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With the growing global demands on sustainable food production, one of the biggest

challenges to agriculture is associated with crop losses due to parasitic nematodes.

While chemical pesticides have been quite successful in crop protection and mitigation

of damage from parasites, their potential harm to humans and environment, as well as

the emergence of nematode resistance, have necessitated the development of viable

alternatives to chemical pesticides. One of the most promising and targeted approaches

to biocontrol of parasitic nematodes in crops is that of RNA interference (RNAi). In

this study we explore the possibility of using biostimulants obtained from metabolites

of soil streptomycetes to protect wheat (Triticum aestivum L.) against the cereal cyst

nematode Heterodera avenae by means of inducing RNAi in wheat plants. Theoretical

models of uptake of organic compounds by plants, and within-plant RNAi dynamics,

have provided us with useful insights regarding the choice of routes for delivery of

RNAi-inducing biostimulants into plants. We then conducted in planta experiments with

several streptomycete-derived biostimulants, which have demonstrated the efficiency

of these biostimulants at improving plant growth and development, as well as in

providing resistance against the cereal cyst nematode. Using dot blot hybridization

we demonstrate that biostimulants trigger a significant increase of the production in

plant cells of si/miRNA complementary with plant and nematode mRNA. Wheat germ

cell-free experiments show that these si/miRNAs are indeed very effective at silencing

the translation of nematode mRNA having complementary sequences, thus reducing

the level of nematode infestation and improving plant resistance to nematodes. Thus,

we conclude that natural biostimulants produced frommetabolites of soil streptomycetes

provide an effective tool for biocontrol of wheat nematode.

Keywords: crop protection against nematodes, streptomycete-derived biostimulants, RNA interference, wheat
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1. INTRODUCTION

One of the biggest challenges to agriculture comes from pests
and parasites that cause enormous economic losses and threaten
global food security. Plant parasitic nematodes are known to
infest almost all cultivated crops, and they result in losses of over
20% of the annual yield (Jung and Wyss, 1999), and estimated
economic losses of over $130 billion worldwide (Chitwood,
2003). The largest damage to crops can be attributed to sedentary
endoparasitic nematodes of the Tylenchoidea superfamily, which
includes root-knot nematodes (Meloidogyne spp.) and cyst
nematodes (Globodera and Heterodera spp.) (Tamilarasan and
Rajam, 2013). Symptoms of nematode-related plant disease
include wilting, stunting, and enhanced susceptibility to other
diseases. While cyst nematodes are quite specific in the type of
host plants they choose to parasitize on, root-knot nematodes do
not have such high host specificity and can infect a very wide
range of different crops. Irrespective of the type of nematodes,
when their juveniles reach the second stage J2 (infective
juveniles), they migrate from the soil into new host roots, or use
the same host plant as the one used by their parent. In case of
migration through the soil, these juveniles use lipids stored in
their gut to sustain them for a short period of time needed to get
established in a new host. Inside the plant, the nematodes migrate
intra-cellularly (cyst nematodes) or inter-cellularly (root-knot
nematode) to become sedentary in the roots and form feeding
cells that support further development and reproduction (Bird
and Kaloshian, 2003; Caillaud et al., 2008). These feeding cells
later transform into either syncytia in the case of cyst nematodes,
or multinucleate giant cells for root-knot nematodes, which
subsequently result in the formation of galls and plant death after
several cycles of nematode reproduction. In the case of wheat
(Triticum aestivum L.), its major nematode parasites are cereal
cyst nematode, primarily Heterodera avenae (Nicol et al., 2007;
Peng et al., 2009), and root lesion nematode Pratylenchus (P.
neglectus and P. thornei) (Vanstone et al., 1998). Smiley and Nicol
(2009) and Nicol and Rivoal (2008) provide nice overviews of
different species of wheat nematodes, including the discussion of
their epidemiology, as well as approaches to management.

Over the years various control measures have been proposed
to reduce the negative impact of nematodes on the performance
of crops in general, and wheat in particular. These include
application of chemical nematicides, development and use of
organic cultivars, and crop rotation (Tamilarasan and Rajam,
2013). In the case of wheat, management and sanitation can
be achieved using rotation with non-cereal, resistant or tolerant
cultivars (Smiley and Nicol, 2009). Despite successes of synthetic
chemical pesticides in mitigating damage and protecting crop
from pests, other options are currently being explored due to the
emergence of resistance in pest populations, and concerns over
safety to humans and environment associated with ground water
contamination and residues in food (Thomason, 1987).

One promising approach for crop protection and control
of nematodes is RNA interference (RNAi) (Saurabh et al.,
2014; Kamthan et al., 2015; Li et al., 2015; Kanakala and
Ghanim, 2016; Rehman et al., 2016; Ali et al., 2017a; Banerjee
et al., 2017; Borel, 2017; Majumdar et al., 2017), which is a

fundamental biological process, through which eukaryotic cells
are able to post-transcriptionally control expression of specific
genes. The process starts with either exogenous (in the case
of plant viruses) or endogenous (host’s own) double-stranded
RNA (dsRNA), which is cleaved by the Dicer enzyme into
21–25nt long small interfering RNA (siRNA). These are then
unwound, and the passenger strand is discarded, while the
guide strand is loaded onto Argonaute protein to form the
RNA-induced silencing complex (RISC) that is able to degrade
complementary mRNA, thus stopping it from being translated
into protein (Hammond et al., 2000; Filipowicz, 2005; Carthew
and Sontheimer, 2009). Host cells can also take RNAs from
viruses and make them double stranded using RNA-dependent
RNA polymerases (Wassenegger and Pelissier, 1998; Lipardi
et al., 2001; Makeev and Bamford, 2002). One should also note
that sRNAs do not only target mRNAs. In fact, most siRNAs
target non-coding RNAs (Hüttenhofer et al., 2005; Chen and
Aravin, 2015; Wang et al., 2015), while miRNA target mRNAs,
as well as non-coding RNAs, which results in the production of
phasiRNA (Ye et al., 2014; Liu et al., 2015). For the purpose of
controlling plant infections, RNAi can be used in two different
ways: it can protect the plants from infection, and it can be used
to target the parasites. Protecting plants from infection relies on
the plant possessing appropriate dsRNA, so that it could produce
the RISC, which would stop expression of proteins necessary for
the successful infection. Targeting parasites is a strategy where
upon feeding on plants, insects or nematodes would consume
dsRNA that upon entering their gut would trigger the process
of RNAi against their own genes, thus reducing their fecundity
and causingmortality (Fairbairn et al., 2007; Charlton et al., 2010;
Dalzell et al., 2010; Li et al., 2010, 2015; Duan et al., 2012). In
both of these approaches the important first step is supplying
plants with the appropriate dsRNA. This can be achieved either
by developing transgenic plants able to produce necessary dsRNA
through their own cell machinery (Zhang et al., 2015), or by
providing it externally through spraying, root soaking etc. (Li
et al., 2015; Joga et al., 2016; Heidebrecht, 2017). It has been
shown recently that it is possible to develop transgenic plants
carrying RNAi constructs providing protection against fungal
infections of peanut (Arias et al., 2015) and wheat (Chen et al.,
2016). One of the biggest challenges with spraying dsRNA on
crops on agricultural scale is that it gets washed away with rain
and is quite quickly degraded by the soil. A recent work has
demonstrated that this problem can be overcome by loading
dsRNA on clay nano-particles that in a field experiment stayed
on the surface of leaves up to 30 days after application of the
spray (Mitter et al., 2017).

In the context of nematode infections of crops, transgenic
plants can quite effectively produce dsRNA that targets various
nematode housekeeping genes, as well as parasitism or effector
genes. For example, tobacco plant has been designed to express
dsRNA of target genes of Meloidogyne incognita (Yadav et al.,
2006), soybean has been engineered to express dsRNA to target
a few house-keeping genes of Heterodera glycines (Klink et al.,
2009; Li et al., 2010), and rapeseed plant has been designed
to express dsRNA to target an important secretory protein of
Heterodera schachtii (Tsygankova et al., 2013). Feeding dsRNA
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directly to nematode larvae is able to induce RNA silencing in
western corn rootworm (Bolognesi et al., 2012) and colorado
potato beetle (Baum et al., 2007). Urwin et al. (2002) have shown
how octopamine can induce uptake of dsRNA by H. glycines and
Globodera pallida.

Another prominent alternative strategy for crop protection is
the use of biopesticides, in particular, natural biostimulants that
are usually metabolites of plants or soil bacteria (Chandler et al.,
2011; Ruiu, 2015; Yakhin et al., 2017). A major source of natural
biostimulants are soil actinobacteria, such as Saccharopolyspora
and Streptomyces genera. One example is Streptomyces avermitilis
that produces Avermectins having insecticidal and nematicidal
properties (Putter et al., 1981; Turner and Schaeffer, 1989).
These macrocyclic lactone compounds target the GABA
receptors in the peripheral nervous system of the insects
and nematodes, causing inhibition of neurotransmission and
paralysis of the neuromuscular systems (Bloomquist, 1996;
Cabrera et al., 2013). Products of different streptomycetes
have recently been shown provide effective nematicidal
action (Ruanpanun et al., 2010; Rashad et al., 2015; Kaur et al.,
2016). Recent work has shown that metabolites produced
by some of the streptomycetes have a significant positive
effect on plant performance through improved growth and
development, and they also yield protection against nematode
through stimulating production in plant cells of appropriate
si/miRNA (Jailani and Mukherjee, 2017; Tsygankova et al.,
2019). More specifically, metabolites and cell culture supernatant
of soil streptomycetes S. avermitilis (Biliavska et al., 2012;
Iutynska, 2012), S. netropsis (Biliavska et al., 2016a), and S.
violaceus (Biliavska et al., 2016b) have been shown to possess
strong antagonistic activity against various phytopathogenic
micromycetes and bacteria (Iutynska et al., 2017). Earlier
work (Biliavska et al., 2012, 2015a; Iutynska et al., 2017) has
shown that when the selected streptomycetes are cultivated in
liquid nutrient media, they simultaneously produce a number
of distinct biologically active compounds, such as antibiotics
(heptaene antibiotic candidin for S. netropsis, anthracycline
antibiotics rhodilunantsin A and rhodilunantsin B for S.
violaceus, and macrocyclic avermectins for S. avermitilis), amino
acids, lipids, phytohormones (auxins, cytokinins, gibberellins,
abscisic acid), and steroid compounds (cholesterol, ergosterol,
sitosterol, stigmasterol, 24-epibrassinolide, squalene). The
presence of these different biological products in the cultural
liquid supernatant and biomass ethanol extracts means that the
resulting biostimulants are actually complex poly-component
products, which together provide a significant improvement of
plant growth and development (Ponomarenko and Iutynska,
2011). This positive effect of biostimulants on plant growth
has been demonstrated through improved callogenesis and
organogenesis in wheat (Tsygankova et al., 2016, 2017).
Biostimulants developed on the basis of metabolites of these
streptomycetes have also shown nematicidal effects on root-knot
nematode M. incognita in vitro (Biliavska et al., 2015a), as well
as bioprotective RNAi-mediated effects against cyst nematode
H. schachtii in rape (Tsygankova et al., 2013, 2014a), Brassica
rapa subs. pekinensis (Chinese cabbage) (Biliavska et al., 2016c),
and sugar beet (Tsygankova et al., 2012b), as well as on both

of these nematodes in sugar beet and cucumber (Tsygankova
et al., 2014b). It should be noted that we are using the term
“biostimulant” loosely to describe poly-component substances
without discriminating them by the mode of their action, such
as biopesticides, plant growth regulators etc., hence avoiding the
need to abide by one of the more restrictive definitions Calvo
et al., 2014; Brown and Saa, 2015; du Jardin, 2015;
Nardi et al., 2016.

To facilitate the development of optimal strategies for delivery
of biostimulants into the plants, it is essential to understand
how complex mixtures of chemical compounds are taken up
by plants from the soil, as well as how they are subsequently
transported within plants. Experimentally driven mathematical
models suggest that equilibrium concentrations of chemical
compounds in plants are reached very quickly, when plants are
taking up compound from the soil through their roots (Briggs
et al., 1983; Fryer and Collins, 2003; Rein et al., 2011). Theoretical
models of RNAi (Groenenboom and Hogeweg, 2008; Neofytou
et al., 2016a,b, 2017) have shown that the rate at which
proliferating cells of meristematic tissue mature into healthy
plant cells plays an important role in determining the success of
RNAi-based plant response, which suggests that the transport of
these products to different parts of the plant during its growth
has a knock-on effect on their availability for consumption by
nematodes. Furthermore, one should be mindful of the fact
that in the case of poly-component mixtures, diffusion and
uptake of different chemical components and their subsequent
within-plant transport can significantly differ due to their various
characteristics, such as lipophilicity, acidity, and electrical charge.
Existing studies on the dynamics of germination and associated
water uptake suggest that a significant role in this process is
played by the seed morphology, which should be important in
the case where biostimulants are applied directly to germinating
seeds prior to them being sowed, rather than to the soil.

This paper analyses how poly-component biostimulants
obtained on the basis of metabolites of soil streptomycetes can
be used to protect wheat (Triticum aestivum L. cv. Zimoyarka)
against the cereal cyst nematode H. avenae through stimulating
production in plant cells of si/miRNA that are complementary
with nematode mRNA upon being consumed by nematode from
plants. The underlying idea of this methodology is the so-called
host-induced gene silencing (HIGS), whereby the transfer of RNA
in the form of either dsRNA or si/miRNA generated within host
results in silencing essential nematode genes that are involved in
nematode multiplication and/or egg production, parasitism and
housekeeping (Fairbairn et al., 2007; Lilley et al., 2012; Nunes
and Dean, 2012; Koch and Kogel, 2014). A very important point
is that biostimulants used in this study are natural products of
soil streptomycetes that are able to deliver targeted protection
against the nematode, thus providing a safe and effective tool
of biocontrol.

One particular problem for efficient plant-induced RNAi is
a significant variability that has been observed in the efficiency
of RNAi in nematodes in response to differences in sRNA
concentrations, sizes of dsRNA constructs, and the duration of
exposure (Gheysen and Vanholme, 2007; Maule et al., 2011;
Lilley et al., 2012). Another major challenge is identifying specific
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RNAi compounds that are being transferred between plants
and nematodes, i.e., whether it is the unprocessed dsRNA that
subsequently has to be processed into siRNA by nematodes, or
the siRNA, resulting from processing of these dsRNAs by plants
using their DICER enzymes (Gheysen andVanholme, 2007; Lilley
et al., 2012). Even though significant amount of work has been
done recently on trying to understand trans-kingdom transfer
of small RNAs, and more specifically on the transfer of RNA
between plants and their parasitic nematodes, many aspects of
such transfer remain poorly understood (Knip et al., 2014; Sarkies
andMiska, 2014; Han and Luan, 2015; Zhou et al., 2017; Cai et al.,
2018; Baldrich et al., 2019), thus limiting our ability to design
effective tools for host-induced RNAi.

Efficiency of plant-induced RNAi relies on the knowledge
of appropriate nematode genetic targets for RNAi, and some
progress has been made recently on identifying such targets
for a number of agriculturally important nematodes (Koch
and Kogel, 2014). In one recent study, Liu et al. (2016) have
shown the effectiveness of RNAi on silencing the expression of
HaEXPB2 in H. avenae by in vitro soaking H. avenae larvae
in homologous dsRNA, thus reducing its parasitism on N.
benthamiana. Yang et al. (2017) have sequenced mRNA from
both pre- and post-parasitic stages of H. avenae, providing
an extensive characterization of development, metabolism, and
parasitism genes. A recent work by Cui et al. (2018) has
identified three specific H. avenae genes c59821_g1, c69968_g1,
and c45915_g1 associated with lethal phenotypes, which suggests
that they can be used as effective genetic targets for plant-
induced RNAi. Similarly, Zheng et al. (2015) have studied
transcriptome of second-stage juveniles of H. avenae and shown
that silencing unigene38116, unigene102492, and unigene38007
genes, which are homologs of C. elegans genes C18D1.3,
F38E11.7, andC06G4.2, respectively, by soaking nematode larvae
in the gene-specific siRNA has lethal effect on the nematode.
Kumar et al. (2014) have also analyzed transcriptome of second-
stage juveniles of H. avenae, showing that it has the highest
degree of similarity to a potato cyst nematode G. pallida and
identified a number of candidate genes that can be used as
targets for RNAi.

As mentioned earlier, one of the biggest challenges to RNAi-
based biocontrol is the production in plants of si/miRNA
complementary to nematode mRNA, as well as the delivery
of necessary RNAi products to nematodes. Using some of
the above-mentioned insights from mathematical models of
plant uptake of chemical compounds, as well as the dynamics
of RNAi in plants, we perform experiments on triggering
nematode-specific si/miRNA production in wheat by using
several streptomycete-derived biostimulants. The results suggest
that these biostimulants are indeed very effective in protecting
wheat against the cereal cyst nematode.

2. MATERIALS AND METHODS

2.1. Biostimulants and Experimental
Set-Up
Biostimulants used in this study are products based on
metabolites of soil streptomycetes S. avermitilis, S. netropsis, and

S. violaceus. Avermectins produced by S. avermitilis have long
been known to possess insectidical, acaricidal, and nematicidal
properties (Putter et al., 1981; Cabrera et al., 2013). In light
of these observations, a strain S. avermitilis IMV Ac-5015 was
grown in liquid organic soya media in bioreactors for 7 days at a
temperature of+28± 1◦C (Biliavska et al., 2012, 2015b; Iutynska
et al., 2017). After reaching the phase of stationary growth,
the streptomycete’s biomass was separated by centrifugation.
Extraction of the streptomycete’s metabolites in the biomass and
supernatant of the cultural liquid was then carried out with
ethanol at a ratio of 1:1 or 1:3 for one day, and subsequently the
biomass was centrifuged. The biostimulant denoted as Avercom
was obtained as a mixture of this cultural liquid supernatant
extract and biomass extract at a 1:1 ratio, and was then stored
at +4◦C. Chemical analysis of this biostimulant showed that it
contains avermectins at concentration of 100µg/mL. The second
biostimulant, Avercom nova-2, is a derivative of Avercom and
contains 50mL of cell culture supernatant added to 50 mL of
biomass extract of S. avermitilis IMV Ac-5015, with the addition
of 0.01 mM of chitosan, a natural compound with known elicitor
effects in plants (Hadrami et al., 2010;Malerba andCerana, 2016).
Exactly the samemethodology was used to produce Phytovit from
the streptomycete S. netropsis IMV Ac-5025, and Violar from
S. violaceus IMV Ac-5027, with the only distinction being that
for Phytovit and Violar the ratio of cultural liquid supernatant
extract to biomass extract was 4:1. All these biolostimulants
were tested in the laboratory setting prior to being used for
plant treatment.

To investigate the content of auxins, cytokinins, and abscisic
acid in biostimulants, we used quantitative spectrodensitometric
thin-layer chromatography (TLC) (Negretskii, 1988; Savinskiy
et al., 1991; Z̆iz̆ková et al., 2017), while gibberellins were
measured by the spectrophotometric method (Muromtsev
and Agnistikova, 1984; Waadt et al., 2015). The analysis of
steroid compounds was carried out by gas chromatographic
mass spectrometry on the device 6890N/5973inert (Agilent
Technologies, USA) (Kamthan et al., 2012).

Working only with virus-free lines of plants, for the first set of
experiments, seeds of wheat Triticum aestivum L. cv. Zimoyarka
were surface sterilized successively in 1% KMnO4 solution (3
mins), 1% AgNO3 solution (2 mins), and 96% ethanol solution (1
min), after which they were thrice washed in distilled water. With
the aim of stimulating seed germination and growth of wheat
seedlings, as well as improving resistance to nematodes in the
laboratory conditions, we have used the following physiologically
optimal concentrations of microbial biostimulants

Biostimulant Concentration in distilled water, µL/L

Avercom 0.05

Avercom nova-2 0.05

Phytovit 2.5

Violar 1.3

For lower concentrations, the positive effect was reduced,
while concentrations above 3 µL/L resulted in inhibition of
seed germination and growth of wheat seedlings, as well as
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reduced resistance to nematode infestation. The seeds were
germinated for 3 days in darkness at temperature 23◦C in
perlite-filled cuvettes, each containing 20 seeds and either
distilled water or a solution of a biostimulant Avercom, Avercom
nova-2, Phytovit, and Violar (Tsygankova et al., 2016). Upon
germination, seedlings were grown for the next 3 weeks at 22–
24◦C under a 16/8 h photoperiod (light intensity 3000 lux)
with relative humidity 60–80% in perlite-filled cuvettes. The
artificial nematode-infested background was created by adding
second stage larvae of the H. avenae nematode directly to
perlite-filled cuvettes at concentration of 3–5 larvae per 1 mL
of suspension at a rate of 5 mL per each wheat plant seed (i.e.,
15–25 nematode larvae per each wheat plant seed). Additionally,
leaf and stem surfaces of wheat seedlings were inoculated with
suspension of nematodeH. avenae larvae once per week at weekly
intervals. Nematode larvae were obtained from nematode eggs
using the method described in detail in our earlier published
work (Tsygankova et al., 2012a).

The infection in our experiment occurred from the very start,
due to the seeds growing on invasive background. As one of the
parameters characterizing the effects of biostimulants on plants,
we measured plant viability. With several different approaches
being proposed over the years to define and measure viability
of seeds (Scharpf, 1970; Rao et al., 2006; Shaban, 2013) and
plants (Stergios andHowell, 1973; von Fircks andVerwijst, 1993),
in our experiments we measured viability by planting 75 seeds
in each trial, and then determining the percentage of surviving
wheat plant seedlings at the end of the 3-week observation
period. In terms of identifying the effects of biostimulants on
plant growth, development, and protection against nematodes,
we measured the percentage reduction in the overall level of
nematode infestation on the surface of roots, stems, and leaves for
experimental wheat seedlings grown on the invasive background
in perlite filled cuvettes with biostimulants applied in planta,
compared to control wheat seedlings to which no biostimulants
were applied. The measurements were performed at the end of
the 3-week period from the time the plant seeds were sown to the
perlite-filled cuvettes with nematode larvae.

2.2. Isolation of Cytoplasmic mRNA and
si/miRNA
To verify that biostimulants do indeed promote the additional
production of plant si/miRNA complementary to either plant
mRNA or nematode mRNA, we extracted total cytoplasmic
RNA from plant cells using standard methods (Aviv and
Leder, 1972; Davis et al., 1986; Tsygankova et al., 1998).
The polymericity of isolated total RNA preparations was
analyzed by electrophoresis in a 1.5% agarose gel stained
with ethidium bromide in the presence of 7M urea by the
Locker method (Locker, 1979). Separation of cytoplasmic
poly(A)+mRNA (that is, mRNA) and poly(A)−mRNA was
carried out by chromatography on oligo(dT) cellulose column
(Aviv and Leder, 1972; Sambrook et al., 1989), with the
purity of isolated cytoplasmic poly(A)+mRNA being analyzed
using the Northern-blot method (Sambrook et al., 1989). Plant
cytoplasmic si/miRNA was isolated from cytoplasmic RNA using

the method we had developed earlier to analyse RNAi in
rapeseed (Tsygankova et al., 2012a), and which was subsequently
used to study RNAi in sugar beet (Tsygankova et al., 2012b),
cucumber and potato (Tsygankova et al., 2014b), and Chinese
cabbage (Biliavska et al., 2016c). We then performed dot
blot hybridization (Sambrook et al., 1989) between this plant
cytoplasmic si/miRNA and cytoplasmic mRNA isolated either
from plant cells, or from nematode larvae cells. For the purpose
of dot blot hybridization experiments, before isolation from the
total plant cytoplasmic RNA population, si/miRNA were labeled
in vivo with [33P] using Na2HP33O4 (Tsygankova et al., 2012a,
2014a,b). On the other hand, for experiments on inhibition of
protein expression in a wheat germ cell-free system of protein
synthesis (Marcus et al., 1974; Sambrook et al., 1989; Tuschl et al.,
1999; Spirin and Swartz, 2008; Takai et al., 2010; Tsygankova et al.,
2010), the original unlabeled si/miRNA were used (Tsygankova
et al., 2014a,b). Purity of isolated si/miRNAs (i.e., the fact that
their sizes were 21–25nt) was verified through electrophoresis
in a 15% polyacrylamide gel (GE Healthcare Amersham,
UK), which was stained with ethidium bromide solution and
photographed under UV light (Sambrook et al., 1989). Once the
gel was vacuum dried in a thermal gel dryer (LKB, Sweden),
a fluorescent agent 2,5-diphenyl-1,3-oxazole (Abakumov et al.,
1980) was added, and the gel was exposed for 2 months to X-
ray film at -70◦C for gel fluorography (Bonner and Laskey, 1974).
Total cytoplasmic mRNA from cells of cereal cyst nematode H.
avenaewas isolated from nematode larvae using themethodology
discussed in Tsygankova et al. (2012a).

2.3. Analysis of Synthesis of si/miRNAs
Within Plant Cells and Their Silencing
Activity
We studied the impact of biostimulants on production within
plant cells of si/miRNA that target both plant mRNA associated
with plant host genes, whose expression is upregulated during
nematode infestation, thus promoting penetration of nematodes
into plant roots (Safari et al., 2005; Tsygankova et al., 2012a,
2014a; Kong et al., 2015; Ali et al., 2017a; Chen et al., 2017), and
these can be used as target genes for silencing (Koch and Kogel,
2014), and nematode mRNA associated with genes that control
nematode life cycle, nematode housekeeping genes, nematode
parasitism, or effector genes that are expressed during nematode
entrance into plant cells (Tsygankova et al., 2012a, 2014a; Li et al.,
2014; Chen et al., 2015, 2017; Xu et al., 2016; Ali et al., 2017b;
Yang et al., 2017; Cui et al., 2018). For this purpose we perform
dot blot hybridization of [33P]-labeled si/miRNA isolated from
experimental plants with mRNA isolated from control plants, i.e.,
plants uninfested by nematodes and not treated by biostimulants,
as well as with mRNA molecules isolated from nematode larvae.
si/miRNA is isolated from nematode-infested plants grown in
perlite-filled cuvettes from seeds treated by biostimulants in
planta. To avoid potential losses of nucleic acids, hybridization
was performed on Millipore AP-15 glass fiber filters composed
of APT paper Kahl (2015). The filters were then dried, and the
radioactivity of hybrid molecules per 20µg±SD of mRNA was
determined in a Beckman LS-100C counter using a toluene-based
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scintillation fluid (Tishler and Epstein, 1968; Bonner and
Laskey, 1974). The level of hybridization provides a quantitative
characteristic of the amount of in planta synthesized si/miRNA
that is complementary with either plant mRNA, or nematode
mRNA. To compare the effects of different biostimulants, levels
of hybridization between plant si/miRNA and plant own mRNA
were compared to baseline obtained for control plants uninfested
by nematode and grown without the use of biostimulants.

To study silencing (inhibitory) activity of plant-derived
si/miRNA, i.e., si/miRNA-mediated effects on translation of
nematode mRNA, we used a wheat germ cell-free system of
protein synthesis, which, together with other heterologous cell-
free systems, is widely used to analyse the expression of proteins
from viruses (Roberts and Paterson, 1973; Fogeron, 2015),
plants (Takai et al., 2010; Harbers, 2014; Mmeka et al., 2014),
mammals (Wakiyama et al., 2007; Singh et al., 2012), various
prokaryotic and eukaryotic microorganisms (Guild et al., 2011;
Harbers, 2014), and nematodes (El-Ansary and Al-Daihan, 2005;
Wallace et al., 2010). It has been suggested that the wheat germ
and other heterologous cell-free systems can also be used for
studying the RNAi machinery or validating siRNAs for various
organisms (Tuschl et al., 1999; Katzen et al., 2005; Mathonnet
et al., 2007; Shyu et al., 2008). To improve the performance,
the standard wheat germ extract system (Roberts and Paterson,
1973) that contains various cellular components essential for
protein synthesis, was modified to include an energy generating
system based on phosphocreatine kinase and phosphocreatine,
magnesium acetate (Roy et al., 2011; Agalarov et al., 2014) and
potassium acetate Wolin and Walter (1988) were added for
improved translation, while additional stabilization was provided
by adding spermidine (Spirin and Swartz, 2008). For the purpose
of studying silencing (inhibitory) activity of si/miRNA, we
used unlabeled si/miRNA obtained before their isolation from
root and shoot tissues of wheat plants. Silencing activity was
determined using the index of decreasing of incorporation [35S]-
methionine into proteins (Sambrook et al., 1989; Titus, 1991;
Spirin and Swartz, 2008). This index was measured as the level
of radioactivity of polypeptides (in imp./count per min/1mg
of proteins) obtained on a Millipore AP-15 glass fiber filter
in toluene scintillator in the Beckman LS 100C scintillation
counter (Bonner and Laskey, 1974; Osterman, 1981). The index
of silencing activity of si/miRNA (in %) was then computed

as a difference in the index of radioactivity of polypeptides
synthesized on the template of nematode mRNA, obtained
using si/miRNA isolated from experimental plants grown under
application of biostimulants in planta, as compared to the same
index obtained using si/miRNA isolated from control plants
grown without biostimulants.

All experiments were performed in triplicate, and statistical
analysis of data was performed using standard methods as
described in Bang et al. (2010).

3. RESULTS

In order to understand the effects on biostimulants on
plant growth and development, in Figure 1 we show plant
hormone content of different biostimulants, including both
auxins, cytokinins, gibberellins, and anti-stress (abscisic acid,
ABA) hormones. It is worth noting that unlike stimulatory
plant hormones, the inhibitory hormone ABA is present in
biostimulants at a much lower concentration. All auxins in
biostimulants are represented by indole-3-acetic acid (IAA) and
indole-3-butyric acid and their derivatives.

As a first step in our experimental studies, we look at the
effects of biostimulants on viability of 3-week-old wheat plants,
as well as on their ability to withstand nematode infestation.
Figure 2A shows that all biostimulants have a positive effect on
plant viability in the absence of nematode infestation, but the
differences between their influence on improving the viability of
plants are very small. In contrast, adding invasive background
reduces the viability of plants grown without biostimulants to
32%, while applying biostimulants in planta results in mitigating
this effect and restoring plant viability to between 57 and 92%.
Besides having a stimulatory effect on plant survivability in
the presence of invasive background, biostimulants also appear
to possess significant anti-nematode effect, as illustrated in
Figure 2B. This Figure suggests that all biostimulants provide a
significant anti-nematode effect, reducing the level of nematode
infestation by 73–83% compared to plants grown without
biostimulants.

Now that it has been established that biostimulants do have an
anti-nematode effect, we look into whether this can be attributed
to wheat plants producing additional si/miRNA complementary

FIGURE 1 | Plant hormone composition of biostimulants.
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FIGURE 2 | (A) Effects of biostimulants on viability of plants grown on non-invasive or invasive background in perlite-filled cuvettes from seeds treated in planta by

biostimulants, as compared to a viability of control plants grown in perlite-filled cuvettes without biostimulants. (B) Reduction in infestation with H. avenae larvae of

plants grown in perlite-filled cuvettes from seeds treated in planta by biostimulants, as compared to control plants grown in perlite-filled cuvettes in a

nematode-infested background without biostimulants. The error bars in plot (B) are not visible, since they are almost 3 orders of magnitude smaller than the reported

values.

to mRNA of infested plants that is associated with plant genes,
whose expression is upregulated during the entry of nematodes
into plant cells, thus facilitating infestation of plants with
nematodes, or to nematode mRNA associated with nematode
genes that control nematode life cycle, nematode housekeeping
genes, nematode parasitism or effector genes that are expressed
during nematode entry into plant cells (Tsygankova et al., 2012a,
2014b; Li et al., 2014; Chen et al., 2015, 2017; Xu et al., 2016; Ali
et al., 2017b; Yang et al., 2017; Cui et al., 2018).

The results of the dot blot hybridization between the
si/miRNA isolated from plant cells grown without and
with biostimulants with the mRNA extracted from either
control plants, i.e., plants uninfested by nematodes and
not treated by biostimulants, or from nematode larvae,
are presented, respectively, in Figures 3A,B. In the case of
hybridization with the plant mRNA, as shown in Figure 3A, we
observe that biostimulants enhance the synthesis of si/miRNA
complementary with plant mRNA by a factor of 1.7 − 3.09.
Similar result is observed in Figure 3B for the experiment on
dot blot hybridization between si/miRNA from nematode-
infested plants and nematode mRNA, namely, application of
biostimulants results in a significant enhancement of synthesis of
si/miRNA complementary with nematode mRNA compared to
plants grown from seeds without any biostimulants (Tsygankova
et al., 2016). Interestingly, for Avercom and Avercom nova-2, the
level of enhancement of synthesis of si/miRNA complementary
with nematode mRNA is higher than analogous levels for
si/miRNA homologous with plant mRNA, while for Phytovit
the level of synthesis of si/miRNA complementary with
nematode mRNA is smaller than the respective level for plant
mRNA. Comparison with Figure 2 indicates that while the
synthesis of complementary si/miRNA can be enhanced very
significantly, the difference between levels of reduction in
nematode infestation is much smaller, suggesting that out of the
total si/miRNA produced in the plant, only a part of it contained
in the feeding cells formed on plant roots can enter nematode
through ingestion using a stylet (Maule et al., 2011; Tsygankova
et al., 2012a; Cui et al., 2018), possibly resulting in the subsequent
nematode death.

To better understand how effective are the si/miRNA at
suppressing nematode activity and causing their mortality, in
Figure 4we compare silencing activity of si/miRNA isolated from
the plants grown without or with biostimulants, as measured in a
wheat germ cell-free system. One observes a significant increase
in silencing activity of si/miRNA on reducing the translation
of proteins on the template of nematode mRNA (Tsygankova
et al., 2016, 2019). Comparison of the results on silencing
efficiency with Figure 3B suggests that it is not somuch the actual
amount of the additional si/miRNA produced in plant cells,
but rather its specificity as determined by the level of silencing
activity on the template of nematode mRNA that determines
the degree to which biostimulants are effective in reducing
nematode infestation.

These results show that biostimulants do indeed result in the
production within wheat plants of si/miRNA complementary
with nematode mRNA, and we have also observed a significant
reduction in the overall protein production, as well as a marked
increase in nematode mortality. Despite recent identification
of some candidate genetic targets in H. avenae (Kumar et al.,
2014; Cui et al., 2018), so far practical efforts have focused
mostly on demonstrating the feasibility of RNAi by soaking
nematode larvae either in dsRNA or gene-specific siRNA (Zheng
et al., 2015; Liu et al., 2016), while plant-induced RNA silencing
has remained elusive due to a significant variation in RNAi
responses and poor understanding of the precise mechanisms of
how RNAi products are transferred from plants into H. avenae
(Maule et al., 2011; Lilley et al., 2012; Ali et al., 2019). In the
absence of comprehensive understanding of genetic targets and
the mechanisms of RNAi transfer between plant and nematode,
we hypothesize that the observed reduction in the level of
nematode infestation can be attributed to one of the genes, that
are targeted by plant-produced RNAi products, being directly
involved in protein synthesis, so silencing that particular gene
results in the reduction of the overall protein level. Another
possibility is that among the genes, whose expression is affected
by the plant-produced sRNAs, there is one or several genes,
whose silencing directly results in nematode death. With the
recent work on splicing (Mackereth et al., 2011; Yang et al., 2016)
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FIGURE 3 | Effects of biostimulants on increasing the synthesis of si/miRNA in nematode-infested plants grown using biostimulants in planta that are complementary

with mRNA from control plants (A), and with nematode mRNA (B), scaled by the amount of si/miRNA isolated from nematode-infested plants grown under the same

conditions but without the use of biostimulants. The error bars are not visible, since they are three orders of magnitude smaller than the reported values.
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FIGURE 4 | Effects of biostimulants on silencing activity of si/miRNA isolated

from nematode-infested plants grown using biostimulants in planta, i.e., a
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demonstrating the possibility of multiple protein isoforms being
encoded by the same genes, identifying the precise matching
between sRNAs, produced in wheat plants under the influence of
biostimulants, and specificH. avenae genes remains a challenging
open problem.

4. DISCUSSION

In this paper we have demonstrated the feasibility of using poly-
component biostimulants derived from metabolites of various
soil streptomycetes for protecting wheat plants against the cereal
cyst nematode, which is known to be one of the main wheat
parasites. Based on the guidance provided by theoretical models
regarding how various chemical compounds are taken up by
the plants through the seeds, we have subsequently performed
experiments with biostimulants to investigate their efficiency in
terms of plant uptake and subsequent nematicidal action.

Analysis of dot blot hybridization between the population
of cytoplasmic si/miRNA from plants with mRNA from plants
and nematodes suggests that application of biostimulants to

germinating seeds results in the higher level of synthesis
of si/miRNA in plant cells. These additional si/miRNAs are
complementary to sequences present in the plant genes whose
upregulated expression facilitates infestation of plants with
nematodes, as well as to evolutionarily conserved sequences
present in the nematode genes that control nematode life cycle,
nematode housekeeping genes, nematode parasitism, or effector
genes, and which are expressed during nematode entrance into
plant cells (Tsygankova et al., 2012a, 2014a; Li et al., 2014; Chen
et al., 2015, 2017; Xu et al., 2016; Yang et al., 2017; Cui et al., 2018).
On the other hand, wheat germ cell-free experiments on silencing
activity provide further evidence that biostimulants enhance
the production in plant cells of si/miRNA that are capable of
inhibiting (silencing) the translation of nematode mRNA having
homologous evolutionarily conserved sequences, thus reducing
the level of nematode infestation and improving plant resistance
to nematodes. Taken together, these experiments demonstrate
that as a method of nematode control, plant-delivered RNA
interference is a complex process affected by a number of
factors that include the mode of application of biostimulant,
within-cell RNAi dynamics, specific properties of plant growth
and development, as well as the uptake by nematodes and
subsequent within-nematode dynamics. Although our results
clearly indicate that streptomycete-derived biostimulants are
indeed able to significantly reduce nematode infestation through
plant-induced nematode mortality, the specific mechanism
of genetic interactions between plant-produced RNAs and
nematode mRNAs remains to be explored. At the same time,
from a practical perspective these natural biostimulants do
provide effective and safe means of nematode control for major
staple crops.

There are several directions in which the work presented
in this paper could be extended. Developing better theoretical
models for uptake of biostimulants by seeds during their
germination, as well as understanding more specific details of
the transfer of biostimulants from the soil into plant roots, and
the transfer of sRNAs from plants into nematode would provide
important practical insights for optimizing the performance
of biostimulants. Our future work will focus on identifying
specific genes in H. avenae that are silenced by si/miRNAs
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produced in wheat plants under the action of biostimulants,
which would provide a more targeted and effective approach
to improving the performance of biostimulants as a means of
nematode control.
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