0.6471, 05882, 0.6471, 0.5882) that satisfies
the conditions of Theorem 3. For the given parameter values, we have z0 = 0.728, ω0 =

0.530, h′(z0) ̸= 0, τ0 = 1.388, λ
′
(τ0) = −0.498− 0.053i. From the formulae (22), it

follows that c1(0) = 45.666− 1.370i, µ2 = 91.570, β2 = 91.331 and T2 = 8.505. Thus,
E∗ is stable when τ < τ0, as shown in Figure 3. When τ passes through the critical value
τ0, E∗ loses its stability via Hopf bifurcation, i.e., a family of periodic solutions bifurcates
fromE∗. Sinceµ2 > 0 and β2 > 0, the Hopf bifurcation is supercritical, and the bifurcating
periodic solution is unstable, as shown in Figure 3.
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Figure 3 Numerical solution of the system (23) for τ = 1.1 (a), and τ = 2 (b). The critical time
delay is τ0 = 1.388 (see online version for colours)

5 Conclusion

In this paper we have analysed a predator-prey model with discrete and distributed delays.
For particular case of a weak gamma distributed delay we have shown that it is not possible
for both prey and predators to become extinct, while the single-species steady state is
stable independent of time delays whenever the co-existence steady state is not feasible.
For the co-existence steady state we have derived conditions for linear stability and Hopf
bifurcation in terms of system parameters. Using normal form theory and the centre manifold
reduction, we found the direction of Hopf bifurcation and derived the conditions for stability
of bifurcating periodic solutions. Numerical simulations have been performed to illustrate
different types of the dynamics in the system, and they show perfect agreement with the
analytical analysis.

The analysis presented in this paper can be extended in several directions. In the model
we considered, the predation term was chosen to be monotonically growing with the delayed
prey density, and in some cases it may be more realistic to allow for other non-monotone
forms of the response (Hsu et al., 2001; Ruan, 2009). Another possibility is to allow predation
terms to be themselves represented by some delay distributions rather than discrete delays,
in a manner similar to Song amd Yuan (2006). Besides ecological applications, analysis
presented in this paper can also be used for investigating other systems underpinned by a
similar type of interactions, such as those arising in mathematical neuroscience (Li and Hu,
2011; Zhou et al., 2009).
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Appendix A

In this section we show how one can compute W20(θ) and W11(θ). From equations (17)
and (18)

Ẇ = ẋt − żq − żq =

 AW − 2Re[q∗(0)F0q(θ)] for θ ∈ [−1, 0),

AW − 2Re[q∗(0)F0q(θ)] + F0 for θ = 0,

def
= AW +H(z, z, θ),

(A1)

where

H(z, z, θ) = H20(θ)
z2

2
+H11(θ)zz +H02(θ)

z2

2
+ ... (A2)

On the centre manifold C0 near the origin we have

Ẇ =Wz ż +Wz ż.

Expanding the above series and comparing the corresponding coefficients, we obtain

(A− 2iω0τ0)W20(θ) = −H20(θ), AW11(θ) = −H11(θ). (A3)

Equation (A1) implies that for θ ∈ [−1, 0), one has

H(z, z, θ) = −q∗(0)F0q(θ)− q∗(0)F 0q(θ) = −gq(θ)− gq(θ).

and comparing the coefficients with (A2) gives

H20(θ) = −g20q(θ)− g02q(θ), (A4)

and

H11(θ) = −g11q(θ)− g11q(θ). (A5)

From equations (A3) and (A4), and the definition ofA, one can find the following equation
for W20(θ)

Ẇ20(θ) = 2iω0τ0W20(θ) + g20q(θ) + g02q(θ)

Substituting q(θ) = (1, ρ1, ρ2, ρ3)
T eiω0τ0θ yields

W20(θ) =
ig20
ω0τ0

q(0)eiω0τ0θ +
ig02
3ω0τ0

q(0)e−iω0τ0θ + E1e
2iω0τ0θ, (A6)

where E1 = (E
(1)
1 , E

(2)
1 , E

(3)
1 , E

(4)
1 ) ∈ R4 is a constant vector.

Similarly, from equations (A3) and (A5) we can obtain

W11(θ) = − ig11
ω0τ0

q(0)eiω0τ0θ +
ig11
ω0τ0

q(0)e−iω0τ0θ + E2, (A7)
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where E2 = (E
(1)
2 , E

(2)
2 , E

(3)
2 , E

(4)
2 ) ∈ R4 is a constant vector.

Explicit expressions for E1 and E2 can be found as follows. From the definition of A
and the above equations we have∫ 0

−1

dη(θ)W20(θ) = 2iτ0ω0W20(0)−H20(0), (A8)

and ∫ 0

−1

dη(θ)W11(θ) = −H11(0), (A9)

where η(θ) = η(0, θ). From equation (A3), one can find

H20(0) = −g20q(0)− g02q(0) + 2τ0


−a11ρ2 − a12ρ1e

−iω0τ0

a21ρ1e
−iω0τ0 − a22ρ1ρ3

0
0

 , (A10)

and

H11(0) = −g11q(0)− g11q(0) + 2τ0


−a11Re{ρ2} − a12Re{ρ1e−iω0τ0}
a21Re{ρ1e−iω0τ0} − a22Re{ρ1ρ3}

0
0

 . (A11)

Using the relations(
iω0τ0I −

∫ 0

−1

eiθω0τ0dη(θ)

)
q(0) = 0,

(
−iω0τ0I −

∫ 0

−1

e−iθω0τ0dη(θ)

)
q(0) = 0,

and substituting expressions (A6) and (A10) into equation (A8) gives

(
2iτ0ω0I −

∫ 0

−1

e2iθω0τ0dη(θ)

)
E1 = 2τ0


−a11ρ2 − a12ρ1e

−iωτ0

a21ρ1e
−iω0τ0 − a22ρ1ρ3

0
0

 .

This can be written explicitly as the following linear system for E1:
2iω0 −m2e

−2iω0τ0 −m3 0
−n1e

−2iω0τ0 2iω0 0 −n4

−α 0 2iω0 + α 0
0 −α 0 2iω0 + α

E1 = 2


−a11ρ2 − a12ρ1e

−iω0τ0

a21ρ1e
−iω0τ0 − a22ρ1ρ3

0
0

 .
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Using Cramer’s rule, individual components of E1 can now be found as

E
(1)
1 =

∆11

∆1
, E

(2)
1 =

∆12

∆1
, E

(3)
1 =

∆13

∆1
, E

(4)
1 =

∆14

∆1
,

In a similar way, substituting (A7) and (A11) into (A9) yields

(∫ 0

−1

dη(θ)

)
E2 = 2τ0


−a11Re{ρ2} − a12Re{ρ1e−iω0τ0}
a21Re{ρ1e−iω0τ0} − a22Re{ρ0ρ3}

0
0

 ,

which gives the following system of equations for E2:
0 −m2 −m3 0

−n1 0 0 −n4

−α 0 α 0
0 −α 0 α

E2 = 2


−a11Re{ρ2} − a12Re{ρ1e−iω0τ0}
a21Re{ρ1e−iω0τ0} − a22Re{ρ1ρ3}

0
0

 .

The solution can be found as

E
(1)
2 =

∆21

∆2
, E

(2)
2 =

∆22

∆2
, E

(3)
2 =

∆23

∆2
, E

(4)
2 =

∆24

∆2
,

where

∆1 =

∣∣∣∣∣∣∣∣
2iω0 −m2e

−2iω0τ0 −m3 0
−n1e

−2iω0τ0 2iω0 0 −n4
−α 0 2iω0 + α 0
0 −α 0 2iω0 + α

∣∣∣∣∣∣∣∣ ,

∆11 = 2

∣∣∣∣∣∣∣∣
−a11ρ2 − a12ρ1e

−iω0τ0 −m2e
−2iω0τ0 −m3 0

a21ρ1e
−iω0τ0 − a22ρ1ρ3 2iω0 0 −n4

0 0 2iω0 + α 0
0 −α 0 2iω0 + α

∣∣∣∣∣∣∣∣ ,

∆12 = 2

∣∣∣∣∣∣∣∣
2iω0 −a11ρ2 − a12ρ1e

−iω0τ0 −m3 0
−n1e−2iω0τ0 a21ρ1e

−iω0τ0 − a22ρ1ρ3 0 −n4

−α 0 2iω0 + α 0
0 0 0 2iω0 + α

∣∣∣∣∣∣∣∣ ,

∆13 = 2

∣∣∣∣∣∣∣∣
2iω0 −m2e

−2iω0τ0 −a11ρ2 − a12ρ1e
−iω0τ0 0

−n1e−2iω0τ0 2iω0 a21ρ1e
−iω0τ0 − a22ρ1ρ3 −n4

−α 0 0 0
0 −α 0 2iω0 + α

∣∣∣∣∣∣∣∣ ,
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∆14 = 2

∣∣∣∣∣∣∣∣
2iω0 −m2e

−2iω0τ0 −m3 −a11ρ2 − a12ρ1e
−iω0τ0

−n1e−2iω0τ0 2iω0 0 a21ρ1e
−iω0τ0 − a22ρ1ρ3

−α 0 2iω0 + α 0
0 −α 0 0

∣∣∣∣∣∣∣∣ ,
and

∆2 =

∣∣∣∣∣∣∣∣
0 −m2 −m3 0

−n1 0 0 −n4

−α 0 α 0
0 −α 0 α

∣∣∣∣∣∣∣∣ ,

∆21 = 2

∣∣∣∣∣∣∣∣
−a11Re{ρ2} − a12Re{ρ1e−iω0τ0} −m2 −m3 0
a21Re{ρ1e−iω0τ0} − a22Re{ρ1ρ3} 0 0 −n4

−α 0 α 0
0 −α 0 α

∣∣∣∣∣∣∣∣ ,

∆22 = 2

∣∣∣∣∣∣∣∣
0 −a11Re{ρ2} − a12Re{ρ1e−iω0τ0} −m3 0

−n1 a21Re{ρ1e−iω0τ0} − a22Re{ρ1ρ3} 0 −n4

−α 0 α 0
0 0 0 α

∣∣∣∣∣∣∣∣ ,

∆23 = 2

∣∣∣∣∣∣∣∣
0 −m2 −a11Re{ρ2} − a12Re{ρ1e−iω0τ0} 0

−n1 0 a21Re{ρ1e−iω0τ0} − a22Re{ρ1ρ3} −n4

−α 0 0 0
0 −α 0 α

∣∣∣∣∣∣∣∣ ,

∆24 = 2

∣∣∣∣∣∣∣∣
0 −m2 −m3 −a11Re{ρ2} − a12Re{ρ1e−iω0τ0}

−n1 0 0 a21Re{ρ1e−iω0τ0} − a22Re{ρ1ρ3}
−α 0 α 0
0 −α 0 0

∣∣∣∣∣∣∣∣ .




