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Conditions for stability of the steady state are derived in terms of system parameters and
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1. INTRODUCTION

All activities, such as movement, perception and conscious
experience manifest themselves in rhythmic brain oscilla-
tions, and disruption or increased activity of neural net-
works can lead to various brain pathologies. Neurodegen-
erative diseases, including Alzheimer’s disease, epilepsy,
Parkinson’s disease, selectively disrupt these networks,
affecting various neuronal functions (Götz et al., 2009). For
instance, in Alzheimer’s disease, the most prevalent form
of dementia, a number of studies have shown a significantly
reduced clustering coefficient associated with a lower local
network connectivity (Supekar et al., 2008; Sanz-Arigita
et al., 2010).

Parkinson’s disease (PD), first identified as shaking palsy
nearly 200 years ago by James Parkinson, is the second
most common form of dementia. Symptoms include resting
tremor, rigidity, slowness/absence of voluntary movement,
and postural instability (Dauer and Przedborski, 2003).
This is linked to the principal loss of dopaminergic neurons
of the substantia nigra, and leads to the reduction in the
level of dopamine, which plays an important role in motor
control. This affects motor functions that are regulated
through the network formed by the substantia nigra and
other brain functions, such as striatum, globus pallidus
(GP) and subthalamic nucleus (STN), which collectively
form the basal ganglia (BG). The basal ganglia regulates
movement, such that, without its help, the cortex is
unable to coordinate a well-executed voluntary movement.
Animal and human recordings have revealed the presence
of neuronal beta oscillations (10-35 Hz) in the BG network

that could relate to its role in motor regulation (Gatev
et al., 2006). In PD, this network becomes aberrant (Smith
et al., 2011; Yao et al., 2014; Zhang et al., 2014), and shows
a persistent pattern of beta oscillations, especially in the
STN and GP (Little and Brown, 2014).

Holgado et al. (2010) have introduced a mathematical
model that explains the generation of beta oscillations in
the STN-GP circuit under the assumption of the strong
connection between STN and GP. Their model also takes
into account a short synaptic delay between these struc-
tures in the case when the excitatory input from the cortex
to STN is stronger than the inhibitory input from striatum
to GP, and the synaptic time delay between the STN and
GP is negligibly small. Experimental data from an animal
study suggests that the delay between STN and GP is
about 6 [ms] (Fujimoto and Kita, 1993; Kita et al., 2005).
Pavlides et al. (2012) modified the model first introduced
in Holgado et al. (2010) in order to incorporate a physio-
logically relevant time delay in the STN-GP interactions,
and obtained improved analytic stability conditions for
realistic values of the transmission delay between STN and
GP neural populations.

In this paper, we analyse the stability of the system based
on the original STN-GP model introduced by Holgado
et al. (2010). The stability analysis performed in Holgado
et al. (2010) and its later modifications made the following
simplifications: the membrane time constants are exactly
the same; the transmission delays in the neural populations
are taken to be equal; nonlinear activation functions are
replaced by linear functions. In this paper, the membrane
time constants are taken to be different. Moreover, the
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instance, in Alzheimer’s disease, the most prevalent form
of dementia, a number of studies have shown a significantly
reduced clustering coefficient associated with a lower local
network connectivity (Supekar et al., 2008; Sanz-Arigita
et al., 2010).

Parkinson’s disease (PD), first identified as shaking palsy
nearly 200 years ago by James Parkinson, is the second
most common form of dementia. Symptoms include resting
tremor, rigidity, slowness/absence of voluntary movement,
and postural instability (Dauer and Przedborski, 2003).
This is linked to the principal loss of dopaminergic neurons
of the substantia nigra, and leads to the reduction in the
level of dopamine, which plays an important role in motor
control. This affects motor functions that are regulated
through the network formed by the substantia nigra and
other brain functions, such as striatum, globus pallidus
(GP) and subthalamic nucleus (STN), which collectively
form the basal ganglia (BG). The basal ganglia regulates
movement, such that, without its help, the cortex is
unable to coordinate a well-executed voluntary movement.
Animal and human recordings have revealed the presence
of neuronal beta oscillations (10-35 Hz) in the BG network

that could relate to its role in motor regulation (Gatev
et al., 2006). In PD, this network becomes aberrant (Smith
et al., 2011; Yao et al., 2014; Zhang et al., 2014), and shows
a persistent pattern of beta oscillations, especially in the
STN and GP (Little and Brown, 2014).

Holgado et al. (2010) have introduced a mathematical
model that explains the generation of beta oscillations in
the STN-GP circuit under the assumption of the strong
connection between STN and GP. Their model also takes
into account a short synaptic delay between these struc-
tures in the case when the excitatory input from the cortex
to STN is stronger than the inhibitory input from striatum
to GP, and the synaptic time delay between the STN and
GP is negligibly small. Experimental data from an animal
study suggests that the delay between STN and GP is
about 6 [ms] (Fujimoto and Kita, 1993; Kita et al., 2005).
Pavlides et al. (2012) modified the model first introduced
in Holgado et al. (2010) in order to incorporate a physio-
logically relevant time delay in the STN-GP interactions,
and obtained improved analytic stability conditions for
realistic values of the transmission delay between STN and
GP neural populations.

In this paper, we analyse the stability of the system based
on the original STN-GP model introduced by Holgado
et al. (2010). The stability analysis performed in Holgado
et al. (2010) and its later modifications made the following
simplifications: the membrane time constants are exactly
the same; the transmission delays in the neural populations
are taken to be equal; nonlinear activation functions are
replaced by linear functions. In this paper, the membrane
time constants are taken to be different. Moreover, the

Proceedings, 14th IFAC Workshop on Time Delay Systems
Pesti Vigadó, Budapest, Hungary, June 28-30, 2018

Copyright © 2018 IFAC 294

Dynamics of a subthalamic nucleus-globus
palidus network with three delays

B. Rahman ∗ Y.N. Kyrychko ∗∗ K.B. Blyuss ∗∗ S.J. Hogan ∗∗∗

∗ Department of Natural Resources Engineering and Management,
School of Science and Engineering, University of Kurdistan Hewler,

Erbil, Kurdistan Region-F.R. Iraq (e-mail:
bootan.rahman@ukh.edu.krd).

∗∗ Department of Mathematics, University of Sussex, Falmer, Brighton,
BN1 9QH, United Kingdom (e-mail: y.kyrychko@sussex.ac.uk)

∗∗∗ Department of Engineering Mathematics, University of Bristol
Bristol, BS8 1TR, United Kingdom, (e-mail: s.j.hogan@bristol.ac.uk)

Abstract: This paper analyses a model of the subthalamic nucleus (STN)-globus palidus (GP)
network with three different transmission delays. A time-shift transformation reduces the model
to a system with two time delays, for which the existence of a unique steady state is established.
Conditions for stability of the steady state are derived in terms of system parameters and
time delays. Numerical stability analysis is performed using traceDDE to investigate different
dynamical regimes in the STN-GP model, and to obtain critical stability boundaries separating
stable (healthy) and oscillatory (Parkinsonian-like) neural firing. Direct numerical simulations
of the fully nonlinear system are performed to confirm analytical findings, and to illustrate
different dynamical behaviours of the system.

Keywords: Subthalamic Nucleus (STN)-Globus Palidus (GP), Time Delays, Stability Analysis.

1. INTRODUCTION

All activities, such as movement, perception and conscious
experience manifest themselves in rhythmic brain oscilla-
tions, and disruption or increased activity of neural net-
works can lead to various brain pathologies. Neurodegen-
erative diseases, including Alzheimer’s disease, epilepsy,
Parkinson’s disease, selectively disrupt these networks,
affecting various neuronal functions (Götz et al., 2009). For
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three time delays in the connections between the excita-
tory and inhibitory populations of neurons are taken to
be different. Finally, we consider a general nonlinear class
of activation functions. The activation functions are not
necessarily just logistic curves, since the neural population
might have more than a single inflexion point (Wilson
and Cowan, 1972). In Section 2, we introduce the model
describing STN and GP neural populations. In Section 3, a
time-shift transformation is used to reduce the number of
time delays. In Sections 4 we derive analytical conditions
for local stability of the steady state in the case of a non-
zero delay in the self-interaction of the GP population, and
an instantaneous cross-interaction between GP and STN
neural populations, and give analytical conditions for local
stability of the steady state in the case when there is a
delay in the cross-interaction between GP and STN pop-
ulations, and an instantaneous self-interaction in the GP
population. Furthermore, we consider a general case and
perform a stability analysis of the system in the presence of
delayed self-interaction in the GP population and delayed
cross-interaction between STN and GP populations. The
paper concludes with a summary in Section 4.

2. MODEL

Following Holgado et al. (2010), the mean firing rate model
describing the temporal evolution of the firing rates of the
excitatory population of neurons, STN, denoted by S(t),
and the inhibitory population of neurons, GP, denoted by
G(t), has the form

τSS
′(t) = FS(−wGSG(t− TGS) + wCSCtx)− S(t),

τGG
′(t) = FG(wSGS(t− TSG)− wGGG(t− TGG)

−wXGStr)−G(t),
(1)

where TGS ≥ 0, TSG ≥ 0 and TGG ≥ 0 are the transmission
time delays. In particular, TGS is the transmission delay
from GP to STN population, TSG is the transmission delay
from STN to GP population, and TGG is an internal self-
inhibition delay in the GP population. The constants τS
and τG are the time membrane constants of neurons in
STN and GP populations, while Ctx and Str represent
a constant level of cortical and striatal excitation of the
STN and GP populations, respectively. This system of
equations represents a pair of reciprocally connected STN-
GP sub-populations corresponding to one of many hypoth-
esised basal ganglia information channels (Merrison-Hort
et al., 2013). The synaptic weights wGS , wCS , wSG, wGG,
and wXG are all non-negative constants, and represent the
strength of synaptic connectivity within and between the
populations, where wxy is the strength of the connection
from population x to population y (e.g., wSG is the synap-
tic connectivity from STN to GP). The functions FS and
FG are the activation functions of the STN and GP neural
populations, which describe their firing rate as a function
of synaptic input, and they are given by

Str
wXG

wCS

(wGS , TGS) (wSG, TSG)

(wGG, TGG)

Ctx STN

GP

Fig. 1. Diagrammatic sketch of the STN-GP model repre-
sented by the system (1).
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MS−BS

BS

)
e

−4(.)
MS

,

FG(·) =
MG

1 +
(

MG−BG

BG

)
e

−4(.)
MG ,

(2)

where MS and MG are the maximum firing rates of STN
and GP populations, and BS and BG are the STN and GP
firing rates in the absence of input. A schematic diagram
of the model (1) representing the dynamics of STN-GP
interactions is shown in Figure 1.

The parameter values are summarised in Table 1 and are
available in the literature (for details, see Holgado et al.
(2010)). However, the synaptic weights were not available
in the literature and, therefore, Holgado et al. (2010) found
the values for which the model reproduced a wide range
of experimental findings.

Table 1. Parameters and their values

Parameter Value Source

TSG 6 ms Kita et al. (2005)
TGS 6 ms Fujimoto and Kita (1993)
TGG 4 ms Holgado et al. (2010)
τS 6 ms Kita et al. (1983), Nakanishi et al. (1987)
τG 14 ms Kita and Kitai (1991)
Ctx 27 spk/s Lebedev and Wise (2000)
Str 2 spk/s Schultz and Romo (1988)
MS 300 spk/s Hallworth et al. (2003)
BS 17 spk/s Hallworth et al. (2003)
MG 400 spk/s Kita et al. (2005), Kita (2007)
BG 75 spk/s Kita et al. (2004), Kita (2007)

3. STABILITY ANALYSIS

Before starting the stability analysis of the model (1), we
can reduce the number of transmission delays by using
a time-shift transformation in the firing rate S(t) of the
STN population. In order to do this, let us introduce a
new variable S̃(t) as follows

S̃(t) = S(t+ TGS), (3)

and the system (1) results in the following equivalent
system
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three time delays in the connections between the excita-
tory and inhibitory populations of neurons are taken to
be different. Finally, we consider a general nonlinear class
of activation functions. The activation functions are not
necessarily just logistic curves, since the neural population
might have more than a single inflexion point (Wilson
and Cowan, 1972). In Section 2, we introduce the model
describing STN and GP neural populations. In Section 3, a
time-shift transformation is used to reduce the number of
time delays. In Sections 4 we derive analytical conditions
for local stability of the steady state in the case of a non-
zero delay in the self-interaction of the GP population, and
an instantaneous cross-interaction between GP and STN
neural populations, and give analytical conditions for local
stability of the steady state in the case when there is a
delay in the cross-interaction between GP and STN pop-
ulations, and an instantaneous self-interaction in the GP
population. Furthermore, we consider a general case and
perform a stability analysis of the system in the presence of
delayed self-interaction in the GP population and delayed
cross-interaction between STN and GP populations. The
paper concludes with a summary in Section 4.

2. MODEL

Following Holgado et al. (2010), the mean firing rate model
describing the temporal evolution of the firing rates of the
excitatory population of neurons, STN, denoted by S(t),
and the inhibitory population of neurons, GP, denoted by
G(t), has the form

τSS
′(t) = FS(−wGSG(t− TGS) + wCSCtx)− S(t),

τGG
′(t) = FG(wSGS(t− TSG)− wGGG(t− TGG)

−wXGStr)−G(t),
(1)

where TGS ≥ 0, TSG ≥ 0 and TGG ≥ 0 are the transmission
time delays. In particular, TGS is the transmission delay
from GP to STN population, TSG is the transmission delay
from STN to GP population, and TGG is an internal self-
inhibition delay in the GP population. The constants τS
and τG are the time membrane constants of neurons in
STN and GP populations, while Ctx and Str represent
a constant level of cortical and striatal excitation of the
STN and GP populations, respectively. This system of
equations represents a pair of reciprocally connected STN-
GP sub-populations corresponding to one of many hypoth-
esised basal ganglia information channels (Merrison-Hort
et al., 2013). The synaptic weights wGS , wCS , wSG, wGG,
and wXG are all non-negative constants, and represent the
strength of synaptic connectivity within and between the
populations, where wxy is the strength of the connection
from population x to population y (e.g., wSG is the synap-
tic connectivity from STN to GP). The functions FS and
FG are the activation functions of the STN and GP neural
populations, which describe their firing rate as a function
of synaptic input, and they are given by
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Fig. 1. Diagrammatic sketch of the STN-GP model repre-
sented by the system (1).
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MG
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−4(.)
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(2)

where MS and MG are the maximum firing rates of STN
and GP populations, and BS and BG are the STN and GP
firing rates in the absence of input. A schematic diagram
of the model (1) representing the dynamics of STN-GP
interactions is shown in Figure 1.

The parameter values are summarised in Table 1 and are
available in the literature (for details, see Holgado et al.
(2010)). However, the synaptic weights were not available
in the literature and, therefore, Holgado et al. (2010) found
the values for which the model reproduced a wide range
of experimental findings.

Table 1. Parameters and their values

Parameter Value Source

TSG 6 ms Kita et al. (2005)
TGS 6 ms Fujimoto and Kita (1993)
TGG 4 ms Holgado et al. (2010)
τS 6 ms Kita et al. (1983), Nakanishi et al. (1987)
τG 14 ms Kita and Kitai (1991)
Ctx 27 spk/s Lebedev and Wise (2000)
Str 2 spk/s Schultz and Romo (1988)
MS 300 spk/s Hallworth et al. (2003)
BS 17 spk/s Hallworth et al. (2003)
MG 400 spk/s Kita et al. (2005), Kita (2007)
BG 75 spk/s Kita et al. (2004), Kita (2007)

3. STABILITY ANALYSIS

Before starting the stability analysis of the model (1), we
can reduce the number of transmission delays by using
a time-shift transformation in the firing rate S(t) of the
STN population. In order to do this, let us introduce a
new variable S̃(t) as follows

S̃(t) = S(t+ TGS), (3)

and the system (1) results in the following equivalent
system
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τSS̃
′(t) = FS(−wGSG(t) + wCSCtx)− S̃(t),

τGG
′(t) = FG(wSGS̃(t− T1)− wGGG(t− T2)

−wXGStr)−G(t),

(4)

where T1 = TGS + TSG, T2 = TGG, and the new state
variable S̃(t) is time-shifted relative to the original state
variable S(t). It is clear that both systems (1) and (4) pos-
sess the same steady states and characteristic equations.
From now on, all our analysis will be based on the model
(4).

3.1 Stability analysis

The system (4) possesses a non-trivial steady state E∗ =

(S̃∗, G∗), where S̃∗,G∗ are given implicitly by the solutions
of

S̃∗ = FS(−wGSG
∗ + wCSCtx),

G∗ = FG(wSGS̃
∗ − wGGG

∗ − wXGStr).
(5)

The system linearized about E∗ = (S̃∗, G∗) takes the form

X′(t) = L0X(t) + L1X(t− T1) + L2X(t− T2), (6)

where L0 L1 and L2 are given by

L0 =


 −

1

τS
−
r1wGS

τS

0 −
1

τG


 , L1 =

(
0 0

r2wSG

τG
0

)
, L2 =

(
0 0

0 −
r2wGG

τG

)
,

where r1 = 4S̃∗(MS−S̃∗)
M2

S

and r2 = 4G∗(MG−G∗)
M2

G

. The

associated characteristic matrix is

Ψ(λ, T1, T2) = λI − L0 − L1e
−λT1 − L2e

−λT2 ,

where I is the 2×2 identity matrix, and the corresponding
characteristic equation becomes

det[Ψ(λ, T1, T2)] ≡ λ2+p1λ+p2+re−λT1+(q1λ+q2)e
−λT2 = 0,

(7)
where

p1 =
τS + τG
τSτG

, p2 =
1

τSτG
, r =

r1r2wGSwSG

τSτG
,

q1 =
r2wGG

τG
, and q2 =

r2wGG

τSτG
.

(8)

Note that pi, qi, ri, r > 0 for i = 1, 2. The transcendental
equation (7) determines the stability of the steady state
E∗. We consider three different cases. First, we assume
that T1 = 0 and T2 > 0, and find stability conditions for
E∗. Second, we take T2 = 0 and T1 > 0, and determine
stability boundaries for E∗ depending on the value of T1.
Finally, we analyse the stability properties of E∗ in the
general case when both time delays are present, T1 > 0
and T2 > 0.

3.2 Stability analysis: single time delay

In this section we consider the case when there is a delayed
self-interaction in the GP population (i.e. T2 > 0) and
an instantaneous cross-interaction between STN and GP
populations (i.e. T1 = 0). The characteristic equation (7)
reduces to

λ2 + p1λ+ p2 + r + (q1λ+ q2)e
−λT2 = 0, (9)

where pi, qi, i = 1, 2, and r are given by (8). In order
to determine stability boundaries, we need to determine

parameter values for which �(λ) = 0. This can happen in
two ways: λ = 0 or λ = iξ. Clearly, λ = 0 is not a root
of the equation (9). So we look for solutions of (9) in the
form λ = iξ (ξ > 0), giving

−ξ2+p1ξi+p2+r+(q1ξi+q2)(cos ξT2−i sin ξT2) = 0. (10)

Separating the real and imaginary parts of (10) we get{
ξ2 − p2 − r = q2 cos(ξT2) + q1ξ sin(ξT2)
p1ξ = q2 sin(ξT2)− q1ξ cos(ξT2)

(11)

Squaring and adding the resulting equations gives

ξ4 − (q21 + 2p2 + 2r − p21)ξ
2 + (p2 + r)2 − q22 = 0. (12)

The four roots of the equation (12) can be expressed as
follows

ξ2± =
(q21 + 2p2 + 2r − p21)±

√
∆1

2
, (13)

where ∆1 = (q21 + 2p2 + 2r − p21)
2 − 4((p2 + r)2 − q22).

Depending on the values of pi, qi, i = 1, 2, and r, equation
(12) can have no, one or two positive roots.

If (H1) (p2 + r)2 − q22 > 0 and q21 + 2p2 + 2r − p21 < 0 or
∆1 < 0, then equation (12) has no positive roots.

If (H2) (p2 + r)2 − q22 < 0 or q21 + 2p2 + 2r − p21 > 0 and
∆1 = 0, then the equation (12) has one positive root ξ+.

If (H3) (p2 + r)2 − q22 > 0, q21 + 2p2 + 2r − p21 > 0 and
∆1 > 0, then the equation (12) has two positive roots

ξ± =
√
2
2 [q21 + 2p2 + 2r − p21 ±

√
∆1]

1
2 .

If either of the hypotheses (H2) or (H3) holds, the charac-
teristic equation (9) has purely imaginary roots when T2

takes certain values. These critical values T2 = T j
2± can be

found as follows. We can find sin(ξT2) and cos(ξT2) from
a pair of equation (11) as

sin(ξT2) =
ξ(q1ξ

2 + p1q2 − p2q1 − q1r)

q21ξ
2 + q22

,

cos(ξT2) = −p1q1ξ
2 − q2ξ

2 + p2q2 + q2r

q21ξ
2 + q22

.
(14)

Dividing sin(ξT2) by cos(ξT2), the critical time delays can
be expressed as

T j

2±
=

1

ξ±

{
tan−1

(
−
ξ±(q1ξ2± + p1q2 − p2q1 − q1r)

p1q1ξ2± − q2ξ2± + p2q2 + q2r

)
+ jπ

}
,

(15)

where j = 0, 1, · · · .
In hypotheses (H2), the characteristic equation (9) has two
imaginary solutions ξ± with ξ+ > ξ− > 0 defined in (13).
In order to determine stability as T2 varies, we need to
find the sign of the derivative of Re(λ) at the points where
λ(T2) is purely imaginary.

Lemma 1. The following transversality conditions are sat-
isfied[

dRe{λ(T2)}
dT2

]

T2=T 0

2+

> 0,

[
dRe{λ(T2)}

dT2

]

T2=T 0

2−

< 0.

It is worth noting that when T1 = T2 = 0, the system (4)
becomes a system of ODEs with characteristic equation

λ2 + (p1 + q1)λ+ p2 + q2 + r = 0. (16)

Whenever (H4) p1+q1 > 0 and p2+q2+r > 0, both roots
of equation (16) with T1 = T2 = 0 always have negative
real parts, and the steady state E∗ is stable.
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Fig. 2. (a) Stability of the non-trivial steady state E∗ of the
system (4) in the parameter space of the time delay
T2 and the synaptic weight wGG for different values
of the synaptic weight wGS . The non-trivial steady
state E∗ is stable below the stability boundaries. (b)
Amplitude and (c) period of the periodic solutions for
different values of wGS and T2 = 0.02.

By Lemma 1 and results in Cooke and Grossman (1982),
we have the following theorem,

Lemma 2. For system (4) where T1 = 0 and T2 > 0,

suppose that (H4) holds and T j
2± are defined by equation

(15), then we have

(i) If condition (H1) holds, then the steady state solution
E∗ of system (4) is asymptotically stable when T2 ≥ 0.

(ii) If condition (H2) holds, then there is a positive
integer k such that there are k switches from stability

to instability to stability, when T2 ∈
⋃k

j=0(T
j−1
2− , T j

2+),

where T−1
2− = 0 then the steady state solution E∗ of

system (4) is asymptotically stable, and when T2 ∈⋃k−1
j=0 (T

j
2+ , T

j
2−) and T2 > T k

2+ , then the steady state

solution E∗ of system (4) is unstable.
(iii) If condition (H3) holds, then the steady state solution
E∗ of system (4) is stable when T2 ∈ [0, T 0

2+), undergoes
a Hopf bifurcation when T2 = T 0

2+ , and is unstable when
T2 > T 0

2+ .

In order to gain a better understanding of the stability
properties of the non-trivial steady state E∗ = (S̃∗, G∗)
given by (5) for the system (4), we use a traceDDE,
a toolbox in MATLAB for computing the characteristic
roots and stability charts for linear autonomous systems
of delay differential equations with discrete and distributed
time delays (Breda et al., 2006; Loiseau et al., 2009) to
numerically calculate the stability boundaries for different
values of the synaptic weights wGG, wGS and the time
delay T2. Figure 2(a) shows the stability boundary of
the non-trivial steady state E∗ for different values of the
synaptic weight wGS . The steady state is stable below
the curves and unstable above them. As the value of
the time delay T2, which corresponds to the delayed self-
interactions within the GP population, is increased, the
steady state E∗ undergoes a series of stability switches for
certain fixed values od wGG, and for large values of the
time delay T2, the stability boundary becomes almost a
constant independent of T2. Increasing the synaptic weight
wGS does not change the shape of the stability boundary,
however, for higher values of wGS , the region where the
steady state E∗ is stable, increases. This suggests that
the region of non-oscillatory behaviour, which corresponds
to the healthy functioning of the STN-GP neural popula-
tions, is larger for higher values of the synaptic connection
between GP and STN populations. When the steady state
E∗ becomes unstable, it undergoes a Hopf bifurcation,
which gives rise to stable periodic oscillations. Using DDE-

Fig. 3. Stability of the non-trivial steady state E∗ of
the system (4) in the parameter space of time delay
T1 and the synaptic weight wSG for different values
of the synaptic weight wGS . The non-trivial steady
state E∗ is stable below the stability boundaries. (b)
Amplitude and (c) period of the periodic solutions for
different values of wGS and T1 = 0.5.

BIFTOOL packages in MATLAB, in Figures 2(b) and (c),
we have plotted the amplitude and period of these periodic
solutions for a fixed value of the time delay T2 and several
values of the synaptic weight wGS . One can see that as
the values of the synaptic weight wGS are increased, this
results in periodic oscillations with lower amplitude and a
significantly lower period.

In the case of a delayed cross-interaction between GP and
STN neural populations, i.e. T1 > 0, and an instantaneous
self-interaction, i.e. T2 = 0, the calculations are similar
to the above-considered case, and the details are omitted
here.

Figure 3(a) shows the stability region of steady state E∗

in the (T1, wSG) plane, which is stable below the stabil-
ity curves. The stability region increases for decreasing
strength of the synaptic connection wGS between GP and
STN populations, but, unlike the case of T2 �= 0, there is
just one stability switch from a stable to an unstable region
with increasing T1. Moreover, whilst the stability bound-
ary for very small values of the time delay T1 strongly
depends on wSG, it becomes constant for larger values of
T1. Biologically, the region, where the steady state E∗ is
stable, corresponds to the healthy functioning of the GP-
STN populations, and Figure 3 suggests that a stronger
connection between GP and STN networks leads to a
larger region of the neural oscillations. In Figures 3(b) and
(c) we fix the value of the time delay T1, and calculate
amplitude and period of the periodic solutions, which
arise after the steady state becomes unstable via a Hopf
bifurcation. Figure 3(b) shows that the amplitude of the
oscillating solutions is increasing for small values of the
synaptic weight wSG between STN and GP populations
and starts to drop slightly for very large wSG, whereas
higher values of the synaptic weight wGS lead to a much
higher amplitude of oscillations. The period of oscillations
is shorter for small values of the synaptic weight wSG and
higher values of the synaptic weight wGS , as illustrated in
Figure 3(c).

3.3 Stability analysis: two time delays

When T1 > 0 and T2 > 0, the characteristic equation (7)
contains two transmission delays simultaneously present,
which significantly complicates analytical calculations of
the stability boundaries. Thus, one should solve charac-
teristic equation (7) numerically in order to better under-
stand what is actually happening inside the corresponding
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Fig. 2. (a) Stability of the non-trivial steady state E∗ of the
system (4) in the parameter space of the time delay
T2 and the synaptic weight wGG for different values
of the synaptic weight wGS . The non-trivial steady
state E∗ is stable below the stability boundaries. (b)
Amplitude and (c) period of the periodic solutions for
different values of wGS and T2 = 0.02.

By Lemma 1 and results in Cooke and Grossman (1982),
we have the following theorem,

Lemma 2. For system (4) where T1 = 0 and T2 > 0,

suppose that (H4) holds and T j
2± are defined by equation

(15), then we have

(i) If condition (H1) holds, then the steady state solution
E∗ of system (4) is asymptotically stable when T2 ≥ 0.

(ii) If condition (H2) holds, then there is a positive
integer k such that there are k switches from stability

to instability to stability, when T2 ∈
⋃k

j=0(T
j−1
2− , T j

2+),

where T−1
2− = 0 then the steady state solution E∗ of

system (4) is asymptotically stable, and when T2 ∈⋃k−1
j=0 (T

j
2+ , T

j
2−) and T2 > T k

2+ , then the steady state

solution E∗ of system (4) is unstable.
(iii) If condition (H3) holds, then the steady state solution
E∗ of system (4) is stable when T2 ∈ [0, T 0

2+), undergoes
a Hopf bifurcation when T2 = T 0

2+ , and is unstable when
T2 > T 0

2+ .

In order to gain a better understanding of the stability
properties of the non-trivial steady state E∗ = (S̃∗, G∗)
given by (5) for the system (4), we use a traceDDE,
a toolbox in MATLAB for computing the characteristic
roots and stability charts for linear autonomous systems
of delay differential equations with discrete and distributed
time delays (Breda et al., 2006; Loiseau et al., 2009) to
numerically calculate the stability boundaries for different
values of the synaptic weights wGG, wGS and the time
delay T2. Figure 2(a) shows the stability boundary of
the non-trivial steady state E∗ for different values of the
synaptic weight wGS . The steady state is stable below
the curves and unstable above them. As the value of
the time delay T2, which corresponds to the delayed self-
interactions within the GP population, is increased, the
steady state E∗ undergoes a series of stability switches for
certain fixed values od wGG, and for large values of the
time delay T2, the stability boundary becomes almost a
constant independent of T2. Increasing the synaptic weight
wGS does not change the shape of the stability boundary,
however, for higher values of wGS , the region where the
steady state E∗ is stable, increases. This suggests that
the region of non-oscillatory behaviour, which corresponds
to the healthy functioning of the STN-GP neural popula-
tions, is larger for higher values of the synaptic connection
between GP and STN populations. When the steady state
E∗ becomes unstable, it undergoes a Hopf bifurcation,
which gives rise to stable periodic oscillations. Using DDE-

Fig. 3. Stability of the non-trivial steady state E∗ of
the system (4) in the parameter space of time delay
T1 and the synaptic weight wSG for different values
of the synaptic weight wGS . The non-trivial steady
state E∗ is stable below the stability boundaries. (b)
Amplitude and (c) period of the periodic solutions for
different values of wGS and T1 = 0.5.

BIFTOOL packages in MATLAB, in Figures 2(b) and (c),
we have plotted the amplitude and period of these periodic
solutions for a fixed value of the time delay T2 and several
values of the synaptic weight wGS . One can see that as
the values of the synaptic weight wGS are increased, this
results in periodic oscillations with lower amplitude and a
significantly lower period.

In the case of a delayed cross-interaction between GP and
STN neural populations, i.e. T1 > 0, and an instantaneous
self-interaction, i.e. T2 = 0, the calculations are similar
to the above-considered case, and the details are omitted
here.

Figure 3(a) shows the stability region of steady state E∗

in the (T1, wSG) plane, which is stable below the stabil-
ity curves. The stability region increases for decreasing
strength of the synaptic connection wGS between GP and
STN populations, but, unlike the case of T2 �= 0, there is
just one stability switch from a stable to an unstable region
with increasing T1. Moreover, whilst the stability bound-
ary for very small values of the time delay T1 strongly
depends on wSG, it becomes constant for larger values of
T1. Biologically, the region, where the steady state E∗ is
stable, corresponds to the healthy functioning of the GP-
STN populations, and Figure 3 suggests that a stronger
connection between GP and STN networks leads to a
larger region of the neural oscillations. In Figures 3(b) and
(c) we fix the value of the time delay T1, and calculate
amplitude and period of the periodic solutions, which
arise after the steady state becomes unstable via a Hopf
bifurcation. Figure 3(b) shows that the amplitude of the
oscillating solutions is increasing for small values of the
synaptic weight wSG between STN and GP populations
and starts to drop slightly for very large wSG, whereas
higher values of the synaptic weight wGS lead to a much
higher amplitude of oscillations. The period of oscillations
is shorter for small values of the synaptic weight wSG and
higher values of the synaptic weight wGS , as illustrated in
Figure 3(c).

3.3 Stability analysis: two time delays

When T1 > 0 and T2 > 0, the characteristic equation (7)
contains two transmission delays simultaneously present,
which significantly complicates analytical calculations of
the stability boundaries. Thus, one should solve charac-
teristic equation (7) numerically in order to better under-
stand what is actually happening inside the corresponding
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Fig. 4. Real part of the leading eigenvalue of the char-
acteristic equation (7) with T1 = 0.09, wSG = 19,
and (a) wGS = 0.1, (b) wGS = 0.2, (c) wGS = 0.3
and (d) wGS = 0.4. The colour denotes max[Re(λ)].
(c) Amplitude of the periodic solutions for different
values of wGS and T2 = 0.2. (f) Period of the periodic
solutions for different values of wGS and T2 = 0.2.

Fig. 5. Real part of the leading eigenvalue of the charac-
teristic equation (7) for wGS = 1, wSG = 3 and (a)
wGG = 1.6, (b) wGG = 2 and (c) wGG = 2.4. Colour
code denotes max[Re(λ)].

stability regions. In this case, it is possible to obtain an
implicit expression for the stability boundary of a healthy
state in (T2, wGG) plane. Substituting λ = iξ (ξ > 0)
into the characteristic equation (7) and separating real and
imaginary parts, we obtain{

ξ2 − p2 − r cos(ξT1) = q2 cos(ξT2) + q1ξ sin(ξT2),
p1ξ − r sin(ξT1) = q2 sin(ξT2)− q1ξ cos(ξT2).

(17)
Figures 4(a), (b), (d) and (e) show numerically computed
maximum real part of the leading eigenvalues of the
characteristic equation (17) in the (T2, wGG) plane for a
fixed value of the synaptic weight wSG and different values
of the synaptic weight wGS . From these figures, one can see
that there is a finite number of stability switches between
stable and unstable regimes for the same values of wGG,
but increasing the strength of the synaptic connection wGS

between GP and STN populations significantly shrinks
the stability region. Figures 4(c) and (f) illustrate the
amplitude and the period of the periodic solutions after
the stability is lost for a fixed value of the time delay T2.
The amplitude of oscillations grows for larger values of
the synaptic weights wGG and wGS , whilst the period of
oscillations becomes smaller for larger values of wGS and
grows with wGG.

To better understand the stability changes in the presence
of two time delays, we fixed wGS , wSG, varied the strength

wGG of the self-inhibitory connection of the GP popula-
tion, and numerically computed the maximum real part of
the leading eigenvalue of the characteristic equation (17) in
the (T1, T2) plane, as shown in Figure 5(a)-(c). As the value
of the self-inhibitory synaptic connection wGG is increased,
the number of open-ended curves (stable region) decreases.
This means that in the presence of two time delays and
high enough values of the synaptic weight wGG, the model
shows oscillatory behaviour for a wide range of T1 and T2

values.

4. DISCUSSION

In this paper, we have studied a general subthalamic
nucleus (STN) and globus pallidus (GP) network with
three distinct synaptic transmission delays. Using the
time-shift transformation, we reduced the original system
to an equivalent system with two time delays and showed
the existence of a unique non-trivial steady state. The
analysis in this paper has concentrated on the stability
properties of this steady state, since it has a profound effect
on the dynamics of the neural populations. Biologically,
the stable steady state corresponds to the healthy firing
of the STN and GP populations, and if it is unstable, this
results in periodic firing, which implies a Parkinsonian-
type regime. To better understand the effects of different
time delays on the overall stability of the system, we have
divided the analysis into three different cases: delayed
self-interaction in the GP population only; delayed cross-
interaction between GP and STN populations only; both
interactions with time delays.

For the first two cases, we have analytically found the sta-
bility regions and have shown that the non-trivial steady
state is stable below some critical value of the time delay,
unstable when the time delay exceeds this critical value,
and undergoes a Hopf bifurcation when the time delay
is equal to the critical value. Furthermore, we have nu-
merically computed eigenvalues of the corresponding char-
acteristic equations for the three cases, showing that the
strength of the synaptic connection from the GP to STN
population wGS plays an important role in determining the
stability of the steady state. In fact, when the time delay is
only present in the self-interaction of the GP population,
the stability region (healthy firing of neurons) increases
with increasing wGS , however, in the case when the time
delay is only considered between STN and GP populations,
the stability region gets larger for decreasing values of the
synaptic weight wGS . Moreover, the highest amplitude of
oscillations in the case of the time delay being included in
the self-interaction of the GP population corresponds to
the lowest value of the synaptic strength wGS , whilst if the
time delay is only included into the interactions between
STN and GP populations, the same effect on the amplitude
of oscillations is observed for highest values of wGS . In
the case when both time delays are taken into account,
the stability region shrinks if the synaptic weight wGS is
increased, leading to the smaller range of parameter values,
where the healthy firing rate of neurons is possible, and
the amplitude of oscillating solutions outside the stability
region also grows for larger values synaptic weight wGS .

Comparing the analysis done in this paper to the previous
work in Holgado et al. (2010), it is worth noting that we
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have considered the case when the activation functions
are nonlinear, which gives a continuous derivative for
the activation function, and rather than using the Taylor
expansion under the assumption of the small time delays,
we have analysed stability of the system for arbitrary
values of the three time delays.
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