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Abstract In epidemic outbreak control management, the synergy between healthcare facilities and infras-
tructure, including road networks and ambulance services, plays a pivotal role. In this article, we formulate
and analyze a mathematical model that underscores the significance of infrastructure components along
with healthcare facilities to effectively control an epidemic outbreak. By intricately examining the inter-
play between healthcare accessibility and the swift movement of medical resources, this study contributes
valuable insights into optimizing response strategies during such outbreaks. Through qualitative anal-
ysis, we establish the model’s susceptibility to a range of bifurcations, including transcritical (forward
and backward), saddle-node, Hopf, and codimension-2 Bogdanov–Takens bifurcations. Furthermore, we
provide an epidemiological interpretation of the intricate dynamic behaviors observed in the context of
disease endemism. The proposed model offers insights that can guide policymakers, healthcare administra-
tors, and urban planners in devising effective strategies for combating epidemic outbreaks while fostering
community resilience.

1 Introduction

In an increasingly interconnected world, the threat posed by epidemic outbreaks to global public health has
become a matter of heightened concern [19–22, 24, 28]. The emergence of new and highly contagious pathogens
has underscored the urgency of addressing these global health threats. These outbreaks not only have immediate
health consequences but also significant economic, social, and political impacts. They disrupt healthcare systems,
strain resources, and can lead to widespread panic and social unrest. The continual emergence of these infectious
diseases prompts the recognition that to control the outbreaks requires a holistic approach to managing healthcare
resources and logistical infrastructure. The timely and coordinated deployment of medical resources, coupled with
the efficient movement of patients, can profoundly shape the outcome of an outbreak [36].

Healthcare facilities, ranging from local clinics to specialized hospitals, constitute the frontline defense against
infectious diseases. These facilities not only provide vital medical care but also act as points of containment and
treatment. However, the efficacy of these medical facilities is deeply entwined with the availability and accessibility
of supporting infrastructure. Efficient transportation networks, including road systems and ambulance services,
ensure the rapid transfer of patients to appropriate facilities, which facilitate the distribution of medical supplies,
and enable the seamless movement of healthcare personnel [13]. The shortage of ambulances can present a daunting
challenge within healthcare system, with far-reaching implications for patient care and epidemic control. This
inadequacy can lead to obstacles in ensuring the prompt transportation of patients to hospitals, impeding not
only the prompt initiation of treatment but also the crucial isolation measures necessary during epidemics. The
difficulties are made even more acute when the road networks are disrupted or inadequate, which prolongs the
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travel times between affected regions and medical facilities. Particularly in areas with underdeveloped or disturbed
road networks, rapid access to hospitals for affected populations becomes a formidable obstacle. This, in turn, can
result in elevated transmission rates and logistical complications in delivering vital medical supplies and personnel
to affected areas.

The integration of mathematical modeling techniques with epidemiological insights has revolutionized our capac-
ity to grasp the intricate dynamics of disease transmission [2, 3, 5, 6, 9, 10, 14, 18, 23, 25, 27, 29, 37, 39, 40, 42–44].
This interdisciplinary approach has proven potent in deciphering the complex web of interactions among disease
spread and healthcare capabilities [4, 8, 11, 15–17, 26, 30–35, 41, 46, 47]. Wang et al. [46] proposed a Filippov
epidemic model to examine the impact of healthcare capacity and limited public health resources on epidemic con-
trol. Their findings indicate that enhancing basic medical conditions, such as increasing the minimum treatment
ratio, or augmenting medical resource inputs, such as hospital bed-population ratio (HBPR) and the potential
maximum treatment ratio, can effectively maintain case numbers at relatively low levels when the basic reproduc-
tion number is greater than unity. Furthermore, if basic reproduction number is less than unity, these strategies
can aid in eradicating the disease, though complete eradication is not always achievable due to the presence
of backward bifurcation in the system. Liu et al. [27] proposed a compartmental model to illustrate a possible
mechanism for multiple outbreaks or sustained periodic oscillations of emerging infectious diseases due to the
psychological impact of the reported number of infectious and hospitalized individuals. Zhou and Fan [48] studied
an SIR epidemic model to demonstrate the impact of limited medical resources on the transmission dynamics of
infectious diseases. Their research indicates that the availability and supply efficiency of medical resources signif-
icantly influence the control of infectious diseases. Abdelrazec et al. [1] proposed a deterministic model to study
the transmission dynamics of dengue fever and the influence of healthcare resources on its spread and control.
They concluded that understanding disease transmission dynamics requires more than just the basic reproduction
number; other epidemiological parameters, such as HBPR, also significantly impact disease transmission dynam-
ics. Although all these works are related to healthcare facilities, they either lack the consideration of a separate
class for hospitalized individuals or overlook the limitation of hospital bed availability. Addressing these gaps, this
research article explores the critical connection between healthcare facilities and infrastructure in the context of
epidemic outbreak management. By examining the synergies and dependencies within this triad, our study aims to
contribute to the ongoing discourse on control strategies involving healthcare facilities and infrastructure. Through
the lens of mathematical rigor and epidemiological depth, we seek to enrich the toolkit available to public health
professionals and policymakers striving to safeguard global health in the face of emerging infectious threats. The
inclusion of a hospitalized class in our mathematical model indeed introduces a novel dimension to traditional
infectious disease models, such as SIR and SEIR. By incorporating a specific class for hospitalized individuals, our
model offers several advantages over existing models. Firstly, it allows for a more nuanced understanding of disease
dynamics by accounting for the impact of hospitalization on disease transmission and progression. Secondly, it
enables us to assess healthcare system capacity and resource allocation more accurately by modeling the flow
of individuals between different epidemiological states, including hospitalization. Thirdly, the hospitalized class
facilitates the evaluation of interventions aimed at reducing hospitalization rates and improving patient outcomes,
thus offering valuable insights for public health policy and decision-making. Overall, the addition of a hospitalized
class enhances the comprehensiveness and applicability of our model in addressing real-world infectious disease
scenarios. This study holds significant importance as it sheds light on how the infrastructure and functioning of
healthcare systems influence the spread and control of infectious diseases. By understanding the dynamics and
vulnerabilities within healthcare infrastructure, we can better anticipate and respond to outbreaks, ultimately
saving lives and mitigating the impact on public health. Additionally, the exploration of bifurcations in the model
provides insights into the potential tipping points or critical thresholds where interventions may have the most
significant impact in containing or preventing outbreaks.

2 The mathematical model

Here, we introduce a nonlinear epidemic model that incorporates two essential factors: the availability of healthcare
facilities, particularly count of hospital beds, and the infrastructure of the considered region, including ambulances
and roads. The primary aim of this model is to demonstrate how the capacity of healthcare facilities and the
efficiency of infrastructure can significantly impact the future course of an epidemic. Specifically, we focus on those
diseases that spread through sustained human-to-human interactions, i.e., direct contact. The occurrence of these
diseases sharply increases the number of individuals requiring medical attention, which can overwhelm healthcare
facilities. Thus, having enough hospital beds becomes crucial for effectively managing these outbreaks. With an
adequate bed capacity, hospitals can provide timely medical attention, closely monitor patients, and implement
necessary isolation measures. Thus, the state of infection and hospitalization of infected individuals divides the
whole population into three classes: susceptible class ‘S’ (includes those individuals who have not yet been infected
but are at risk of acquiring the infection), infected class ‘I’ (includes those individuals who have tested positive
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for the infectious disease, can transmit it to susceptible individuals, and have not yet received hospital beds but
are seeking for better treatment) and hospitalized class ‘H’ (relates to individuals from the infected population
who have been admitted to hospitals. Because they are hospitalized, they are effectively isolated from the general
population, making them unable to spread the disease to people who have not yet been infected). Here, Ha denotes
the cumulative count of hospital beds in the considered region, which is treated as a constant; thus, (Ha−H(t)) ≥ 0
represents the count of available hospital beds at time ‘t’.

Moreover, a well-developed infrastructure, including roads and ambulances are also very crucial to control the
outbreak. Smooth transportation and quick ambulance services ensure that patients can reach hospitals promptly
for medical attention. Without these critical components, healthcare systems may struggle to cope with the sudden
influx of patients, leading to compromised care and hampering efforts to control the epidemic effectively. Thus, we
consider the hospital occupancy rate as a function that depends on both the infrastructure capacity and the count
of infected individuals. To represent this relationship, we adopt the Holling type-II functional response [7], i.e.,

k(I) = k0 +
k1I

m + I
.

The Holling Type II functional response for hospitalization rate offers a more nuanced depiction of the relationship
between the number of infected individuals and hospitalization. This model recognizes the inherent non-linear
dynamics play, which better mirrors the real-world scenario in epidemiology. As the number of infected individuals
escalates, the rate at which people require hospitalization may indeed surge rapidly at first. This initial spike occurs
as the contagion spreads and more individuals become symptomatic, necessitating medical attention. However,
the Holling Type II model acknowledges that this steep incline doesn’t continue indefinitely. Instead, as the influx
of patients inundates healthcare systems and infrastructure, such as ambulance services, there comes a critical
point where the capacity to accommodate new hospitalizations becomes constrained. At this juncture, the rate
of hospitalizations begins to level off, approaching a plateau. This leveling reflects the saturation of healthcare
resources, where the ability to admit additional patients becomes increasingly limited. Here, function k(I ) adheres
the subsequent properties.

(i) k(I) > 0 for I ≥ 0 and k(0) = k0 > 0. This scenario reflects the situation, where the healthcare infrastructure
is fixed and cannot be increased due to financial constraints or other limitations. Despite these constraints,
there is still available infrastructure to accommodate a certain number of infected individuals in hospitals;
thus, k0 represents the minimum hospital occupancy rate.

(ii)
∂k(I)
∂I

=
mk1

(m + I)2
> 0 and lim

I→∞
k(I) = k0 + k1. Since k(I ) is the increasing function of I , therefore if the

number of infected individuals becomes large, the rate of hospital occupancy increases and eventually reaches
a plateau, reflecting the limitations of the healthcare infrastructure. Thus, k1 represents the maximum
increment in hospital occupancy rate and (k0 + k1) is the maximum possible hospital occupancy rate.

(iii) For I = m, k(I) = k0 +
k1
2

, which represents the scenario when the increment in hospital occupancy rate is

half of its maximum possible value.

Under the aforementioned assumptions, the mathematical description of the dynamics of an epidemic outbreak
can be represented by the subsequent system of nonlinear ordinary differential equations.

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

dS

dt
= A − βSI − dS + νI + ν1H,

dI

dt
= βSI − (d + α + ν)I − k(I)(Ha − H)I,

dH

dt
= k(I)(Ha − H)I − (ν1 + θα + d)H,

(1)

where S(0) > 0, I(0) ≥ 0, and H(0) ≥ 0. Here, A denotes the immigration rate of individuals into the susceptible
population, while β signifies the rate of disease transmission from infected individuals I to susceptible individuals
S . The parameters ν and ν1 denote the rates of self-recovery and hospital recovery, respectively, for infected
individuals. Additionally, the proportionality constants d and α represent natural mortality and disease-induced
mortality, respectively. We assume a severe infectious disease scenario where some hospitalized individuals may
succumb to mortality due to the disease despite being hospitalized. Hence, θ represents the extra mortality constant
of hospitalized individuals. The schematic representation of the model system (1) is depicted in Fig. 1.
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Fig. 1 The schematic
diagram for model system
(1)

3 Basic properties

In this section, we discuss the feasibility of equilibrium for model system (1). Further, we conduct the stability
analysis of these obtained equilibria. The stability analysis allows us to discern, whether the equilibrium is an
attractor or repeller, and how the system responds to small perturbations.

3.1 Model equilibrium and basic reproduction number

In the absence of disease, the proposed model system (1) demonstrates a sole equilibrium denoted as E0

(
A
d , 0, 0

)
.

Consequently, we employ the next-generation matrix method [45] for determining the basic reproduction number
(R0), i.e.,

R0 =
βA

d(d + α + ν + k0Ha)
.

Further, equilibrium E∗(S∗, I∗, H∗) can be obtained by solving the subsequent algebraic equations

A − βSI − dS + νI + ν1H = 0, (2)

βS − (d + α + ν) − k(I)(Ha − H) = 0, (3)

k(I)(Ha − H)I − (ν1 + θα + d)H = 0. (4)

From equation (4), it is apparent that (i) if I = 0, we have H = 0, (ii) H = Ha is an asymptote, and (iii) ∂H

∂I
> 0

in the positive quadrant.

Further, using S =
[d + α + ν + k(I)(Ha − H)]

β
from equation (3) in equation (2), we obtain another equation

in I and H , i.e.,

A − [d + α + k(I)(Ha − H)]I − d

β
[d + α + ν + k(I)(Ha − H)] + ν1H = 0. (5)

From equation (5) it is apparent that (i) H = Ha + d+α
k0+k1

is an asymptote, (ii) ∂H
∂I > 0 in the positive quadrant,

and (iii) for I = 0, we have H = −d(R0−1)(d+α+ν+k0Ha)
dk0+βν1

= He(say). Moreover, if we set H = 0, equation (5) gives
the following quadratic equation in I .

A1I
2 + A2I − A3 = 0, (6)

where

A1 = β(d + α + k0Ha + k1Ha), A2 = βm(d + α + k0Ha) + dk1Ha − d(R0 − 1)(d + α + ν + k0Ha),
A3 = md(R0 − 1)(d + α + ν + k0Ha).
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Here, A1 is always positive and A3 can be positive, negative, or zero depending on the value of R0. Thus, we
analyze the feasibility equilibrium E∗ in three scenarios, i.e., R0 > 1, R0 = 1, R0 < 1. Thus,

(a) For R0 > 1, He < 0 and equation (6) has one positive and one negative roots. Thus, isoclines (4) and (5),
may intersect either at one, two, or three points, Fig. 2.

(b) For R0 = 1, He = 0 and equation (6) exhibits one zero root and one negative root. Thus, isoclines (4) and
(5) may intersect at one, two, or no points, Fig. 3.

(c) For R0 < 1, He > 0 and equation (6) has no positive root. Thus, isoclines (4) and (5) either intersect at one
point, two points or no point, Fig. 4.

Thus, based on the aforementioned analysis, we establish the following theorem concerning the existence of equi-
librium for model system (1).

Theorem 1 The model system (1) has

(i) a disease-free equilibrium E0

(
A
d , 0, 0

)
, which always exists,

(ii) one, two, or three endemic equilibria for R0 > 1,
(iii) one, two, or no endemic equilibria for R0 ≤ 1.

3.2 Local stability analysis

Within this subsection, we provide the local stability analysis of obtained equilibria. Now, the Jacobian matrix for
model system (1) can be written as

J =

⎡

⎣
−(βI + d) − (βS − ν) ν1

βI a22 k(I)I
0 a32 − (ν1 + θα + d + k(I)I)

⎤

⎦,

where a22 = βS − (d + α + ν) − k(I)(Ha − H) − k′(I)(Ha − H)I, and a32 = [k(I) + k′(I)I](Ha − H).
The eigenvalues of matrix J0 (J evaluated at E0) are obtained as −d, −(ν1 + θα + d), and (R0 − 1)(d + α + ν +

k0Ha). The eigenvalue (R0 − 1)(d + α + ν + k0Ha) is negative for R0 < 1 and positive for R0 > 1, which implies
equilibrium E0 is locally asymptotically stable for R0 < 1 and unstable for R0 > 1.

Further, at equilibrium E∗(S∗, I∗, H∗), the Jacobian matrix J can be written as

J∗ =

⎡

⎣
−(βI∗ + d) − (βS∗ − ν) ν1

βI∗ − k′(I∗)(Ha − H∗)I∗ k(I∗)I∗

0 a∗
32 − (ν1 + θα + d + k(I∗)I∗)

⎤

⎦.

Here, a∗
32 = [k(I∗) + k′(I∗)I∗](Ha − H∗). The characteristic equation of matrix J∗ is obtained as

Φ3 + B1Φ
2 + B2Φ + B3 = 0, (7)

where

B1 = ν1 + θα + 2d + βI∗ + k(I∗)I∗ + k′(I∗)(Ha − H∗)I∗,

B2 = (βI∗ + d)[ν1 + θα + d + k(I∗)I∗ + k′(I∗)(Ha − H∗)I∗] + (ν1 + θα + d)k′(I∗)(Ha − H∗)I∗

+ βI∗(βS∗ − ν) − (k(I∗))2(Ha − H∗)I∗,

B3 = βI∗[(d + θα)k′(I∗)(Ha − H∗)I∗

+ (d + α)(ν1 + θα + d + k(I∗)I∗)

+ (d + θα)k(I∗)(Ha − H∗)] + d(Ha − H∗)I∗[(ν1 + θα + d)k′(I∗) − (k(I∗))2].

It is evident that B1 is consistently positive. Applying the Routh-Hurwitz criterion, we conclude that if B3 > 0
and (B1B2 − B3) > 0, then all the eigenvalues of matrix J∗ are either negative or possess negative real parts.
Consequently, we state the following theorem.

Theorem 2 For model system (1)
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(i) the equilibrium E0 demonstrates instability when R0 > 1 and stability when R0 < 1.
(ii) the stability of the equilibrium E∗ is guaranteed when B3 > 0 and (B1B2 − B3) > 0

4 Bifurcation analysis

Here, we delve into a comprehensive analysis of the conditions that result in various bifurcation phenomena in
the context of model system (1). Our particular focus centers on two critical parameters, namely the count of
hospital beds Ha and the hospital occupancy rate k(I ). These parameters hold substantial biological significance
and directly influence the dynamics of epidemic outbreaks.

4.1 Transcritical bifurcation

In this subsection, we employ the center manifold theorem [12] to determine the condition under which transcritical
bifurcation occurs. From Theorem 2, it is found that there is a shift in the stability characteristics of equilibrium
E0 at the critical value R0 = 1. Thus, at this critical threshold, one of the eigenvalues of matrix J0 becomes zero,
resulting in the transformation of equilibrium point E0 into a non-hyperbolic equilibrium, and R0 = 1 corresponds
to β = β∗ = d(d + α + ν + k0Ha)/A. Now, we introduce S = z1, I = z2 and H = z3; consequently, the model
system described by equation (1) can be expressed as

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

dz1
dt

= A − βz1z2 − dz1 + νz2 + ν1z3 := f1,

dz2
dt

= βz1z2 − (d + α + ν)z2 − k(z2)(Ha − z3)z2 := f2,

dz3
dt

= k(z2)(Ha − z3)z2 − (ν1 + θα + d)z3 := f3,

(8)

where k(z2) = k0 +
k1z2

m + z2
.

Moreover, the linearlized matrix of system (8) when evaluated at E0 and β = β∗ can be written as

J0|(β=β∗) =

⎡

⎢
⎣

−d −
(

β∗A
d − ν

)
ν1

0 0 0
0 k0Ha − (ν1 + θα + d)

⎤

⎥
⎦. (9)

The right and left eigenvectors corresponding to the eigenvalue 0 are Ũ = [ũ1 ũ2 ũ3]
� and Ṽ = [ṽ1 ṽ2 ṽ3], respec-

tively, where

ũ1 = −
(

β∗A
d

− ν

)

(ν1 + θα + d) + ν1k0Ha, ũ2 = d(ν1 + θα + d), ũ3 = dk0Ha,

ṽ1 = 0, ṽ2 = 1, ṽ3 = 0.

Thus, for model system (1) the coefficients a and b described in Theorem 4.1 of [12] can be written as

a =
3∑

k, i, j=1

ṽkũiũj
∂2fk

∂zi∂zj
(E0, β∗), and b =

3∑

k, i=1

ṽkũi
∂2fk

∂zi∂β
(E0, β∗).

Here,

a = 2d(ν1 + θα + d)
[

β∗
(

−
(

β∗A
d

− ν

)

(ν1 + θα + d) + ν1k0Ha

)

+dk2
0Ha − dk1Ha(ν1 + θα + d)

m

]

,

b = A(ν1 + θα + d).

123



Eur. Phys. J. Spec. Top.

Here, the parameter b is invariably positive, while a can be a positive value or negative value contingent on
the parameter values. Consequently, we synthesize the observations regarding the existence of the transcritical
bifurcation within the framework of the ensuing theorem.

Theorem 3 The model system (1) exhibits a transcritical bifurcation at R0 = 1 (or β = β∗) in the forward
direction if a < 0. Conversely, the direction of the transcritical bifurcation shifts to the backward direction if
a > 0.

Remark 1 If a < 0, the forward transcritical bifurcation occur and it signifies that disease will always persist in
the population if the basic reproduction number is greater than one and dies when R0 < 1. On the other hand,
if a > 0, the backward transcritical bifurcation occurs and in this case the disease may persist in the population
even if the basic reproduction number is less than unity.

4.2 Saddle-node bifurcation

From Theorem 1, it is evident that model system (1) may exhibit two or three endemic equilibria depending
on the parameter values. Consequently, there may be a chance that model system (1) undergoes a saddle-node
bifurcation. The saddle-node bifurcation is characterized by a local phenomenon where two equilibrium points of
a dynamical system come into proximity and cease to exist as they mutually annihilate each other. To explore
the condition under which model system (1) exhibits saddle-node bifurcation, we utilize the Sotomayor’s theorem
[38]. To achieve this, we assume that there exists a critical value of β = βc, which gives B3(βc) = 0. Subsequently,
matrix J∗ has a zero eigenvalue. Suppose that Û = [û1 û2 û3]� and Ŵ = [ŵ1 ŵ2 ŵ3], represent the right and left
eigenvectors of matrix J∗ corresponding to the 0 eigenvalue, where

û1 =
[
k′(I∗)(ν1 + θα + d) − (k(I∗))2

]
(Ha − H∗),

û2 = βc[ν1 + θα + d + k(I∗)I∗],

û3 = βc[k(I∗)(Ha − H∗) + k′(I∗)(Ha − H∗)I∗],
ŵ1 = βcI

∗[ν1 + θα + d + k(I∗)I∗],
ŵ2 = (βcI

∗ + d)[ν1 + θα + d + k(I∗)I∗], ŵ3 = ν1βcI
∗ + (βcI

∗ + d)k(I∗)I∗.

Suppose Ĝ = [ĝ1, ĝ2, ĝ3], where ĝ1, ĝ2 and ĝ3 are right-hand sides of dS/dt , dI /dt and dH /dt , respectively, in
model system (1). Then,

B1 = Ŵ.
∂Ĝ

∂β

∣
∣
∣
∣
(E∗, βc)

= d[ν1 + θα + d + k(I∗)I∗]S∗I∗,

and

B2 = Ŵ
[
D2Ĝ(Û , Û)

]∣∣
∣
∣
(E∗, βc)

= 2βcû1û2(ŵ3 − ŵ1) + [2k′(I∗)û3 − k′′(I∗)(Ha − H∗)I∗û2](ŵ2 − ŵ3)û2.

Here, the conditions stipulated by Sotomayor’s theorem for the occurrence of a saddle-node bifurcation are sat-
isfied whenever B2 �= 0. Consequently, we state the following theorem concerning the existence of a saddle-node
bifurcation.

Theorem 4 If β = βc, such that B2 �= 0, then model system (1) exhibits saddle-node bifurcation at equilibrium
E∗.

Remark 2 The occurrence of saddle-node bifurcation holds significant biological importance as it marks a critical
threshold in the dynamics of disease spread. For parameter β, i.e., transmission rate below the quantity βc, the
disease dies out quickly or attains the lowest equilibrium level due to insufficient transmission, while above it,
the infection can spread exponentially, potentially leading to an epidemic outbreak. This bifurcation serves as a
tipping point, delineating the boundary between disease eradication and epidemic propagation.

123



Eur. Phys. J. Spec. Top.

4.3 Hopf bifurcation

In this subsection, our objective is to explore the conditions leading to Hopf bifurcation [35] in the model system
(1) at E∗. For this analysis, we assign the parameter β as the bifurcation parameter. We identify a critical value
for β denoted as βr for which B1(βr)B2(βr) − B3(βr) = 0 holds. Consequently, for β = βr, the equation (7) can be
expressed as follows

(Φ + B1)(Φ2 + B2) = 0.

The above equation yields three roots: Φ1, 2 = ±iω and Φ3 = ξ, where ω =
√B2 and ξ = −B1. To demonstrate the

transversality condition, let’s consider any point within ε-neighborhood of βr, which results in Φ1, 2 = �(β)±iω(β).
Substituting this into equation (7) and computing the real and imaginary components, we obtain

�3 − 3�ω2 + B1(�2 − ω2) + B2� + B3 =0, (10)

3�2ω − ω3 + 2B1�ω + B2ω =0. (11)

As ω(β) �= 0, from equation (11), we have

ω2 = 3�2 + 2B1� + B2.

Substituting this in equation (10), we have

8�3 + 8B1�
2 + 2�(B2

1 + B2) + (B1B2 − B3) = 0. (12)

From equation (12), we get

d�

dβ

∣
∣
∣
∣
β=βr

= −
[

1
2(B2

1 + B2)
d

dβ
(B1B2 − B3)

]

β=βr

�= 0,

provided
[

d

dβ
(B1B2 − B3)

]

β=βr

�= 0.

Therefore, summing up the above results, we have

Theorem 5 For Hopf-bifurcation to occur around equilibrium E∗, the necessary and sufficient condition is that
there exists a critical value of β, denoted as βr, such that

(i) B1(βr)B2(βr) − B3(βr) =0,

(ii)
[

d

dβ
(B1B2 − B3)

]

(E∗, βr)

�=0 .

Remark 3 Hopf bifurcation signifies the transition from stable (or unstable) equilibrium to sustained oscillations
or periodic outbreaks when the transmission rate β crosses the threshold quantity βr. The biological significance of
Hopf bifurcation lies in its ability to predict the emergence of sustained oscillations in the number of infected indi-
viduals over time, indicating the potential for recurring epidemic waves. This transition is crucial for understanding
the long-term behavior of infectious diseases.

4.3.1 Bogdanov–Takens bifurcation

From the stability analysis of equilibrium E∗, it becomes apparent that for some β = βk and Ha = Hak if
B2(βk, Hak) = B3(βk, Hak) = 0, then equation (7) possesses an eigenvalue 0, with algebraic multiplicity 2. This
scenario signifies the possibility of a Bogdanov-Takens bifurcation occurring around the endemic equilibrium E∗
[41]. Consequently, to investigate the existence of a Bogdanov-Takens bifurcation at equilibrium E∗, we employ
the transformation S = S∗ + x̃1, I = I∗ + x̃2, and H = H∗ + x̃3, which shifts the equilibrium E∗ to the origin.
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Suppose, p̃1 = (βkI∗ + d), p̃2 = [k(I∗) + k′(I∗)I∗], p̃3 = [ν1 + θα + d + k(I∗)I∗], and p̃4 = [k′(I∗) + 2k′′(I∗)I∗].
Thus, the transformation leads to the following linearized system of model system (1).

⎡

⎣
x̃1

x̃2

x̃3

⎤

⎦

′

=

⎡

⎣
−p̃1 − (βkS∗ − ν) ν1
βkI∗ − k′(I∗)(Hak − H∗)I∗ k(I∗)I∗

0 p̃2(Hak − H∗) − p̃3

⎤

⎦

⎡

⎣
x̃1

x̃2

x̃3

⎤

⎦ +

⎡

⎣
−βkx̃1x̃2

βkx̃1x̃2 − p̃4x
2
2 + p̃2x̃2x̃3

p̃4x
2
2 − p̃2x̃2x̃3

⎤

⎦. (13)

Then, the generalized eigenvectors for eigenvalue Φ = 0 are Ṽ1 = [ṽ11 ṽ21 ṽ31]
� and Ṽ2 = [ṽ12 ṽ22 ṽ32]

�, which
satisfy J∗Ṽ1 = 0 and J∗Ṽ2 = Ṽ1. Here,

ṽ11 =
[
k′(I∗)(ν1 + θα + d) − (k(I∗))2

]
(Hak − H∗), ṽ21 = βkp̃3,

ṽ31 = βkp̃2 (Hak − H∗
3 )] ,

ṽ12 = p̃3 + k′(I∗)(Hak − H∗)I∗, ṽ22 = βkI∗, ṽ32 = 0.

Also, the eigenvector corresponding to the eigenvalue Φ = −[p̃1 + k′(I∗)(Hak − H∗)I∗ + p̃3] is Ṽ3 = [ṽ13 ṽ23 ṽ33]
�,

where

ṽ13 = (p̃1 + p̃3)[p̃1 + k′(I∗)(Hak − H∗)I∗] − p̃2k(I∗)(Hak − H∗)I∗,

ṽ23 = −βk[p̃1 + k′(I∗)(Hak − H∗)I∗]I∗, ṽ33 = βkp̃2(Hak − H∗)I∗.

Let Q̃ = [Ṽ1 Ṽ2 Ṽ3], thus by using the non-singular linear transformation, we have

⎡

⎣
x̃1

x̃2

x̃3

⎤

⎦ = Q̃

⎡

⎣
Z̃1

Z̃2

Z̃3

⎤

⎦,

where the inverse of matrix Q̃ is given as

Q̃−1 =

⎡

⎣
q̃11 q̃12 q̃13
q̃21 q̃22 q̃23
q̃31 q̃32 q̃33

⎤

⎦.

Thus, the system (13) becomes

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Z̃ ′
1 = Z̃2 + L̃20Z̃

2
1 + L̃11Z̃1Z̃2 + L̃02Z̃1Z̃2 + Z̃3.O

(
|Z̃1, Z̃2|3

)
,

Z̃ ′
2 = M̃20Z̃

2
1 + M̃11Z̃1Z̃2 + M̃02Z̃1Z̃2 + Z̃3.O

(
|Z̃1, Z̃2|3

)
,

Z̃ ′
3 = −[p̃1 + k′(I∗)(Hak − H∗)I∗ + p̃3]Z̃3 + O

(
|X̃1, X̃2|3

)
,

(14)

where

L̃20 = βkṽ11ṽ21(q̃12 − q̃11) +
[−p̃4(Hak − H∗)ṽ2

21 + p̃2ṽ21ṽ31
]
(q̃12 − q̃13),

L̃11 = βk(ṽ11ṽ22 + ṽ12ṽ21)(q̃12 − q̃11) + [−2p̃4(Hak − H∗)ṽ21ṽ22 + p̃2ṽ22ṽ31](q̃12 − q̃13),

L̃02 = βkṽ12ṽ22(q̃12 − q̃11) − p̃4(Hak − H∗)ṽ2
22(q̃12 − q̃13),

M̃20 = βkṽ11ṽ21(q̃22 − q̃21) +
[−p̃4(Hak − H∗)ṽ2

21 + p̃2ṽ21ṽ31
]
(q̃22 − q̃23),

M̃11 = βk(ṽ11ṽ22 + ṽ12ṽ21)(q̃22 − q̃21) + [−2p̃4(Hak − H∗)ṽ21ṽ22 + p̃2ṽ22ṽ31](q̃22 − q̃23),

M̃02 = βkṽ12ṽ22(q̃22 − q̃21) − p̃4(Hak − H∗)ṽ2
22(q̃22 − q̃23).

Further, model system (14) possesses a center manifold, that can be locally represented as follows:

W c ={(Z̃1, Z̃2, Z̃3) | Z̃3 = F̃ (Z̃1, Z̃2), |Z̃1|< ε̃1, |Z̃2|< ε̃2, F̃ (0, 0) = DF̃ (0, 0) = 0},
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for very small ε̃1 and ε̃2. Now the system (14) restricted to the center manifold is represented as

{
Z̃ ′

1 = Z̃2 + L̃20Z̃
2
1 + L̃11Z̃1Z̃2 + L̃02Z̃

2
2 ,

Z̃ ′
2 = M̃20Z̃

2
1 + M̃11Z̃1Z̃2 + M̃02Z̃

2
2 .

(15)

Therefore, using the near-identity transformation,

⎧
⎨

⎩

Z̃1 = Ũ1 +
1
2
(L̃11 + L̃02)Ũ 2

1 + M̃02Ũ1Ũ2,

Z̃2 = Ũ2 − L̃20Ũ
2
1 + M̃02Ũ1Ũ2,

(16)

and substituting Ũ1, Ũ2 into Z̃1, Z̃2, we get

{
Z̃ ′

1 = Z̃2,

Z̃ ′
2 = M̃20Z̃

2
1 + M̃11Z̃1Z̃2,

(17)

where M̃20 = M̃20, M̃11 = M̃11 + 2L̃20 and for Bogdanov–Takens bifurcation to be non-degenerate, we consider
M̃20 �= 0 and M̃11 �= 0. Thus, we have the following theorem.

Theorem 6 If there exist critical values β = βk and Ha = Hak, such that M̃20 �= 0 and M̃11 �= 0, then model
system (1) demonstrates a Bogdanov–Takens bifurcation of codimension-2 around the equilibrium E∗.

5 Numerical simulations

This section encompasses the visualization and validation of outcomes obtained in preceding sections through
numerical simulations. To discuss all the obtained dynamical properties, we have chosen a set of hypothetical
parameter values for simulations, which are listed in Table 1. The component of equilibrium E∗ for these parameter
values are obtained as

S∗ = 793 persons, I∗ = 152 persons, H∗ = 88 persons.

The eigenvalues of matrix J∗ are obtained as Φ1, 2 = −0.0036 ± 0.044i, and Φ3 = −0.6095. Here, two eigenvalues
are complex conjugates with negative real parts and one eigenvalue is negative, that confirms the local stability
of equilibrium E∗.

In order to comprehensively depict the dynamics inherent in model system (1), we plot three equilibrium curves
in R0 − I plane, Fig. 5a. The plotted curves correspond to three distinct values of k1, i.e., k1 = 0.0001 (labeled

Table 1 Biological description and considered parameter values in model system (1)

Parameter Description Value

A Immigration rate 20 persons day−1

β Transmission rate of individuals from susceptible class to infected class 0.0002 person−1 day−1

k0 Hospital occupancy rate 0.0005 person−1 day−1

k1 Maximum increment in hospital occupancy rate 0.003 person−1 day−1

m Half saturation constant 10 persons

ν Self recovery rate 0.04 day−1

α Disease induced mortality rate 0.07 day−1

ν1 Hospital recovery rate 0.06 day−1

Ha Count of total hospital beds 100

d Natural mortality rate 0.009 day−1

θ Disease related death proportionality constant of hospitalized population 0.0001
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as 1 ), k1 = 0.0008 (labeled as 2 ), and k1 = 0.005 (labeled as 3 ). This figure shows that the curves distinctly
demonstrate a forward transcritical bifurcation at R0 = 1 and the equilibrium level of infected individuals decreases
with increasing value of k1. Additionally, curve 2 showcases the manifestation of Hopf bifurcation at two distinct
points, while curve 3 exhibits saddle-node bifurcation at two points and Hopf bifurcation at one point. We have
plotted the coefficient a of Theorem 3 against values of k1 within the interval (0, 0.0057) in Fig. 5b. The graph
illustrates that the coefficient a consistently maintains a negative value. Consequently, for the specified range
of parameter values, model system (1) consistently exhibits a transcritical bifurcation in the forward direction.
We have also marked the value of a for k1 = 0.0001, 0.0008, 0.005 with red color dots. To understand the
dynamics exhibits by curve 2 and 3 in more detail, we separately plot the bifurcation diagram in Figs. 6a
and b, respectively. From Fig. 6a, we can see that the equilibrium curve exhibits Hopf bifurcation at R0 ≈ 1.318
(first Lyapunov coefficient (L1) = −1.055 × 10−7) and R0 ≈ 1.707 (L1 = −2.112 × 10−8). As the first Lyapunov
coefficients are negative at these Hopf points, thus both of Hopf points exhibit supercritical nature. Consequently,
stable limit cycles emanate from one of the Hopf points and cease to appear at the other, which reveals that model
system (1) showcases ‘bubbling’ phenomenon between these two points.

Biological significance of Figure 6a: For R0 ∈ (1.318, 1.707), the number of infected individuals exhibits
fluctuations corresponding to the amplitude of the stable limit cycle. This continual oscillation in the infected
population presents a significant challenge for healthcare managers and policymakers in devising effective strategies
to control the prevalence of the infectious disease. The unpredictability inherent in these fluctuations impedes the
implementation of consistent and sustainable intervention measures. Consequently, eradication of the disease from
the population becomes a formidable task.

Further, Fig. 6b shows the bifurcation plot for the curve 3 . This figure illustrates that the equilibrium curve
3 exhibits the emergence of two additional branches as R0 increases. This phenomenon occurs as a result of

saddle-node bifurcation, that takes place at R0 ≈ 1.724 and R0 ≈ 2.058. Among these branches, the upper two
branches are unstable, while the lower one exhibits stability. Also, the equilibrium curve manifests Hopf bifurcation
at R0 ≈ 2.533, which is subcritical in nature. Thus, from the Hopf point, two limit cycles originate from which
the inner limit cycle is unstable, and the outer limit cycle is stable. These two limit cycles collide and cease to
appear through limit cycle bifurcation at R0 ≈ 2.866. Additionally, at R0 ≈ 2.058, the phenomenon of homoclinic
bifurcation transpires, where the stable limit cycle collides with an unstable equilibrium point, resulting in the
discontinuation of the stable limit cycle’s existence. Consequently, the number of infected individuals will always
gravitate towards the equilibrium associated with low endemicity, which is stable or approaches to the stable limit
cycle as t → ∞, whenever R0 ∈ (2.529, 2.866). On the other hand, for R0 ∈ (2.058, 2.529), the solution trajectories
always gravitate towards stable limit cycle.

Biological significance of Figure 6b: When R0 ∈ (1.724, 2.058), the infected population reaches at the equi-
librium level of the lower branch of the equilibrium curve, ensuring that the disease persists in the population.
For R0 ∈ (2.058, 2.529), the number of infected individuals fluctuates, influenced by the amplitude of the stable
limit cycle. In this scenario, decision-making regarding disease eradication becomes highly complex due to the
variability in the number of infected individuals. Furthermore, for R0 ∈ (2.529, 2.866), the number of infected
individuals may either fluctuate based on the stable limit cycle’s amplitude or stabilize at an equilibrium level,
contingent upon the initial size of the infected population within the considered region.

Remark 4 Based on these observed dynamics, it is evident that when healthcare facilities are ample in the affected
area, an increase in logistical infrastructure may actually reduce the equilibrium level of infected individuals.
However, it is important to note that beyond a certain limit, further addition to the logistic infrastructures could
potentially complicate the situation rather than improve it.

Further, we plot the saddle-node curve (black curve) and Hopf curve (white curve) in R0 − Ha bi-parametric
plane for k0 = 0.0007 and k1 = 0.009 (remaining parameter values are same as mentioned in Table 1), Fig. 7.
The saddle-node curve encompasses two cusp points, which are labeled by ‘CP ’. On the other hand, within Hopf
curve, there are two instances of generalized Hopf points, denoted as ‘GH ’, along with a Bogdanov-Takens point,
marked as ‘BT ’. The complete parametric plane is partitioned into four discernible regions by these two curves.
These regions are represented by the colors orange (Region I), purple (Region II), green (Region III), and blue
(Region IV). The proposed system (1) exhibits distinct dynamical behaviors in these regions. In Region I, there
exists an endemic equilibrium point that is unique for this parameter combination. Within Region II, the model
system (1) displays three endemic equilibrium points, with two being unstable and one being stable. Transitioning
to the Region III, an unstable endemic equilibrium point is encompassed by a stable limit cycle. Finally, within
the Region IV, a stable endemic equilibrium point is enclosed by an unstable limit cycle.

We again plot three equilibrium curves for Ha = 50, m = 60, and k1 = 0.0001 (the remaining parameter values
are same as mentioned in Table 1), Fig. 8a. These three curves correspond to k0 = 0.00122 (labeled as 1 ),
k0 = 0.0014 (labeled as 2 ), and k0 = 0.0024 (labeled as 3 ). From this figure, we can see that all the three
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Fig. 2 (a–c) Intersection scenarios of isoclines (4) and (5) for R0 > 1. Blue curve depicts isocline (4) and red curve depicts
isocline (5)

curves showcase backward transcritical bifurcation at R0 = 1. We further plot the coefficient a of Theorem 3,
over the range k0 ∈ (0, 0.0025), Fig. 8b. From this plot, it becomes evident that for k0 > 0.0011, a is consistently
positive, while for k0 < 0.0011, a takes negative values. This observation implies that when k0 > 0.0011, the model
system (1) invariably exhibits a transcritical bifurcation in the backward direction. This intriguing phenomenon
of a backward transcritical bifurcation signifies a crucial insight. It demonstrates that the disease can endure
within the population despite having R0 less than one. This occurrence challenges the conventional understanding,
suggesting that even when the conditions might seemingly not favor the disease’s persistence, certain factors and
dynamics come into play, allowing the disease to persist in the population. This figure also depicts that as the value
of k0 is raised, the equilibrium level of infected individuals experiences a corresponding increase. This observation
emphasizes a vital understanding of how the presence and adequacy of hospital resources and infrastructure
can significantly influence the dynamics of infectious disease transmission. This result suggests that if the total
count of hospital beds within the affected regions remains below a certain critical threshold, the equilibrium
level of infected individuals escalates, even though the basic infrastructure is well-developed and maintained. The
equilibrium curves presented in Fig. 8 also contain Hopf point(s). Therefore, in order to comprehensively grasp the
entire dynamics, we have plotted bifurcation diagrams in Fig. 9 for k0 = 0.00122, k0 = 0.0014, and k0 = 0.0024.
Figure 9a corresponds to the bifurcation diagram associated with k0 = 0.00122. This figure shows the ‘bubbling’
phenomenon between two Hopf points, which occurs at R0 ≈ 1.003 and R0 ≈ 1.06. Notably, these Hopf points
are characterized by their supercritical nature. Therefore, for R0 ∈ (1.003, 1.06), the stable branch of equilibrium
curve converts into an unstable branch. Furthermore, this unstable branch envelops itself with a stable limit cycle.
Also, at R0 = 0.995 the equilibrium curve manifests saddle-node bifurcation. Trajectories for R0 ∈ (0.995, 1)
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Fig. 3 (a–c) Intersection scenarios of isoclines (4) and (5) for R0 = 1. Blue curve depicts isocline (4) and red curve depicts
isocline (5)

exhibit a crucial behavior,i.e., they tend to converge either towards the stable endemic equilibrium or towards the
disease-free equilibrium, contingent upon the initial number of infected individuals.

Biological significance of Figure 9a: The occurrence of saddle-node bifurcation signifies the transition between
persistent disease transmission and potential disease elimination. It underscores the importance of targeted inter-
ventions to control disease spread and highlights the sensitivity of disease outcomes to initial number of infected
individuals when R0 ∈ (0.995, 1). Further, the bubbling phenomenon that occurs for R0 ∈ (1.003, 1.06) signifies a
delicate balance between disease persistence and fluctuations in the infected population. The presence of a stable
limit cycle suggests the potential for recurrent outbreaks or oscillations in disease prevalence, underscoring the
challenges in disease control and eradication efforts.

The bifurcation diagram plotted in Fig. 9b corresponds to k0 = 0.0014. This figure showcases Hopf bifurcation
at R0 ≈ 1.091. Once again, this Hopf bifurcation is of a supercritical type. Consequently, stable limit cycles emerge
as a consequence of the Hopf point, manifesting in the reverse direction. These limit cycles persist until the value
of R0 reaches approximately 0.995, where they cease to exist due to occurrence of homoclinic bifurcation.

Biological significance of Figure 9b: This figure shows that for R0 < 0.995, the disease will be eliminated from
the population, which highlights the importance of maintaining transmission rates below this threshold to prevent
outbreaks. In the range R0 ∈ (0.995, 1.091), the number of infected individuals fluctuates, which is affected by
the amplitude of the limit cycle. This fluctuation underlines the possibility of periodic outbreaks and emphasizes
the need for continued surveillance and intervention strategies to manage disease prevalence within manageable
limits. Conversely, for R0 > 1.091, the disease will persist within the population, creating challenges for control
and mitigation efforts.

Moreover, the bifurcation diagram plotted in Fig. 9c corresponds to k0 = 0.0024. This figure shows that the
equilibrium curve exhibits subcritical Hopf bifurcation at R0 ≈ 1.023. From this Hopf point, two limit cycles (one
stable and one unstable) originate in the forward direction and cease to appear at R0 ≈ 1.078 via limit cycle
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Fig. 4 (a–c)Intersection scenarios of isoclines (4) and (5) for R0 < 1. Blue curve depicts isocline (4) and red curve depicts
isocline (5)

Fig. 5 Equilibrium curves in R0 − I plane for k1 = 0.0001 (labeled as 1 ), k1 = 0.0008 (labeled as 2 ) and k1 = 0.005

(labeled as 3 )
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Fig. 6 Bifurcation plot in R0 − I plane for a k1 = 0.0008 b k1 = 0.005

Fig. 7 Hopf curve (white
curve) and saddle-node
curve (black curve) in
R0 − Ha bi-parametric
plane. Region I has a single
stable endemic equilibrium,
Region II features three
equilibria (two unstable,
one stable), Region III
exhibits a stable limit cycle
around an unstable endemic
equilibrium, and in Region
IV, an unstable limit cycle
surrounds a stable endemic
equilibrium

bifurcation. Also, the stable limit cycle originates in the backward direction, disappears at R0 ≈ 1.001 through
homoclinic bifurcation.

Biological significance of Figure 9c: The depicted figure illustrates critical thresholds in disease dynamics
based on the value of the basic reproduction number (R0). For R0 < 1.001, the disease is likely to be eradicated
from the population. However, within the range R0 ∈ (1.001, 1.023), the presence of a stable limit cycle leads
to fluctuations in the number of infected individuals. This period reflects a delicate balance between disease
transmission and control measures, where the amplitude of the limit cycle influences the magnitude of these
fluctuations. Subsequently, for R0 ∈ (1.023, 1.078), the disease persists within the population, with infected
individuals either stabilizing at an equilibrium level or fluctuating based on the amplitude of the stable limit cycle.

We further plot the Hopf curve, saddle-node curve, and homoclinic curve in R0 − k0 parametric plane for
Ha = 50, m = 60, and k1 = 0.0001 (the remaining parameter values are same as mentioned in Table 1), Fig. 10.
These three curves partition the entire plane into four distinct regions and coincide at the ‘BT’ point. The regions,
visually depicted by blue (Region I), pink (Region II), green (Region III), and orange (Region IV) hues. Within
these demarcated regions, the dynamical behavior of the model (1) exhibits notable variations. At the BT point
(R0, k0) = (0.9825, 0.00137) the proposed system has one endemic equilibrium, which is saddle in nature and
E0, which exhibits stability. Thus, all the solution trajectories move toward E0 as t → ∞. Moreover, within
Region I, the model system (1) possesses solely E0, which is stable. Consequently, when the parameters R0 and
k0 fall within this region, all solution trajectories converge towards E0. In Region II, the proposed system features
two endemic equilibria, both of which are unstable. Consequently, the solution trajectories gravitate towards E0.
Within Region III, the system exhibits two endemic equilibria, both of which are unstable. However, the endemic
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Fig. 8 a Equilibrium curves in R0 − I plane for k0 = 0.00122 (labeled as 1 ), k0 = 0.0014 (labeled as 2 ) and k0 = 0.0024

(labeled as 3 ) b Plot for coefficient of a of Theorem 3 with respect to k0

Fig. 9 Bifurcation plot in R0 − I plane for a k0 = 0.00122 b k0 = 0.0014 (c) k0 = 0.0024
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Fig. 10 Unfolding of BT point in R0 − k0 plane and phase portraits at BT point and corresponding to Region I, II, III,
and IV. In Region I, model system (1) only has a stable disease-free equilibrium. In Region II, there are two unstable
endemic equilibria. In Region III, there are two unstable endemic equilibria, and a stable limit cycle surrounds the endemic
equilibrium with high endemicity. In Region IV, there are two endemic equilibria, one stable and the other unstable

equilibrium associated with higher endemicity is enclosed by a stable limit cycle. As a result, solution trajectories
in this region can either gravitate towards E0 or become attracted to the stable limit cycle. In Region IV, the
model system manifests two endemic equilibria. Among them, the equilibrium characterized by high endemicity
is stable, while the other is saddle. Therefore, the solution trajectories in this region can either gravitate towards
E0 or stable endemic equilibrium. For a more comprehensive understanding of the dynamics within these regions,
Fig. 10 also presents phase portraits corresponding to specific values of R0 and k0 at BT point and the value
chosen from Regions I, II, III, and IV.

6 Discussion

In the realm of epidemic outbreak control and management, the synergy between healthcare facilities and infras-
tructure elements, such as robust road networks and efficient ambulance services, stands as an indispensable
linchpin. In this research paper, we have presented and examined a mathematical model that highlights the criti-
cal role of infrastructure components, in conjunction with healthcare facilities, in efficiently managing an epidemic
outbreak. The analysis of the proposed model revealed its susceptibility to a spectrum of bifurcation phenom-
ena. These include the transcritical bifurcation (backward and forward), saddle-node bifurcation, Hopf bifurcation
(supercritical and subcritical), and codimension-2 Bogdanov-Takens bifurcation. These findings, while complex in
their mathematical expressions, carry profound epidemiological implications. The occurrence of a backward tran-
scritical bifurcation illustrates that the disease can persist within the population even when R0 is less than one.
This occurrence challenges the traditional understanding, indicating that under circumstances where the disease
persistence might appear unlikely, specific factors and dynamics come into play, enabling the disease to endure
within the population.

Additionally, the numerical simulations also reveal that if the total count of hospital beds within the affected
regions remain below a specific critical threshold, the equilibrium level of infected individuals increases, despite well-
developed and maintained basic infrastructure. Furthermore, if the healthcare facilities surpass a certain threshold
quantity, augmenting logistical infrastructure can indeed result in a reduction of the equilibrium level of infected
individuals. Nevertheless, it’s imperative to acknowledge that beyond a specific threshold, further enhancement
to the logistics infrastructure might have the unintended consequence of complicating the situation rather than
improving it. This complication arises due to the occurrence of periodic oscillations via Hopf bifurcation. Thus,
if the availability of healthcare facilities in the affected region is less than a threshold quantity, the increase in
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infrastructure can destabilize the system, which creates complications for policy makers to cause any decision
regarding the control of outbreak.

Future research could delve deeper into the interplay between healthcare infrastructure and epidemic dynamics,
particularly focusing on refining the mathematical model to incorporate additional real-world complexities. Inves-
tigating the impact of dynamic changes in healthcare capacity, such as seasonal variations or sudden surges in
demand, could provide valuable insights into optimal resource allocation strategies during outbreaks. Furthermore,
exploring the role of non-pharmaceutical interventions, such as social distancing measures or public awareness cam-
paigns, in conjunction with infrastructure improvements could offer a comprehensive understanding of epidemic
control mechanisms.
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10. H. Bilgil, A. Yousef, A. Erciyes, U. Erdinç, Z. Ozturk, A fractional-order mathematical model based on vaccinated and
infected compartments of SARS-CoV-2 with a real case study during the last stages of the epidemiological event. J.
Comput. Appl. Math. 425, 115015 (2023). https://doi.org/10.1016/j.cam.2022.115015

11. S. Cakan, Dynamic analysis of a mathematical model with health care capacity for COVID-19 pandemic. Chaos. Solit.
Fractals 139, 110033 (2020). https://doi.org/10.1016/j.chaos.2020.110033

12. C. Castillo-Chavez, B. Song, Dynamical models of tuberculosis and their applications. Math. Biosci. Eng. 1, 361–404
(2004). https://doi.org/10.3934/mbe.2004.1.361

13. Y. Chen, Y. Yang, W. Peng, H. Wang, Influence and analysis of ambulance on the containment of COVID-19 in China.
Saf. Sci. 139, 105160 (2021). https://doi.org/10.1016/j.ssci.2021.105160

14. C.T. Codec, Endemic and epidemic dynamics of cholera: the role of the aquatic reservoir. BMC Infect. Dis. 1, 1–14
(2001). https://doi.org/10.1186/1471-2334-1-1

15. J. Cui, Y. Sun, H. Zhu, The impact of media on the control of infectious diseases. J. Dyn. Diff. Equat. 20, 31–53 (2008).
https://doi.org/10.1007/s10884-007-9075-0

16. S.D. Djiomba Njankou, F. Nyabadza, Modelling the potential impact of limited hospital beds on Ebola virus disease
dynamics. Math. Methods Appl. Sci. 41, 8528–8544 (2018). https://doi.org/10.1002/mma.4789

17. S. Feng, J. Zhang, J. Li, X.F. Luo, H. Zhu, M.Y. Li, Z. Jin, The impact of quarantine and medical resources on the
control of COVID-19 in Wuhan based on a household model. Bull. Math. Biol. 84, 47 (2022). https://doi.org/10.1007/
s11538-021-00989-y

123

https://doi.org/10.1016/j.mbs.2015.11.004
https://doi.org/10.1016/j.mbs.2017.01.009
https://doi.org/10.3390/sym13060947
https://doi.org/10.1016/j.amc.2018.05.042
https://doi.org/10.1016/j.mbs.2004.01.003
https://doi.org/10.1016/j.amc.2020.125919
https://doi.org/10.1097/CCM.0b013e3182374828
https://doi.org/10.1007/s11538-023-01159-y
https://doi.org/10.1016/j.cam.2022.115015
https://doi.org/10.1016/j.chaos.2020.110033
https://doi.org/10.3934/mbe.2004.1.361
https://doi.org/10.1016/j.ssci.2021.105160
https://doi.org/10.1186/1471-2334-1-1
https://doi.org/10.1007/s10884-007-9075-0
https://doi.org/10.1002/mma.4789
https://doi.org/10.1007/s11538-021-00989-y


Eur. Phys. J. Spec. Top.

18. J.K. Ghosh, S.K. Biswas, S. Sarkar, U. Ghosh, Mathematical modelling of COVID-19: a case study of Italy. Math.
Comput. Simul. 194, 1–18 (2022). https://doi.org/10.1016/j.matcom.2021.11.008

19. J. Guo, F. Huang, J. Liu, Y. Chen, W. Wang, B. Cao, Z. Zou, S. Liu, J. Pan, C. Bao, M. Zeng, H. Xiao, H. Gao, S.
Yang, Y. Zhao, Q. Liu, H. Zhou, J. Zhu, X. Liu, W. Liang, Y. Yang, S. Zheng, J. Yang, H. Diao, K. Su, L. Shao, H. Cao,
Y. Wu, M. Zhao, S. Tan, H. Li, X. Xu, C. Wang, J. Zhang, L. Wang, J. Wang, J. Xu, D. Li, N. Zhong, X. Cao, G.F.
Gao, L. Li, C. Jiang, The serum profile of hypercytokinemia factors identified in H7N9-infected patients can predict
fatal outcomes. Sci. Rep. 6, 21230 (2016). https://doi.org/10.1038/srep21230

20. M.E. Halloran, I.M. Longini, A. Nizam, Y. Yang, Containing bioterrorist smallpox. Science 298, 1428–1432 (2002)
21. E. Hammarlund, M.W. Lewis, S.G. Hansen, L.I. Strelow, J.A. Nelson, G.J. Sexton, J.M. Hanifin, M.K. Slifka, Duration

of antiviral immunity after smallpox vaccination. Nat. Med. 9, 1131–1137 (2003). https://doi.org/10.1038/nm917
22. B.F. Haynes, G. Pantaleo, A.S. Fauci, Toward an understanding of the correlates of protective immunity to HIV

infection. Science 271, 324–328 (1996)
23. H.W. Hethcote, The mathematics of infectious diseases. SIAM Rev. (2000). https://doi.org/10.1137/S0036144500371907
24. M.J. Keeling, C.A. Gilligan, Metapopulation dynamics of bubonic plague. Nature 407, 903–906 (2000). https://doi.

org/10.1038/35038073
25. A. Kumar, A. Gupta, U.S. Dubey, B. Dubey, Stability and bifurcation analysis of an infectious disease model with

different optimal control strategies. Math. Comput. Simul. 213, 78–114 (2023). https://doi.org/10.1016/j.matcom.2023.
05.024

26. S. Kundu, H.J. Alsakaji, F.A. Rihan, S. Maitra, R.K. Upadhyay, Investigating the dynamics of a delayed stage-structured
epidemic model with saturated incidence and treatment functions. Eur. Phys. J. Plus 137(1), 171 (2022). https://doi.
org/10.1140/epjp/s13360-022-02351-0

27. R. Liu, J. Wu, H. Zhu, Media/psychological impact on multiple outbreaks of emerging infectious diseases. Comput.
Math. Methods Med. 8(3), 153–164 (2007). https://doi.org/10.1080/17486700701425870

28. L. Lu, M. Jia, Y. Ma, L. Yang, Z. Chen, D.D. Ho, Y. Jiang, L. Zhang, The changing face of HIV in China. Nature 455,
609 (2008). https://doi.org/10.1038/455609a

29. X. Meng, S. Zhao, T. Feng, T. Zhang, Dynamics of a novel nonlinear stochastic SIS epidemic model with double epidemic
hypothesis. J. Math. Anal. Appl. 433(1), 227–242 (2016). https://doi.org/10.1016/j.jmaa.2015.07.056

30. J. Meade, A mathematical model for deriving hospital service areas. Int. J. Health Serv. 4, 353–364 (1974)
31. A.K. Misra, J. Maurya, Allocation of hospital beds on the emergence of new infectious disease: a mathematical model.

Chaos: Interdiscip. J. Nonlinear Sci. 33, 043125 (2023). https://doi.org/10.1063/5.0133703
32. A.K. Misra, J. Maurya, M. Sajid, Modeling the effect of time delay in the increment of number of hospital beds to

control an infectious disease. Math. Biosci. Eng. 19, 11628–11656 (2022). https://doi.org/10.3934/mbe.2022541
33. A.K. Misra, J. Maurya, Bifurcation analysis and optimal control of an epidemic model with limited number of hospital

beds. Int. J. Biomath. 16, 2250101 (2023). https://doi.org/10.1142/S1793524522501017
34. A.K. Misra, J. Maurya, Modeling the importance of temporary hospital beds on the dynamics of emerged infectious

disease. Chaos: Interdiscip. J. Nonlinear Sci. 31, 103125 (2021). https://doi.org/10.1063/5.0064732
35. J. Maurya, K.B. Blyuss, A.K. Misra, Modeling the impact of hospital beds and vaccination on the dynamics of an

infectious disease. Math. Biosci. 368, 109133 (2024). https://doi.org/10.1016/j.mbs.2023.109133
36. National Academies of Sciences, Engineering, and Medicine (Moving upstream to improve the nation’s health, Integrat-

ing social care into the delivery of health care, 2019)
37. J. Pang, J.A. Cui, J. Hui, Rich dynamics of epidemic model with sub-optimal immunity and nonlinear recovery rate.

Math. Comput. Model. 54, 440–448 (2011). https://doi.org/10.1016/j.mcm.2011.02.033
38. L. Perko, Differential equations and dynamical systems. Springer Science & Business Media 7 (2013)
39. F.A. Rihan, H.J. Alsakaji, C. Rajivganthi, Stochastic SIRC epidemic model with time-delay for COVID-19. Adv. Differ.

Equ. 2020(1), 502 (2020). https://doi.org/10.1186/s13662-020-02964-8
40. S. Samanta, Study of an epidemic model with Z-type control. Int. J. Biomath. 11, 1850084 (2018)
41. C. Shan, H. Zhu, Bifurcations and complex dynamics of an SIR model with the impact of the number of hospital beds.

J. Differ. Equ. 257, 1662–1688 (2014). https://doi.org/10.1016/j.jde.2014.05.030
42. Q. Sun, T. Miyoshi, S. Richard, Analysis of COVID-19 in Japan with extended SEIR model and ensemble Kalman

filter. J. Comput. Appl. Math. 419, 114772 (2023). https://doi.org/10.1016/j.cam.2022.114772
43. P. Tamilalagan, B. Krithika, P. Manivannan, S. Karthiga, Is reinfection negligible effect in COVID-19? A mathematical

study on the effects of reinfection in COVID-19. Math. Methods Appl. Sci. 46(18), 19115–19134 (2023). https://doi.
org/10.1002/mma.9614

44. J.A. Tenreiro Machado, J. Ma, Nonlinear dynamics of COVID-19 pandemic: modeling, control, and future perspectives.
Nonlinear Dyn. 101, 1525–1526 (2020). https://doi.org/10.1007/s11071-020-05919-6

45. P. Van den Driessche, J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental
models of disease transmission. Math. Biosci. 180, 29–48 (2002). https://doi.org/10.1016/S0025-5564(02)00108-6

46. A. Wang, Y. Xiao, H. Zhu, Dynamics of a Filippov epidemic model with limited hospital beds. Math. Biosci. Eng. 15,
739 (2018). https://doi.org/10.3934/mbe.2018033

47. Y. Xu, L. Wei, X. Jiang, Z. Zhu, Complex dynamics of a SIRS epidemic model with the influence of hospital bed
number. Discret. Contin. Dyn. Syst. Ser. B. 26, 6229–6252 (2021). https://doi.org/10.3934/dcdsb.2021016

48. L. Zhou, M. Fan, Dynamics of an SIR epidemic model with limited medical resources revisited. Nonlinear Anal. Real
World Appl. 13(1), 312–324 (2012). https://doi.org/10.1016/j.nonrwa.2011.07.036

123

https://doi.org/10.1016/j.matcom.2021.11.008
https://doi.org/10.1038/srep21230
https://doi.org/10.1038/nm917
https://doi.org/10.1137/S0036144500371907
https://doi.org/10.1038/35038073
https://doi.org/10.1016/j.matcom.2023.05.024
https://doi.org/10.1140/epjp/s13360-022-02351-0
https://doi.org/10.1080/17486700701425870
https://doi.org/10.1038/455609a
https://doi.org/10.1016/j.jmaa.2015.07.056
https://doi.org/10.1063/5.0133703
https://doi.org/10.3934/mbe.2022541
https://doi.org/10.1142/S1793524522501017
https://doi.org/10.1063/5.0064732
https://doi.org/10.1016/j.mbs.2023.109133
https://doi.org/10.1016/j.mcm.2011.02.033
https://doi.org/10.1186/s13662-020-02964-8
https://doi.org/10.1016/j.jde.2014.05.030
https://doi.org/10.1016/j.cam.2022.114772
https://doi.org/10.1002/mma.9614
https://doi.org/10.1007/s11071-020-05919-6
https://doi.org/10.1016/S0025-5564(02)00108-6
https://doi.org/10.3934/mbe.2018033
https://doi.org/10.3934/dcdsb.2021016
https://doi.org/10.1016/j.nonrwa.2011.07.036


Eur. Phys. J. Spec. Top.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing
agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this
article is solely governed by the terms of such publishing agreement and applicable law.

123


	Prospective impact of healthcare facilities and infrastructure on infectious disease outbreak dynamics: a modeling study
	1 Introduction
	2 The mathematical model
	3 Basic properties
	3.1 Model equilibrium and basic reproduction number
	3.2 Local stability analysis

	4 Bifurcation analysis
	4.1 Transcritical bifurcation
	4.2 Saddle-node bifurcation
	4.3 Hopf bifurcation
	4.3.1 Bogdanov–Takens bifurcation


	5 Numerical simulations
	6 Discussion
	References
	References


