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Complex dynamics near
extinction in a predator-prey
model with ratio dependence
and Holling type III functional
response
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In this paper, we analyze a recently proposed predator-prey model with ratio

dependence and Holling type III functional response, with particular emphasis

on the dynamics close to extinction. By using Briot-Bouquet transformation

we transform the model into a system, where the extinction steady state

is represented by up to three distinct steady states, whose existence is

determined by the values of appropriate Lambert W functions. We investigate

how stability of extinction and coexistence steady states is a�ected by the

rate of predation, predator fecundity, and the parameter characterizing the

strength of functional response. The results suggest that the extinction steady

state can be stable for su�ciently high predation rate and for su�ciently small

predator fecundity. Moreover, in certain parameter regimes, a stable extinction

steady state can coexist with a stable prey-only equilibrium or with a stable

coexistence equilibrium, and it is rather the initial conditions that determine

whether prey and predator populationswill bemaintained at some steady level,

or both of them will become extinct. Another possibility is for coexistence

steady state to be unstable, in which case sustained periodic oscillations

around it are observed. Numerical simulations are performed to illustrate the

behavior for all dynamical regimes, and in each case a corresponding phase

plane of the transformed system is presented to show a correspondence with

stable and unstable extinction steady state.

KEYWORDS

predator-prey mode, Holling type III functional response, ratio dependence,

extinction, coexistence complex dynamics near extinction

Introduction

A starting point for many ecological models analyzing predator-prey interactions is

provided by models of Gause-Kolmogorov type [1–3]

u̇ = uf (u)− vg (u, v) ,

v̇ = bvg (u, v) − dv,
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where u(t) and v(t) are population densities or abundances of

prey and predator, d is the natural death rate of predators,

and functions f (u) and g(u, v) describe, respectively, natural per

capita growth rate of prey, and the trophic function or functional

response of predators [4], which quantifies how efficiently

predators are consuming prey, and how prey consumption

increases predator reproduction. Function f (·) is often chosen in

the form of either a constant (so-called Malthusian growth), or

as a monotonically decreasing linear function f (u) = r(1−u/K),

which describes intra-specific competition of prey for available

resources, and is known as the logistic growth of prey with a

linear growth rate r and the carrying capacity K. In the simplest

case, the function g(u, v) would only depend on the abundance

of prey g(u, v) = g(u), in which case it is known as prey-

dependent functional response. Perhaps, the simplest example

of prey-dependent functional response is when it is proportional

to the number of prey g(u) = au, which yields the classical

Lotka-Volterra model [5, 6]. A more realistic representation of

interactions between prey and predators is given by a functional

response suggested byHolling [7, 8], which accounts for the time

predators spend searching for prey, as well as handling (i.e.,

chasing, killing, and digesting) the prey. Holling proposed three

types of functional response g(u), which all satisfy g(0) = 0

and approach some constant value for large u. The difference

between different types of Holling functional response is in the

behavior for small prey numbers/densities. Type I response is

linearly increasing for small prey densities, whereas for large

prey numbers it saturates at some constant value; type II and

type III are functions that are also saturating at high prey

numbers, and are, respectively, concave and sigmoidal. Besides

direct impact of predation, prey behavior can also be affected

by the fear of predation, which has been explored in a series of

recent papers [9–13].

By the early 1990s, a number of ecological studies showed

that when studying predator-prey interactions across a variety

of scales and biological species, from insects to mammals [14–

17], it may be more realistic to consider the functional response

that depends on the ratio of prey to predators, which became

known as ratio-dependent functional response [18, 19]. Such

functional response can effectively model an observation that at

higher predator densities, predators would have to compete for

and share some of the prey. Formally, this would correspond to

writing the functional response g(u, v) in the form g(u/v), which

would then yield the following model

u̇ = uf (u)− vg
(u
v

)
,

v̇ = bvg
(u
v

)
− dv.

A number of theoretical studies have studied the dynamics of

models with ratio dependence [20–26] and various forms of

functional response that have usually taken the form of g(z) = a,

g(z) = a1z/(1+ a2z), and g(z) = a1z
n/(1+ a2z

n) with n >

1, where z = u/v, for Holling type I, II and III responses,

respectively [27, 28]. Some additional ecological effects that

have been studied in models with ratio dependence include

time delays [29–31], as well as spatial dependence [32–34]. One

important observation to make here is that due to the very

nature of ratio-dependent functional response, the origin, i.e.,

the point (u, v) = (0, 0) that is characterized by the extinction

of both species, may create certain mathematical challenges for

analysis from the perspective that either the vector field itself is

not defined at that point, or it is defined, but the linearisation

is not, which hinders standard stability analysis. To overcome

these challenges, one approach that is often used consists in

rescaling time with the denominator of functional response,

often in combination with Briot-Bouquet transformation to

remove the singularity [22, 24, 26].

In this paper we are interested in Holling type III functional

response with ratio dependence that has been observed in a

number of experimental settings [35–38]. Rather than using

a functional form g(z) = a1z
n/(1+ a2z

n) given by a ratio of

two polynomials, where z = u/v and n > 1, we consider an

alternative form that can be written as follows,

g(z) = ae−α/z , (1)

which satisfies the conditions of g(0) = 0, is monotonically

increasing, and settles at a constant value as z → ∞. Biological

motivation for this form of functional response comes from the

studies of plant-parasite interactions, in which plants serve as

hosts for insect predators, and hence, current plant population

represents a carrying capacity for insect population, in which

case the interaction term has the form g(u, v) = a(1 − v/u)

[39, 40]. Formally, trophic function (Equation 1) is reminiscent

of the Ivlev trophic function g(z) = a
(
1− e−αz

)
[41] that

represents Holling type II response, as well as of the Ricker

model Nt+1 = Nt exp[r(1− Nt)] for single-species populations

[42]. Making ratio dependence in Equation (1) explicit, we have

the functional response g(u, v) being given by

g(u, v) = ae−αv/u. (2)

A recent work has used a delayed version of this trophic function

to analyze the dynamics of vector-plant interactions in the

context of modeling plant mosaic disease [43], while the role

of stochastic effects in the time-delayed model has been studied

in Blyuss et al. [44]. Of particular interest to us is the analysis

of model behavior in the neighborhood of extinction (u, v) =

(0, 0), and the effects this has on overall dynamics. While earlier

numerical simulations have suggested that extinction is indeed

possible in some parameter regimes [44], the question of when

exactly this happens, and whether extinction can coexist with

other states has not been explored.

The remainder of this paper is organized as follows. In the

next section we identify different steady states of the model

and show that the origin that corresponds to extinction of
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both species is a well-defined steady state. Applying Briot-

Bouquet transformation, we will then obtain another version

of our model, where the original extinction steady state is

unfolded as an entire axis in the phase space. Whereas, the

origin of the modified model is always unstable, there are

two more steady states that also correspond to the extinction

steady state of the original model, and whose locations are

given by a Lambert W function. We will derive analytical

conditions for stability of these steady states and will illustrate

regions of their feasibility and stability depending on model

parameters. Model dynamics is further explored by numerically

computing regions of feasibility and stability for different steady

states and periodic orbits of the model depending on predation

rate, predator growth rate, and the parameter characterizing

functional response. We also demonstrate phase plane of the

modified model in each scenario, clearly indicating different

steady states that correspond to extinction and coexistence, and

complement these by numerical solutions of the original model,

which can exhibit such distinct types of behavior, as extinction

of both species; survival of prey only, when predator growth

rate is not sufficiently high; a regime of bi-stability between

these two scenarios, where for the same values of parameters

it is the initial values that determine whether both species or

only predators will go extinct. Other possibilities include a stable

coexistence steady state, where both prey and predators are

maintained at some constant level, suggesting that predation is

compensated or balanced by the prey growth, a periodic solution

around the coexistence steady state, which is reminiscent of

oscillations in the standard Lotka-Volterra model, and a regime

of bi-stability between a stable coexistence and extinction. The

paper concludes with a discussion of results.

Methods

As discussed in the Introduction, we consider a predator-

prey model with logistic growth of prey and a Holling type III

functional response with ratio dependence, which has the form

u̇ = ru
(
1−

u

K

)
− ave−αv/u,

v̇ = bve−αv/u − dv.

(3)

In order to simplify the model and to reduce the number of free

parameters, we rescale the variables and parameters as follows,

u = Kû, v = Kv̂, rt = t̂,

d

r
= d̂,

a

r
= â,

b

r
= b̂.

The model (3) can then be rewritten in the form

u̇ = u(1− u)− ave−αv/u,

v̇ = bve−αv/u − dv,

(4)

where we have dropped hats for notational convenience. It is

straightforward to show that this system is well-posed in that

for arbitrary non-negative initial conditions, its solutions will

remain non-negative and bounded for all t ≥ 0. For any values

of parameters, the system (Equation 4) has a prey-only steady

state E = (1, 0), which is stable for b < d and unstable for b > d

[44]. If b > d and αb − ad ln(b/d) > 0, this system also has a

coexistence steady state E∗ = (u∗, v∗), with

u∗ =
1

αb

[
αb− ad ln

(
b

d

)]
,

v∗ =
1

αb
ln

(
b

d

) [
αb− ad ln

(
b

d

)]
.

This steady state is stable, provided the following condition is

satisfied [44]:

−1+ d ln

(
b

d

)[
a

αb

(
2− ln

(
b

d

))
− 1

]
< 0.

In an earlier paper [44], we focused on the analysis of coexistence

steady state E∗ = (u∗, v∗) under effects of maturation time delay

in predators, and also investigated the role of stochasticity.

In the neighborhood of the point (u, v) = (0, 0), in the first

quadrant the term ve−αv/u is well-defined and positive, and in

the limit (u, v) → (0, 0), we have

0 ≤

∣∣∣ve−αv/u
∣∣∣ ≤ |v| −−−−−−−→

(u,v)→(0,0)
0,

which shows that (0, 0) is indeed a steady state of the system

(Equation 4), which biologically describes extinction of both

species. Since the system (Equation 4) is not differentiable at the

point (0, 0), to explore its dynamics close to this steady state, we

employ the Briot-Bouquet transformation [45] that in our case

consists in introducing a new variable z, such that v = zu, and

the system (Equation 4) then transforms into

u̇ = u(1− u)− azue−αz ,

ż = z(b+ az)e−αz − z(d + 1− u).

(5)

The Briot-Bouquet transformation blows up the origin into an

entire z-axis [46]. Hence, we should investigate equilibria of the

system (Equation 5) that lie on the z-axis.

For any parameter values, the transformed system (Equation

5) has a steady state E0 = (0, 0). Besides this steady state, as long

as the following condition is satisfied

α(d+ 1)e−bα/a

a
≤

1

e
, (6)

the system (Equation 5) can have up to two more steady states

E1 = (0, z1) and E2 = (0, z2), where

z1 = −
b

a
−

1

α
W0

[
−

α(d + 1)e−bα/a

a

]
,

z2 = −
b

a
−

1

α
W−1

[
−

α(d + 1)e−bα/a

a

]
,
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FIGURE 1

Lambert functions W0(x) and W−1(x).

andW0(·) andW−1(·) are two branches of LambertW function.

Figure 1 illustrates the dependence of these two functions on

their argument, and we note that the smallest possible value of

W0(x) is attained at x = −1/e and is equal to W0(−1/e) =

−1, which suggests that the steady state E1 is only biologically

feasible when 0 < αb/a < 1. Furthermore, since W−1(x) ≤

W0(x) < 0 for x < 0, this implies that whenever both E1 and E2

exist, we have z1 ≤ z2.

Linearisation of the system (Equation 5) near any steady

state Ê = (̂u, ẑ) gives the Jacobian

J =

∣∣∣∣∣
1− 2̂u− âze−αz − âue−α̂z(1− α̂z)

ẑ (b+ âz)(1− α̂z)e−α̂z + aze−α̂z − (d + 1− û)

∣∣∣∣∣ .

At E0, the two eigenvalues are 1 and b − d + 1, suggesting

that this steady state is always unstable and is either a saddle, or

an unstable node. At the steady states E1 and E2, we have the

Routh-Hurwitz conditions for stability in the form

1 < âze−α̂z < α(d + 1)̂z.

Results

In order to illustrate the effects of different parameters

on feasibility and stability of the two steady states E1 and E2

that correspond to extinction in the original model, we plot in

Figure 2 maximum real part of the characteristic eigenvalues

as determined by the Jacobian (Equation 7). We observe that

the steady state E1 only exists for sufficiently small levels of

predator growth rate b, and either low enough predation rate

a, or sufficiently small rate α For any parameter combination,

where this steady state is biologically feasible, it is unstable. In

contrast, starting with rather small values of b, the steady state

E2 is biologically feasible for an entire range of values of a or α

and is stable for smaller values of a, or for larger values of α, and

the region of stability shrinks with increasing predator growth

rate b.

FIGURE 2

Regions of feasibility and stability of steady states E1 (A,C) and E2
(B,D). Steady states are feasible in a colored region, and

biologically infeasible in the white region. Color code denotes

the largest real part of characteristic eigenvalues. Parameter

values are a = d = 1 (A,B), α = d = 1 (C,D).

Under the inverse Brio-Bouquet transformation, we can

interpret regions of stability of the steady state E2 of the

transformed system (Equation 5) as parameter regions, where

the extinction steady state E0 = (0, 0) of the original system

(Equation 4) is stable. Combining these results with those on

stability of the prey-only equilibrium E and the coexistence

equilibrium E∗, we now illustrate in Figure 3 an entire range of

dynamical scenarios that can be exhibited in the model.

For values of b smaller than 1, which biologically describes a

scenario, where the rate of growth in the population of predators

is too small to be able to maintain their population as based

on the available prey, the coexistence steady state E∗ is not

biologically feasible, while the prey-only steady state E is stable.

In this case, the system either goes to this prey-only steady state

as the only stable equilibrium for parameter values in region

1, or it exhibits a bi-stability between this steady state, and a

stable extinction steady state E0 in region 2. This is shown in

detail in Figure 4, where, for convenience, for each parameter

combination, in the right column we plot numerical solution of

the model (4), and in the left column we plot the corresponding

phase plane of the transformed system (5) to demonstrate how

changes in stability of the extinction steady state E0 affect global

dynamics. Since in region 1 there is bi-stability between two

steady states, both of which are characterized by the absence of

predators, this suggests that it is rather the initial conditions of

the system that determine whether prey will survive (though,

initially, prey population will decline due to predation), or will

also be driven to extinction. Interestingly, even though in this

parameter regime, predator population goes to zero, this does

not automatically guarantee the survival of the prey, which is
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FIGURE 3

Regions of feasibility and stability of di�erent steady states of the model (Equation 4). The prey-only steady state E = (1, 0) is stable to the left of

the dashed black line at b = 1, and unstable to the right of that line. The extinction steady state E0 is stable above red line in plot (A) and below

red line in plot (B). In region 1, there is bi-stability between a stable steady state E and the extinction steady state E0; in region 2 only the steady

state E is stable; in region 3, only the coexistence steady state E∗ is stable; in region 4, the coexistence steady state E∗ is unstable, and there is

periodic orbit around this state; in region 5, there is bi-stability between the extinction steady state E0 and the coexistence steady state E∗; in

region 6, only extinction steady state E0 is stable. Parameter values are α = d = 1 (A), a = d = 1 (B).

FIGURE 4

Phase planes (left column) of the transformed system (Equation 5) and the corresponding numerical solution (right column) of the rescaled

original system (Equation 4), illustrating di�erent dynamical regimes listed in Figure 3A. Blue/red dots in phase plane plots indicate

stable/unstable steady states. Parameter values are α = d = 1. (A,B) Case 1, a = 6, b = 0.5, bi-stability between prey-only steady state E and the

extinction steady state E0. (C,D) Case 2, a = 3, b = 0.5, prey-only steady state E is the only stable state. (E,F) Case 3, a = 1.5, b = 1.4, only the

coexistence steady state E∗ is stable.
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FIGURE 5

Phase planes (left column) of the transformed system (Equation 5) and the corresponding numerical solution (right column) of the rescaled

original system (Equation 4), illustrating di�erent dynamical regimes listed in Figure 3A. Blue/red dots in phase plane plots indicate

stable/unstable steady states. Parameter values are α = d = 1. (A,B) Case 4, a = 3.3, b = 1.5, periodic solution around the unstable coexistence

steady state E∗. (C,D) Case 5, a = 6, b = 1.05, bi-stability between the extinction steady state E0 and the coexistence steady state E∗. (E,F) Case 6,

a = 6, b = 1.4, only the extinction steady state E0 is stable.

affected not only by the values of parameters, but also by the

initial presence of sufficiently many prey to maintain its stable

population.

As the value of b exceeds 1, the prey-only equilibrium E

becomes unstable, while the coexistence steady state E∗ becomes

feasible and stable, as shown in Figures 4E,F (region 3). As

the value of predation rate a increases, as long it stays below

the boundary of stability of the extinction steady state E0,

the coexistence steady state E∗ loses its stability through a

supercritical Hopf bifurcation, giving rise to stable periodic

solutions around this steady state, as illustrated in Figures 5A,B

(region 4). Once the stability boundary of the extinction steady

state is crossed, for smaller values of b and sufficiently high

values of predation rate a, stable coexistence steady state E∗

co-exists with a stable extinction steady state E0 shown in

Figures 5C,D (region 5). Biologically, this means that for the

same parameter values, whether or not the system evolves

toward coexistence of prey and predators, or they drive each

other to extinction, is again determined by the choice of initial

conditions. In region 6, which corresponds to high values of

both predation rate and the growth rate of predators, the only

stable state of the system is that of extinction, as illustrated in

Figures 5E,F.

Discussion

In this article, we have studied the dynamics of a predator-

prey model with Holling type III functional response and

ratio dependence. Earlier numerical results for the same model

with maturation delay suggested the possibility of extinction

of both prey and predator populations that was, however,

not investigated at that time [44]. Whereas, extinction steady

state is a feasible steady state of the model for any values of

parameters, due to ratio dependence in the functional response,

the model could not be linearised in the neighborhood of

extinction steady state in the standardmanner. To overcome this

difficulty, we have transformed the system using a Briot-Bouquet

transformation, which resulted in the unfolding of the extinction

steady state into three distinct steady states, whose stability could

now be studied. Two of those steady states are unstable for any

values of parameters, while the third is stable for sufficiently large
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predation rate to have an effect on prey who are reproducing

logistically, and for sufficiently small values of the parameter α

characterizing functional response. In both cases, we note that

the region of stability of extinction steady state is shrinking for

higher rates of predator fecundity, which can be explained by the

fact that if for the same predation rate predators are better able

to reproduce, this increases the possibility of a stable coexistence,

where both populations are maintained at some steady level.

Regions of feasibility of two steady states of the transformed

model that correspond to extinction in the original model are

determined explicitly in terms of system parameters, since they

are given in the form of principal and n = −1 branches of the,

in general, complex-valued Lambert W function.

By combining the results on stability of extinction steady

state with conditions for stability of prey-only and coexistence

equilibria, we are able to obtain a full picture of system dynamics

in different parameter regions, identifying situations where only

one of those steady states is stable, as well as cases of bi-stability,

where extinction coexists with either a prey-only, or coexistence

equilibria. In the parameter region, where the system exhibits

sustained periodic oscillations around an unstable coexistence

equilibrium, resulting from a supercritical Hopf bifurcation

of this steady state, the extinction steady state is unstable,

hence, no bi-stability is observed. While coexistence equilibrium

is only biologically feasible, when the prey-only steady state

is unstable, in contrast, the extinction steady state exists for

all values of parameters and can coexist with either of those

steady states. In the case of coexistence of steady states, for the

same parameter values, depending on the initial conditions, the

system will approach one of the two coexisting steady states.

This observation is important from the perspective of analyzing

real ecological data, as it provides clues about the possibility of

different types of dynamics for the same or very similar values

of parameters, some of which may be difficult to accurately

measure. Earlier papers that focused largely on ratio dependence

in models with Holling type II functional response [22, 24, 26]

primarily showed either extinction of both species, or their

stable coexistence. In contrast, our model with Holling type

III response exhibits significant parameter regions, where prey-

only equilibrium is stable either by itself, or in combination

with extinction steady state. On the other hand, in the case

when coexistence steady state is unstable, and there is a periodic

solution around it, it is the only attractor in the model.

There are several directions, in which the work presented

in this paper could be extended. In an earlier paper [44], we

studied the effects of stochasticity and maturation delays for the

samemodel, and some of the simulations there also indicated the

possibility of observing extinction in the time-delayed model.

Unfortunately, the standard Briot-Bouquet transformation, as

used in this paper, would not work for the analysis of stability of

extinction steady state in the time-delayed model, because even

after the transformation, the singularity at the point (0, 0) would

remain, and some alternative approach for studying stability

of extinction equilibrium in a model with time delay needs

to be developed. Another feature of many ecological models

is the so-called stochastic extinction, where for sufficiently

small population densities, species can go extinct, even though

deterministically they could recover to some sustained levels

at a later stage. It would be interesting and important to

investigate how (in)stability of extinction steady state is affected

by stochasticity, and how it impacts the regimes of bi-stability

between extinction and other equilibria. This could be achieved

through numerical exploration of basins of attraction of different

steady states in the stochastic model in a manner similar to

how it was done by Fatehi et al. [47, 48] in the context of

modeling autoimmunity arising from immune response to a

viral infection.
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