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Abstract – We show that oscillation death as a specific type of oscillation suppression, which
implies symmetry breaking, can be controlled by introducing time-delayed coupling. In partic-
ular, we demonstrate that time delay influences the stability of an inhomogeneous steady state,
providing the opportunity to modulate the threshold for oscillation death. Additionally, we find
a novel type of oscillation death representing a secondary bifurcation of an inhomogeneous steady
state.

Copyright c© EPLA, 2013

Introduction. – Time-delayed couplings arise natu-
rally in many types of networks, for instance in coupled
lasers [1], neural networks [2–4], electronic circuits [5], or
genetic oscillators [6], due to finite signal transmission and
processing times, and memory and latency effects. While
investigating real-world systems, it is necessary to take
time delay into account, since the presence of time de-
lay is an inherent property of the vast majority of pro-
cesses that occur in nature [7,8]. Moreover, time-delayed
coupling and feedback represent an important aspect of
control [9]. Previous theoretical and experimental works
have shown that time delay can be treated as a control
parameter and can stabilize initially unstable states. In
particular, time-delayed feedback has been used to stabi-
lize unstable periodic orbits embedded in a deterministic
chaotic attractor [10,11], or generated by a Hopf bifurca-
tion [12], unstable steady states [13], spatio-temporal pat-
terns [14–16], or control the coherence and timescales of
stochastic motion [17]. In coupled nonlinear systems and
networks time-delayed couplings represent an ubiquitous
feature [18] which can also be used to control stability.

Particular interest, besides the control of various syn-
chronization patterns in networks of oscillators [19–26]
has recently been paid to the suppression of oscillations
through the coupling. There are two types of oscilla-
tion quenching known in the literature [27–30]: amplitude
death and oscillation death. The distinction between am-
plitude death and oscillation death is essential, since the

underlying mechanisms are crucially different. Amplitude
death appears as a result of the stabilization of an already
existing steady state that is unstable in the absence of
coupling. On the contrary, oscillation death occurs due to
a newly created stable stationary state which breaks the
symmetry of the homogeneous system. Therefore, ampli-
tude death is represented by a symmetric homogeneous
steady state, whereas oscillation death is characterized by
an inhomogeneous steady state. Moreover, in contrast to
amplitude death, it does not exclude the coexistence of lo-
cally stable oscillations. Oscillation death associated with
the stabilization of inhomogeneous steady states has been
shown to exist in various systems, e.g., tunnel diode cir-
cuits [31], electrochemical [32], chemical droplets [33] and
biological systems like neuronal networks [34], calcium os-
cillators [35], genetic oscillators [36], stem cell differen-
tiation [37]. Oscillation death is especially relevant for
biological systems, since it provides a mechanism for cel-
lular differentiation. In contrast, amplitude death only
involves the change of stability of homogeneous steady
states. Therefore, besides distinct underlying mechanisms,
amplitude death and oscillation death are also different
from the application viewpoint. Moreover, in contrast to
amplitude death that has been extensively reported by
many researchers, oscillation death is much less studied.

There are three main factors that can cause amplitude
death: coupling through dissimilar variables [38], mis-
matches between the frequencies of the oscillators [39],

50004-p1



A. Zakharova et al.

and time delay in the coupling [5]. In contrast, oscil-
lation death appears due to a different reason, i.e., the
symmetry-breaking of the system: for instance in two cou-
pled oscillators a uniform steady state splits into two ad-
ditional antisymmetric branches with non-zero amplitude.
However, in spite of the distinct mechanisms, evidence
for oscillation death in systems coupled through dissimi-
lar variables has also been previously found [40]. Recently,
it has been shown that introducing frequency detuning al-
lows for observing both amplitude death and oscillation
death in one system [30]. Moreover, for sufficiently large
mismatch between the frequencies, there occurs a transi-
tion from amplitude death to oscillation death [30]. La-
tency times in the coupling, without or with additional
propagation time delay, have been shown to lead to anni-
hilation of amplitude and oscillation death [41], resulting
in exactly the same linear stability analysis as in an equiv-
alent single system with delayed feedback and latency [13].
In the present study, we investigate oscillation death in

a system of coupled Stuart-Landau oscillators, which rep-
resents a generic expansion of a nonlinear system near a
supercritical Hopf bifurcation (HB). This system is rep-
resentative for a large class of coupled nonlinear oscilla-
tors [38,42–47], whose collective dynamics is ubiquitous in
various fields of physics, chemistry, biology, and technol-
ogy. We uncover a novel solution of secondary oscillation
death manifested by a secondary bifurcation of inhomoge-
neous steady states from the branch of primary oscillation
death. We demonstrate that under specific conditions the
stability of the inhomogeneous steady state can be con-
trolled by time delay in the coupling. Moreover, we find
that both non-symmetrical and antisymmetrical solutions
can be present in one system. Both simulation-based stud-
ies and analytical approaches are performed. Our findings
are very generally applicable, and thus should be relevant
for many systems in nature and technology where the os-
cillations are either desirable for the proper functioning,
or in contrast should be suppressed because stable station-
ary, symmetry-breaking states of operation are required.

Model. – We consider the paradigmatic model of
Stuart-Landau (SL) oscillators

ż = f(z) = (λ+ iω − |z|2)z. (1)

where z = reiφ = x + iy ∈ C, λ, ω ∈ R. For λ > 0,
the uncoupled system exhibits self-sustained limit cycle
oscillations with radius r0 =

√
λ and frequency ω. In

this work we focus on two delay-coupled identical Stuart-
Landau oscillators

ż1 =
(
λ+ iω − |z1(t)|2

)
z1(t) + ε (x2 (t− τ)− x1 (t)) ,

ż2 =
(
λ+ iω − |z2(t)|2

)
z2(t) + ε (x1 (t− τ)− x2 (t)) ,

(2)

where z1,2 = x1,2 + iy1,2 are complex variables, λ > 0 is
the bifurcation parameter, ε > 0 is the coupling strength
and τ > 0 is the time delay. Here, we assume that the
coupling is real, diffusive and symmetrical. Consequently,

the whole system is also symmetric, i.e., invariant, with
respect to permutation of the two oscillators. However,
the continuous rotational S1 symmetry of the system is
broken by the particular coupling we introduce. The sys-
tem (2) has a trivial steady state z1,2 ≡ 0, which is always
unstable. In the absence of coupling (ε = 0), both oscil-
lators have solutions in the form of stable periodic orbits
with frequency ω.
The concept of oscillation death refers to the appearance

of a new non-trivial inhomogeneous steady state due to the
coupling. In order to find such steady states we transform
to symmetric (z+) and antisymmetric (z−) variables:

z+ =
1

2
(z1 + z2) , z− =

1

2
(z1 − z2) , (3)

where z+ and z− correspond to the symmetric (z− = 0)
and antisymmetric (z+ = 0) manifolds, respectively, in
the complex (z1, z2) phase space. Equations (3) can be
inverted as z1 = z+ + z−, z2 = z+ − z−. The system in
the new coordinates is given by

ż+ =
1

2
(f (z+ + z−) + f (z+ − z−)) ,

ż− =
1

2
(f (z+ + z−)− f (z+ − z−))− 2εRez−.

(4)

Note that, due to the symmetry, both z+ ≡ 0 and z− ≡
0 are dynamically invariant subspaces. Similar to [43],
in these subspaces the dynamical equations (4) can be
simplified to be

ż+ =
(
λ+ iω − |z+|2

)
z+, ż− = 0, (5)

in the symmetric subspace Z+ = {(z+, z−) | z− ≡ 0}, and

ż+ = 0, ż− =
(
λ+ iω − |z−|2

)
z− − 2εRez− (6)

in the antisymmetric subspace Z− = {(z+, z−) | z+ ≡ 0}.
In the symmetric subspace there exists a stable periodic
orbit but no steady states besides the homogeneous one
(z+, z−) ≡ (0, 0). On the contrary, the antisymmetric
subspace allows for the appearance of the new inhomoge-
neous solution branches s1 and s2, given by (z+, z−) ≡
(0,±zs1) and (z+, z−) ≡ (0,±zs2), respectively. Here
zsj = xsj + iysj, j = 1, 2 with

xs1 =
ωλys1

(ω2 + 2εy2s1)
, ys1 =

√
λε− ω2 + λ

√
ε2 − ω2

2ε
;

xs2 =
ωλys2

(ω2 + 2εy2s2)
, ys2 =

√
λε− ω2 − λ

√
ε2 − ω2

2ε
.

Oscillation death without time delay. – As we
shall see below, the solution branch s2 is always unsta-
ble whenever it exists. Thus, generally, the inhomoge-
neous steady state of interest is given by (x1, y1, x2, y2) =
± (xs1, ys1,−xs1,−ys1). This solution shows that for
two coupled oscillators two different distributions of the
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Fig. 1: (Color online) (a) Bifurcation diagram showing the
typical branches of the trivial homogeneous steady state (gray)
and the inhomogeneous steady state (IHSS) (dark color) vs.
ε for ω = 2. Solid lines denote stable steady states, dashed
lines denote unstable steady states. Hopf bifurcation (HB)
and pitchfork bifurcation (PB) are also marked. Numerically
calculated using the continuation tool XPPAUT. (b) Regimes
of IHSS in the parameter plane of the frequency ω and the
coupling strength ε. Gray: IHSS does not exist, red (dark
gray): IHSS exists but is unstable, blue (black): IHSS is stable.
The vertical yellow (white) line indicates the value ω = 2 used
in panel (a). Other parameters: λ = 1, τ = 0.

oscillators between the branches of the inhomogeneous
steady state are possible: i) the first oscillator pop-
ulates the upper, whereas the second one populates
the lower branch (xs1, ys1,−xs1,−ys1), or ii) vice versa,
(−xs1,−ys1, xs1, ys1).

The existence of these inhomogeneous steady-state
branches depends upon the parameters ε, λ, and ω. As an
illustration, we consider the case λ < ω in fig. 1(a), where
x1 is plotted vs. the control parameter ε. Figure 1(b)
shows the different regimes of steady states in the (ω, ε)
parameter plane. Figure 1(a) demonstrates a typical bi-
furcation diagram for oscillation death at λ = 1, ω = 2
and τ = 0. It corresponds to the yellow vertical line in
fig. 1(b) at the fixed frequency ω = 2. For small values of
the coupling strength ε, the only steady state is an unsta-
ble homogeneous steady state (gray dashed line in fig. 1(a)
and gray region in fig. 1(b)). At a critical value of the cou-
pling strength ε = 2.5 the symmetry-breaking occurs and
a new solution representing the unstable inhomogeneous
steady state (red dashed line in fig. 1(a) and red region in
fig. 1(b)) is born via a pitchfork bifurcation (PB). The in-
homogeneous steady state is manifested by two branches,
upper and lower, which are stabilized via an inverse Hopf
bifurcation at ε = 4.25. Finally, the stable inhomoge-
neous steady state (dark blue solid line in fig. 1(a) and
dark blue region in fig. 1(b)) indicates the regime of os-
cillation death. Moreover, this solution is preserved for
different frequency values ω as shown in fig. 1(b).

For our analytical study [48], which we perform first in
the case without delay, the system eq. (2) is converted to
polar coordinates z−(t) = r(t)eiφ(t):

ṙ = (λ− r2 − 2ε cos2 φ) r, (7)

φ̇ = ω + 2ε cosφ sinφ, (8)
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Fig. 2: (Color online) Bifurcation diagrams for τ = 0, ω = 2
and different values of λ (analytically calculated): (a) λ = 1,
(b) λ = 3, (c) λ = 3.5 and (d) λ = 6. The numbers in paren-
theses (in blue) denote the unstable dimension of the steady
state. s1-solution: thick (dark blue, red) lines, s2-solution:
thin (orange) line. Empty circle: Hopf bifurcation (HB) giving
rise to unstable periodic solutions, star: pitchfork bifurcation
(PB, PB1, PB2), filled circle: saddle-node bifurcation (SN).
Solid and dashed lines denote stable and unstable steady states,
respectively.

which gives the non-trivial steady state s1:

r =

√
λ− ε+

√
ε2 − ω2, (9)

φ = arccos

⎛
⎝
√

ε+
√
ε2 − ω2

2ε

⎞
⎠ . (10)

Moreover, in order to provide general and precise theo-
retical conclusions on bifurcation scenarios which lead to
oscillation death, we use here the notion of unstable di-
mension [43]. The unstable dimension of a steady state
is the number of its eigenvalues with positive real parts.
Let us consider first the simple case λ < ω, for which ex-
cept for the trivial homogeneous symmetric steady state
there exists only the s1-solution. Figure 2(a) illustrates
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the bifurcation diagram of the radial coordinate r in the
antisymmetric subspace for λ = 1 and ω = 2 and repre-
sents, therefore, an analytical counterpart of the numer-
ical result shown in fig. 1(a). The unstable dimension of
the trivial steady state for 0 < ε < λ is 4 (the unsta-
ble dimensions are indicated by brackets in the figure).
At ε = λ a Hopf bifurcation occurs in the antisymmetric
manifold, and the unstable dimension of the trivial steady
state changes from 4 to 2. Note that for λ > ω this bi-

furcation is not present. For ε = 1
2 (λ + ω2

λ ), a pitchfork
bifurcation takes place in the antisymmetric manifold, and
the trivial steady state changes its stability again, from 2
to 3. The pitchfork bifurcation also gives birth to the in-
homogeneous steady state with an unstable dimension 2,
which is in exact agreement with the numerical result for
x1 in fig. 1(a) (red dashed line). For increasing ε, another
Hopf bifurcation occurs in the antisymmetric manifold at

ε = 1
4 (λ+4ω2

λ ) and the inhomogeneous steady state is sta-
bilized, i.e., its unstable dimension becomes zero, which is
also reflected in the numerical calculations (blue solid line
in fig. 1(a)). Consequently, the strict analytical condition
for oscillation death is that the unstable dimension of the
inhomogeneous steady state becomes zero. For the case

λ < ω this condition is fulfilled for ε > 1
4 (λ+ 4ω2

λ ).
For the range of parameters λ > ω (fig. 2(b)–(d)) there

exist both the s1- and s2-solution, the latter exists for

ω ≤ ε ≤ 1
2 (λ+

ω2

λ ) and is always unstable. The bifurcation

scenario for the parameter values ω < λ <
√
3ω is shown

in fig. 2(b). Both s1- and s2-solutions are present and the
s2-solution is unstable. The pitchfork bifurcation at ε =
1
2 (λ+ ω2

λ ) gives rise to the antisymmetric inhomogeneous
steady state, which appears on the s2-solution. There is
a saddle-node bifurcation at ε = ω and a Hopf bifurcation

at ε = 1
4 (λ+4ω2

λ ) on the s1-solution, which stabilizes the
inhomogeneous steady state.
For

√
3ω < λ < 2ω (fig. 2(c)), we find an additional

novel solution, which emerges from the s1-solution. It
can be seen from the bifurcation diagram in fig. 2(c) that
the inhomogeneous steady state has two stability regions
(unstable dimension zero): one is between the Hopf bi-

furcation at ε = 1
4 (λ + 4ω2

λ ) and the pitchfork bifurca-

tion PB1 in fig. 2(c) at ε = 1
3

(
2λ−√

λ2 − 3ω2
)
, and

the other occurs after the second pitchfork bifurcation
PB2 in fig. 2(c) for ε > 1

3

(
2λ+

√
λ2 − 3ω2

)
. Conse-

quently, between PB1 and PB2 the inhomogeneous steady
state zs1 becomes unstable. However, in this interval
a secondary bifurcation branch zn1, zn2 appears (fig. 3),
which is also manifested by an inhomogeneous steady
state. Therefore, for the choice of parameters

√
3ω <

λ < 2ω, we distinguish between primary and secondary
inhomogeneous steady state. The secondary inhomoge-
neous steady state is a novel solution, which emerges from
the s1-solution. It is important to note that there are
two types of oscillation death depending on the relation
between the steady-state values characterizing the sub-
systems: antisymmetric and non-symmetric. Previously,

Fig. 3: (Color online) Bifurcation diagram similar to fig. 1 but
for λ = 3.5, τ = 0, ω = 2. Secondary inhomogeneous steady
state n1, n2 is indicated by thick closed blue curves.

non-symmetric oscillation death has been shown to exist in
chaotic oscillators without connection to secondary bifur-
cation [40], whereas in the present study we demonstrate
non-symmetric oscillation death for a system of identi-
cal non-chaotic oscillators in a secondary bifurcation. For
the two coupled Stuart-Landau oscillators the inhomoge-
neous steady state is antisymmetric if x1 = −x2, y1 = −y2
and non-symmetric if x1 �= ±x2, y1 �= ±y2. The pri-
mary inhomogeneous steady state is antisymmetric for
all the parameter ranges considered here. In contrast,
the secondary inhomogeneous steady state, which is ob-
served for

√
3ω < λ < 2ω is of non-symmetric type: it

is given by (x1, y1, x2, y2) = ± (xn1, yn1,−xn2,−yn2) or
(x1, y1, x2, y2) = ± (xn2, yn2,−xn1,−yn1). Therefore, for
the model of two coupled identical Stuart-Landau oscil-
lators we find both anti- and non-symmetric oscillation
death regimes present in one system.

In the case λ > 2ω (fig. 2(d)) there also exist both s1-
and s2-solutions. The regime of stable oscillation death
occurs on the s1-solution after the inhomogeneous asym-
metric steady state is stabilized via a pitchfork bifurcation
at ε = 1

3

(
2λ+

√
λ2 − 3ω2

)
.

Effect of time delay. – Next, we explore the effect
of time delay upon oscillation death. In particular, we
are interested in controlling the stability of the inhomo-
geneous steady state. By linearizing eqs. (2) around the
inhomogeneous steady states one can show that the s2-
solution is always unstable. For the s1-solution we obtain
a characteristic equation for the eigenvalue η, which can
be factorized into two factors of the form

η2 + aη + b1,2 ηe
−ητ + c+ d1,2 e

−ητ = 0, (11)

where the coefficients are given by

a = 4r2 − 2λ+ ε,

b1,2 = ±ε,
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c = r2
(
3r2 − 4λ

)
+ λ2 + ελ− ε2 + (λ+ ε)

√
ε2 − ω2,

d1,2 = ±
(
ελ− ε2 − ω2 + (λ+ ε)

√
ε2 − ω2

)
.

The steady-state radius r is given by eq. (9), hence the
coefficients only depend on ε, λ, and ω. Delay neither
affects the steady state nor zero-eigenvalue bifurcations.
The stability of the steady states changes by Hopf bi-
furcation if two complex conjugate eigenvalues cross the
imaginary axis. Setting η = iΩ, Ω �= 0, eq. (11) becomes

0 = −Ω2 + iaΩ+ ib1,2Ωe
−iΩτ + c+ d1,2 e

−iΩτ . (12)

Similar to [43], we separate real and imaginary part of this
equation. Eliminating Ω from the resulting two equations
gives a relation between τ , ε, λ, and ω, i.e., it defines the
lines of Hopf bifurcations in the parameter space. By some
lengthy algebraic manipulations [48], the following explicit
form of the Hopf lines, n = 0, 1, 2, . . . , is obtained:

τn (ε) =
1

Ω
arccos

(
±Ω2 (d− ab)− cd

b2 Ω2 + d2

)
+

2πn

Ω
(13)

with

Ω2=
1

2

((−a2 + b2 + 2c
)±√

(−a2+b2+2c)
2− 4 (c2−d2)

)
,

where Ω, a, b = b1 = −b2, c, and d = d1 = −d2 de-
pend only on ε, ω, and λ, and ± corresponds to the first
and second factor, respectively. The stability boundary of
the inhomogeneous steady state s1, i.e., the conditions for
oscillation death, is a subset of these Hopf lines.
Figure 4(a) shows the results of the stability analysis

for the case of λ < ω. Both analytical τn(ε)-curves and
numerical calculations of the eigenvalues from the charac-
teristic eq. (11), computed using traceDDE toolbox, are
combined in fig. 4(a) for λ = 1 and ω = 2. The unsta-
ble dimensions following from the Hopf lines are given in
brackets. The regime of stable steady state (0) coincides
exactly with the domain where the largest real part of the
numerically calculated eigenvalues is negative. By tuning
the delay time τ , the stability region of the inhomoge-
neous steady state can be either increased or decreased.
Therefore, the threshold of oscillation death can be mod-
ulated by properly choosing the time delay. The bifur-
cations diagrams of r vs. ε calculated analytically from
(9) are shown in fig. 4(b), (c) for two different values of
the time delay. Oscillation death occurs, as in the case
of instantaneous coupling, on the s1-solution. Moreover,
due to the presence of time delay, additional Hopf bifur-
cations may appear on the s1-solution and their number
strongly depends on the value of time delay. For instance,
for τ = 1.25 there is only one additional Hopf bifurcation
at ε = 3.05 (fig. 4(c)), whereas for τ = 2.55 their number
is increased up to three (results not shown). Moreover, the
bifurcation diagrams clearly demonstrate the controllabil-
ity of the inhomogeneous steady state by time delay. For
instance, by choosing τ = 0.25 we observe oscillation death

Fig. 4: (Color online) (a) Modulation of stability regime of the
inhomogeneous steady state by time-delayed coupling in the
(ε, τ ) plane for ω = 2, λ = 1 (analytical and numerical results).
Black and red curves show the first and the second factor of
the characteristic eq. (11), respectively, analytically obtained
from (13). The numbers in parentheses denote the unstable
dimension of the s1-solution. Color shaded regions indicate the
maximum real part of the eigenvalues of (11) using traceDDE
toolbox. (b), (c): bifurcation diagrams for ω = 2, λ = 1
and (b) τ = 0.25, (c) τ = 1.25. Empty circles denote Hopf
bifurcations (HB), stars correspond to pitchfork bifurcations
(PB). The s1-solution is shown by blue solid lines (stable) and
red dashed lines (unstable). The vertical solid line marks the
threshold coupling value for oscillation death (ε = 4.25) in case
of instantaneous coupling (τ = 0). (d), (e): same as in panel
(a) for ω = 2, λ = 3.5. P and S denote primary and secondary
oscillation death, respectively.

for a smaller value of the coupling ε = 3.67 (fig. 4(b)) in
comparison with the instantaneous case (ε = 4.25), and
τ = 1.25 shifts the threshold of oscillation death to a larger
value of the coupling ε = 4.45 (fig. 4(c)).

For the parameter range ω < λ <
√
3ω, the structure of

the stability regimes of the inhomogeneous state s1 is the
same as in fig. 4(a), and the Hopf bifurcation can again
be shifted by delay, but the bifurcation diagram is simi-
lar to fig. 2(b) with an additional unstable inhomogeneous
steady state s2 appearing between the pitchfork (PB) and
the saddle-node (SN) bifurcation. For λ >

√
3ω the modu-

lation properties by time delay are much less pronounced.
Figure 4(d) shows for

√
3ω < λ < 2ω that the onset of

primary oscillation death (P) at small ε can still be tuned
by time delay, but the subsequent onset of secondary os-
cillation death (S), where the antisymmetric inhomoge-
neous steady state has unstable dimension 1, is indepen-
dent of delay, see the larger range of ε plotted in fig. 4(e).
This different behavior is due to distinct bifurcations: the
controllable boundary of Hopf bifurcation, and the im-
mutable boundaries characterized by zero eigenvalues η of
(11). The reason is that Hopf curves always change the
unstable dimension by 2, and hence they cannot decrease
the unstable dimension to 0. The same holds for λ > 2ω,
corresponding to fig. 2(d).

50004-p5



A. Zakharova et al.

Conclusions. – We have considered oscillation death
due to stable, but symmetry-breaking, steady states of
two identical coupled oscillators. The stability boundary
of Hopf type, where oscillation death occurs, is susceptible
to efficient control by time delay. In particular, we have
demonstrated that time delay strongly influences the
stability of the antisymmetric inhomogeneous steady
state, which is generated by a primary bifurcation of the
symmetric homogeneous trivial steady state. Since time
delay is ubiquitous in coupled systems in diverse areas,
this provides a widely applicable mechanism to modulate
the threshold for oscillation death. For instance, due to
the wide range of time scales involved in realistic cellular
processes [6], time delay represents an inherent control
element in biological systems. This is especially relevant
regarding protein expression control, which plays an im-
portant role in the cellular differentiation. Additionally,
we have found a novel type of non-symmetric oscillation
death representing a secondary bifurcation of an inhomo-
geneous steady state. We have shown that the onset of
this secondary oscillation death is not sensitive to time
delay.

∗ ∗ ∗
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SFB 910.

REFERENCES
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