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A B S T R A C T

RNA interference (RNAi) is a fundamental cellular process that inhibits gene expression through cleavage

and destruction of target mRNA. It is responsible for a number of important intracellular functions, from

being the first line of immune defence against pathogens to regulating development and morphogenesis.

In this paper we consider a mathematical model of RNAi with particular emphasis on time delays

associated with two aspects of primed amplification: binding of siRNA to aberrant RNA, and binding of

siRNA to mRNA, both of which result in the expanded production of dsRNA responsible for RNA silencing.

Analytical and numerical stability analyses are performed to identify regions of stability of different

steady states and to determine conditions on parameters that lead to instability. Our results suggest that

while the original model without time delays exhibits a bi-stability due to the presence of a hysteresis

loop, under the influence of time delays, one of the two steady states with the high (default) or small

(silenced) concentration of mRNA can actually lose its stability via a Hopf bifurcation. This leads to the

co-existence of a stable steady state and a stable periodic orbit, which has a profound effect on the

dynamics of the system.

� 2016 Elsevier B.V. All rights reserved.
1. Introduction

RNA interference is a complex biological process that occurs in
many eukaryotes and fulfils a regulatory role by allowing control
over gene expression (He and Hannon, 2004; Hannon, 2002;
Ketting et al., 2001), while also providing an effective immune
response against viruses and tranposons through its ability to
target and destroy specific mRNA molecules (Mandadi and
Scholthof, 2013; Agius et al., 2001). This multi-step process is
mediated by double-stranded RNAs (dsRNA) of different lengths
that are generated by an inverted-repeat transgene, or an invading
virus during its replication process (Vaucheret et al., 2001; Sharma
et al., 2013). A very simple description of the core pathway is as
follows. The presence of transgenic or viral dsRNA triggers an
immune response within the host cell, whereby the foreign RNA is
targeted by specialised enzymes called dicers (DLC). These
enzymes cleave the target RNA into short 21–26 nucleotide long
molecules, named short interfering RNAs (siRNA) or microRNA
(miRNA), which can subsequently be used to assemble a protein
complex, called the RNA-induced silencing complex (RISC). This
specialised complex can recognise and degrade RNAs containing
complementary sequences into garbage RNA that can no longer be
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translated into a functioning protein, thus leading to the
translational arrest of the viral or transgenic RNA (Escobar and
Dandekar, 2003; Elbashir et al., 2001). While the core pathway
might be sufficient to describe RNA interference in mammals, for
other organisms it is possible that the process is not strictly limited
to the molar concentration of siRNA at the initiating site, but can
spread systemically (Palauqui et al., 1997; Melnyk et al., 2011;
Zhang and Ruvkun, 2012).

In the studies of RNA interference in the nematode Caenor-

habditis elegans, it was observed that a notable portion of the
produced siRNA was not derived directly from the initialising
dsRNA, suggesting a presence of a mechanism in which some
additional dsRNA could be generated (Sijen et al., 2001). To account
for this discovery, primed and unprimed amplification pathways
were proposed, in which an RNA-dependent RNA polymerase
(RdRp) or RNA replicase could synthesise the additional unac-
counted dsRNA (Lipardi et al., 2001; Makeyev and Bamford, 2002).
In the case of primed amplification, it is postulated that when
assisted by RdRP, the siRNA which binds on mRNA can itself
initialise dsRNA synthesis, thus generating a new round of dsRNAs
ready to be used in the process. On the other hand, unprimed
amplification describes the situation where dsRNA synthesis
occurs without the assistance of the primer RdRP, but instead
relies on the presence of garbage RNA to facilitate synthesis. As in
most complex biological processes, RNAi carries risks and is prone
to different errors, as it necessitates the host’s ability to correctly
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discriminate between endogenous and exogenous mRNA
(Giordano et al., 2002). Thus, any invading viral sequences with
cross-reactive similarities or accidental production of anti-sense
transcripts corresponding to self genes can result in a self-reactive
response that can be extremely damaging to the host. To limit the
self-damage caused by the feed-forward amplification in RNAi, a
protection mechanism has been proposed in Pak et al. (2012).

A number of mathematical models have considered different
aspects of RNAi in its roles of immune guard against viral
infections, as well as an attractive tool for targeted gene silencing
that is important for gene therapies. One of the earliest models was
developed and analysed by Bergstrom et al. (2003). These authors
focused on the issue of avoiding self-directed gene silencing during
RNAi and hypothesised that this can be achieved via unidirectional

amplification, whereby silencing only persists in the presence of a
continuing input of dsRNA, thus acting as a safeguard against a
sustained self-damaging reaction, or, in the case of viral infection,
ending the process once the infection is cleared. This model was
extended by Groenenboom et al. (2005), who analysed primed and
unprimed amplification pathways to account for the dsRNA
dosage-dependence of RNAi and to correctly describe the nature
of transient and sustained silencing. Groenenboom and Hogeweg
(2008) and Rodrigo et al. (2011) have analysed how viral
replication is affected by its interactions with RNAi for plus-
stranded RNA viruses, with particular account for different viral
strategies for evading host immune response.

Similarly to natural or artificial control systems, biological
systems also possess intrinsic delays that arise from the lags in the
sensory process of response-initiating variables, the transportation
of components that regulate biological interactions, after-effect
phenomena in inner dynamics and metabolic functions, including
the times necessary for synthesis, maturation and reproduction of
cells and whole organisms (Richard, 2003; Just et al., 2010; Parmar
et al., 2015). These delays can often lead to changes in stability and
play a significant role in modelling control systems that typically
involve a feedback loop. On the other hand, mathematical models
without time delays are based on the assumption that the
transmission of signals and biological processes occur instan-
taneously. Although the timescale associated with these delays can
sometimes be ignored, for instance, when the characteristic
timescales of the model are very large compared to the observed
delays, there are clear cases where the present and future state of a
system depend on its past history. In such situations, dynamics of
the system can only be accurately described with delay differential
equations rather than the traditional ordinary differential equa-
tions. Due to the non-instantaneous nature of the complex
processes involved in RNA interference, it is biologically feasible
to explicitly include time delays associated with the times required
for transport of RNAi components, and assembly of different
complexes. Nikolov and Petrov (2007) and Nikolov et al. (2009)
have considered the effects of such time delays within a single
amplification pathway as modelled by Bergstrom et al. (2003). Un-
der a restrictive and somewhat unrealistic assumption that the
natural degradation of RISC-mRNA complex takes place at exactly
the same speed as formation of new dsRNA, the authors have
shown how time delays can induce instability of the model steady
state, thus disrupting gene silencing and causing oscillations.

In the context of siRNA-based treatment, Bartlett and Davis
(2006) have performed a detailed analysis of the process of siRNA
delivery and its interaction with the RNAi machinery in
mammalian cells, and compared it to experimental results in
mural cell cultures. This model and associated experiments have
provided significant insights into optimising the dosage and
scheduling of the therapeutic siRNA-mediated gene silencing. Raab
and Stephanopoulos (2004) also considered siRNA dynamics in
mammalian cells with an emphasis on two-gene systems with
different kinetics for the two genes. Arciero et al. (2004) studied a
model of siRNA-based tumour treatment which targets the
expression of TGF-b, thus reducing tumour growth and enhancing
immune response against tumour cells.

Since originally RNA interference was discovered in plants
(Napoli et al., 1990), which present a very convenient framework
for experimental studies of RNAi, a number of mathematical
models have considered specific aspects of the dynamics of viral
growth and its interactions with RNAi in plants. Groenenboom and
Hogeweg (2008) have analysed a detailed model for the dynamics
of intra- and inter-cellular RNA silencing and viral growth in
plants. This spatial model has demonstrated different kinds of
infection patterns that can occur on plant leaves during viral
infections. More recently, Neofytou et al. (2016) have analysed the
effects of time delays associated with the growth of new plant
tissue and with the propagation of the gene silencing signal. They
have shown that a faster propagating silencing signal can help the
plant recover faster, but by itself is not sufficient for clearance of
infection. On the other hand, a slower silencing signal can lead to
sustained periodic oscillations around a chronic infection state. In a
very important practical context of viral co-infection, Neofytou
et al. (2016) have studied how the dynamics of two viruses
simultaneously infecting a single host is mediated by the RNAi.

In this paper we consider a model of RNAi with primed
amplification, and focus on the role of two time delays associated
with the production of dsRNA directly from mRNA, or from
aberrant RNA. An important result obtained in this study is partial
destruction of the hysteresis loop: while the original model
without time delays is bi-stable, under the influence of time delays,
the steady state with either the smallest or the highest
concentration of mRNA can lose its stability via a Hopf bifurcation.
This leads to the co-existence of a stable steady state and a stable
periodic orbit, which has a profound effect on the dynamics of the
system. When the default steady state is destabilised by the time
delays, our numerical analysis shows that the system will always
converge to the silenced steady state. On the other hand, in
parameter regimes where time delays destabilise the silenced
steady state, the system will either converge to the default steady
state, or it will oscillate around the unstable steady state
depending on the initial conditions. In fact, under the influence
of time delays, one would requires an even higher initial dosage of
dsRNA to achieve sustained silencing. However, when there is
stable periodic orbit around the silenced steady state, one would
also have to consider the amplitude of these oscillations and how it
may affect the phenotypic stability of the species in question. Thus,
the augmented model exhibits an enriched dynamical behaviour
compared to its predecessor which otherwise can only be
replicated by different extensions to the core pathway, like the
RNase model developed in Groenenboom et al. (2005), which
assumes the presence of a specific siRNA-degrading RNase with
saturating kinetics. The outline of the paper is as follows. In the
next section we introduce the model and discuss its basic
properties. In Section 3 we identify all steady states of the model
together with conditions for their biological feasibility.
Sections 4 and 5 are devoted to the stability analysis of these
steady states depending on model parameters, including numeri-
cal bifurcation analysis and simulations of the model that illustrate
different types of dynamical behaviour. The paper concludes in
Section 6 with the discussion of results and open problems.

2. Model derivation

To analyse the dynamics of RNAi with primed amplification,
following (Groenenboom et al., 2005) we consider the populations
of mRNA, dsRNA, siRNA and garbage (aberrant) RNA, to be denoted
by M(t), D(t), S(t) and G(t), respectively. It is assumed that mRNA is
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constantly transcribed by each transgene at rate h, with n1 being
the number of transgenic copies, and is degraded at the rate dm. For
simplicity, it will be assumed that each transgene produces the
same amount of mRNA. Some dsRNA is synthesised directly from
mRNA through the activity of RdRp at a rate p. The available dsRNA
is cleaved by a dicer enzyme into n2 siRNA molecules at a rate a. In
this model it is assumed that siRNA is involved into forming two
distinct complexes that use the siRNA as a guide to identify and
associate with different categories of RNA strands to initiate the
dsRNA synthesis. The first is the RISC complex responsible for
degrading mRNA into garbage RNA, which decays naturally at a
rate dg > dm. For simplicity, the RISC population is not explicitly
included in the model, but it is rather assumed that siRNA directly
associates with mRNA at a rate b1. The second complex guided by
siRNA binds mRNA aberrant (garbage) RNA, and subsequently is
primed by RdRp to synthesise additional dsRNA (primed amplifi-
cation). To avoid unnecessary complexity, the second complex will
also be represented implicitly by assuming that siRNA directly
associates with mRNA and garbage RNA for the purpose of dsRNA
synthesis at the rates b2 and b3 respectively. At this point, we
include two distinct time delays t1 and t2 to represent the delays
inherent in the production of dsRNA from mRNA and garbage RNA,
respectively. With these assumptions, the system describing the
dynamics of different RNA populations takes the form

dM

dt
¼ n1h�dmMðtÞ�pMðtÞ�b1SðtÞMðtÞ�b2SðtÞMðtÞ;

dD

dt
¼ pMðtÞ�aDðtÞ þ b2Sðt�t1ÞMðt�t1Þ þ b3Sðt�t2ÞGðt�t2Þ;

dS

dt
¼ n2aDðtÞ�dsSðtÞ�b1SðtÞMðtÞ�b2SðtÞMðtÞ�b3SðtÞGðtÞ;

dG

dt
¼ n3b1SðtÞMðtÞ�dgGðtÞ�b3SðtÞGðtÞ;

(1)

with the initial conditions

MðsÞ ¼ M0ðsÞ�0; s2 ½�t1;0�; GðsÞ ¼ G0ðsÞ�0; s2 ½�t2;0�;
SðsÞ ¼ S0ðsÞ�0; s2 ½�t;0�; t ¼maxft1; t2g; Dð0Þ�0:

(2)

Before proceeding with the analysis of the model (1), we have to
establish that this system is well-posed, i.e. its solutions are non-
negative and bounded.

Remark. Invariance of the positive orthant follows straightfor-
wardly from the Theorem 5.2.1 in Smith (1995). Existence, unique-
ness and regularity of solutions M(t), D(t), S(t), G(t) of the system
(1) with the initial conditions (2) follow from the standard theory
discussed in Kuang (1993), Smith (2010).
Theorem 2.1. Suppose there exists a time T > 0, such that the solution

D(t) of the model (1) satisfies the condition DðtÞ�D̂ for all t � T with

D̂>0. Then, the solutions M(t), S(t), G(t) of the model (1) are bounded

for all t � T.

Proof. Suppose t � T. Using the non-negativity of solutions, one
can rewrite the first equation of the system (1) in the form

dM

dt
�n1h�ðdm þ pÞMðtÞ ) MðtÞ�M̂ ¼ n1h

dm þ p
þMð0Þ;

which shows that M(t) is also bounded for t � T. The last equation
of (1) can now be rewritten as follows

dG

dt
�SðtÞ n3b1M̂�b3GðtÞ

h i
�dgGðtÞ:

Since S(t) � 0, this inequality suggests that if Gð0Þ< Ĝ ¼ n3b1M̂=b3,
then initially it may increase, but it will never reach the value of
Ĝ. Similarly, if initially Gð0Þ� Ĝ, then G would be monotonically
decreasing, and once its value is below Ĝ, it would never go above
it. Hence, G is also bounded for t � T.

The third equation of the system (1) can be recast in the form

dS

dt
�n2aD̂�dsSðtÞ:

Using the assumption of boundedness of D and the comparison
theorem, one then has

SðtÞ�n2aD̂

ds
1�e�dst
� �

þ Sð0Þe�dst�Ŝ ¼ n2aD̂

ds
þ Sð0Þ;

which implies that S(t) is bounded for t � T.

Hence, one concludes the existence of upper bounds Ŝ, M̂ and Ĝ,
such that SðtÞ�Ŝ, MðtÞ�M̂ and GðtÞ�Ĝ for all t � T, which concludes
the proof.

&

Remark. In all our numerical simulations, including the ones
presented in Section 5, the solutions of the system (1) always
satisfied the condition that D(t) remains bounded, which, in light of
Theorem 2.1, implies boundedness of all other state variables.

3. Steady states and their feasibility

Steady states of the system (1) are given by non-negative roots
of the following system of algebraic equations

n1h�dmM�pM�b1SM�b2SM ¼ 0;
pM�aDþ b2SM þ b3SG ¼ 0;
n2aD�dsS�b1SM�b2SM�b3SG ¼ 0;
n3b1SM�dgG�b3SG ¼ 0:

(3)

It is straightforward to see that the system (3) does not admit
solutions with M = 0, as this would immediately violate the first
equation due to the presence of the constant transcription of
mRNA. Substituting S = 0 into the third equation implies D = 0, and
due to the second equation this then implies M = 0, which is
impossible. Hence, there can be no steady states with either D or S

being zero. Similarly, if G = 0, the last equation implies
SM = 0 which again is not possible. Thus, the system can only
exhibit steady states where all components are non-zero.

Let us introduce the following auxiliary parameters

b ¼ b1 þ b2; ĥ ¼ n1h: (4)

Assuming S* � 0, one can solve the first equation of (3) to obtain

M� ¼ MðS�Þ ¼ ĥ

pþ dm þ bS�
>0: (5)

Adding the second and the third equations of the system (3) gives

D� ¼ DðS�Þ ¼ bdsS
�2 þ ðĥb1 þ pds þ dmdsÞS��ph

a½pþ dm þ bS��ðn2�1Þ
: (6)

One should note that for S* � 0 and n2 � 1, D* � 0 if and only if the
following condition holds

bdsS
�2 þ ðb1hĥþ dmds þ dspÞzS��hp>0; (7)

which implies that S* must satisfy

S� � Smin ¼
�zþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4 bdsphþ z2

p
2bds

; z ¼ b1hĥþ dmds þ dsp: (8)
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From the last equation of the system (3) and using the expression
for M* we obtain

G� ¼ GðS�Þ ¼ ĥn3b1S�

ðpþ dm þ bS�Þðb3S� þ dgÞ
>0: (9)

Substituting these values back into the third equation of the
system (3) one obtains the following cubic equation for S*

QðS�Þ ¼ a3S3 þ a2S2 þ a1Sþ a0 ¼ 0; (10)

where

a0 ¼ �ĥpdgn2 <0; a3 ¼ bb3ds >0;

a1 ¼ ĥ½dgb�n2ðpb3 þ dgb2Þ� þ dgdsðpþ dmÞ;
a2 ¼ ĥ½b1b3ð1þ n3�n2n3Þ þ b2b3ð1�n2Þ� þ b3dsðpþ dmÞ þ bdgds:
a ¼ b1n3MSG�1 þ an2DS�1 þ aþ ĥM�1;
b1 ¼ �ab2n2M; b2 ¼ �an2b3G;

b3 ¼
ab1n3ðn2Dþ SÞM

G
þ an2ðaM þ ĥÞD

MS
þ ĥðb1n3SM þ aGÞ

MG
�b2SM þ b3dgG;

g1 ¼ ab2n2½ðbG�b1n3ÞSMG�1�ĥ�;g2 ¼ �an2b3½b1n3SM þ ðdg þ ĥM�1ÞG�;
g3 ¼ bb1n3MS2ðb3 þ bMG�1Þ þ an2D½b1n3G�1ðaþ ĥÞ þ aĥG�1M�1� þ ĥðab1n3SG�1 þ b3dgGM�1Þ þ a½b3dgGþMðb2Sþ bpn2Þ�;
d1 ¼ ab1b2n2n3MSðbSM�ĥÞG�1; d2 ¼ an2b3½b1n3SðbMS�ĥÞ�ĥdgGM�1�;
d3 ¼ abb1n3MS½pn2MG�1�Sðb3 þ bMG�1Þ� þ aĥðab1n2n3G�1 þ b3dgGM�1Þ:
It is obvious that the cubic Q(S*) has at least one positive real root
for any ni � 1, i = 1, 2, 3 . In fact, by using Descartes’s rule of signs
one can deduce that this cubic has exactly one positive and two
negative roots, with the exception of a2 < 0 and a1 > 0, when it
admits three positive roots. We can summarise this in the
following theorem.

Theorem 3.1. Let

D ¼ 18a3a2a1a0�4a3
2a0 þ a2

2a
2
1�4a3a

3
1�27a2

3a
2
0 (11)

be the discriminant of Eq. (10). Then Eq. (10) has three distinct real

roots if and only if D � 0, and it has three real roots with one double

root if D = 0. Therefore, there will be a single feasible equilibrium if

either a2 � 0; or a1 � 0; or a2 < 0, a1 > 0, and D < 0. On the other

hand, if a2 < 0 and a1 > 0, and D > 0, then there are exactly three

distinct feasible equilibria. For the degenerate situation of D = 0, when

a2 < 0 and a1 > 0, anything between one and three distinct feasible

equilibria is possible.

4. Stability analysis

Linearisation of the delayed system (1) around the steady state
E = (M*, D*, S*, R*) yields the following characteristic equation

PðlÞ ¼ p4l
4 þ p3l

3 þ p2l
2 þ p1lþ p0 ¼ 0; (12)

where the coefficients pi, i = 0, . . ., 4, are given in Appendix, and for
convenience of notation we have dropped stars next to the steady
state values and introduced auxiliary parameters Ti = e�

lti, i = 1,
2. In the case of instantaneous primed amplification, i.e. for
T1,2 = 1 in (12), any steady state (M*, S*, D*, G*) defined in
Theorem 3.1 is linearly asymptotically stable, if the appropriate
Routh-Hurwitz conditions are satisfied, i.e if p0, . . ., p4 > 0,
p3p2 > p1p4, and p3p2p1 > p4p2

1 þ p2
3p0.
4.1. Single primed amplification delay

As a first case, we consider a situation where one of the primed
amplification delays is negligibly small compared to other
timescales of the model, so that that part of the amplification
pathway can be considered to take place instantaneously.
Formally, this can be represented by tn > 0 for some n = 1, 2,
with tm = 0 for m 6¼ n. In this case, analysis of the distribution of
roots of the characteristic equation follows the methodology of
Ruan and Wei (2001). The first step is to rewrite the characteristic
equation (12) in the form

l4 þ al3 þ ðb1T1 þ b2T2 þ b3Þl
2 þ ðg1T1 þ g2T2 þ g3Þl

þ ðd1T1 þ d2T2 þ d3Þ ¼ 0; (13)

where
If one of the delays tm is zero, we have
l4 þ al3 þ ðbnTn þ b̂mÞl
2 þ ðgnTn þ ĝmÞlþ ðdnTn þ d̂mÞ ¼ 0;

(14)

where

b̂m ¼ bm þ b3; ĝm ¼ gm þ g3; d̂m ¼ dm þ d3:

To investigate whether this equation can have purely imaginary
roots, we substitute l = iv with some v > 0 and separate real and
imaginary parts, which yields the following system of equations

vgnsinðvtnÞ þ ðdn�v2bnÞcosðvtnÞ ¼ v2ðb̂m�v2Þ�d̂m;
vgncosðvtnÞ�ðdn�v2bnÞsinðvtnÞ ¼ vðav2�ĝmÞ:

(15)

Squaring and adding these two equations gives the equation for the
Hopf frequency v

hðvÞ ¼ v4 þ c3v3 þ c2v2 þ c1vþ c0 ¼ 0; v ¼ v2; (16)

with

c0 ¼ d̂m

2
�d2

n; c1 ¼ 2ðbndn�b̂md̂mÞ þ ĝ2
m�g2

n;

c2 ¼ 2ðd̂m�aĝmÞ þ b̂
2

m�b2
n; c3 ¼ a2�2b̂m:

Let us assume that Eq. (16) has four distinct positive roots denoted
by v1, v2, v3 and v4. This implies that Eq. (14) in turn has four purely
imaginary roots l = ivk, k = 1, . . ., 4, where

v1 ¼
ffiffiffiffiffi
v1
p

; v2 ¼
ffiffiffiffiffi
v2
p

; v3 ¼
ffiffiffiffiffi
v3
p

; v4 ¼
ffiffiffiffiffi
v4
p

: (17)

With the help of auxiliary parameters

F1¼ wvgn; F2¼dn�w2bn;H1¼w2ðb̂m�w2Þ�d̂m;H2¼wðaw2�ĝmÞ;

one can rewrite the system (15) in the form

F1sinðwtnÞ þ F2cosðwtnÞ ¼ H1;
F1cosðwtnÞ�F2sinðwtnÞ ¼ H2: (18)
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From this system we obtain

tanðwtnÞ ¼
F1H1�F2H2

H1F2 þ H2F1
; (19)

which gives the values of the critical time tn for each k = 1, . . ., 4,
and any j2N as
tðjÞn;k ¼
1

vk
ðj�1Þpþ arctan

ðabn�gnÞv5
k þ ðb̂mgn�adn�ĝmbnÞv3

k þ ðĝmdn�d̂mgnÞ
bnv

6
k þ ðagn�b̂mbn�dnÞv4

k þ ðb̂mdn þ d̂mbn�ĝmgnÞv2
k�d̂mdn

 !" #
: (20)
This allows us to define the following:

t�n ¼ tðj0Þ
n;k0
¼ min1�k�4; j�1ft

ðjÞ
n;kg; v0 ¼ vk0

: (21)

In order to establish whether the steady state Ej, j = 1, 2, 3,
actually undergoes a Hopf bifurcation at tn ¼ t�n, one has to
compute the sign of d½Relðt�nÞ�=dtn. Differentiating Eq. (14) with
respect to tn yields

dl
dtn

� ��1

¼ ð4l3 þ 3al2 þ 2b̂mlþ ĝmÞeltn þ 2bnlþ gn

lðbnl
2 þ gnlþ dnÞ

� tn

l
:

Introducing the notation U ¼ v2
0½v2

0g
2
n þ ðdn�bnv

2
0Þ

2�, it is clear
that U > 0 for all v0 > 0, and

dRelðt�nÞ
dtn

� ��1

¼ 1

U
Acosðw0tnÞ þ Bsinðw0tnÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

:¼G

þ2bnw2
0ðdi�bnw2

0Þ�g2
nw2

0

2
64

3
75;

(22)

where

A ¼ 2v2
0ðb̂m�2v2

0ÞF2 þv0ð3av2
0�ĝmÞF1;

B ¼ �v0ð3av2
0�ĝmÞF2 þ 2v2

0ðb̂m�2v2
0ÞF1;

G ¼ 2v2
0ðb̂m�2v2

0ÞH1 þv0ð3av2
0�ĝmÞH2:

Consequently, with v0 ¼ w0
2 one can write d½Relðt�nÞ�=dtn as

follows

dRelðt�nÞ
dtn

� ��1

¼ 1

U
4w0

8 þ 3c3w0
6 þ 2c2w0

4 þ c1w0
2

� 	
¼ 1

U
4v0

4 þ 3c3v0
3 þ 2c2v0

2 þ c1v0

� 	
¼ v0

U
h0ðv0Þ;

(23)

where hðvÞ is defined in (16). Since v0 ¼ w0
2 >0, this implies

sign
dRelðtn

�Þ
dtn

� �
¼ sign

dRelðtn
�Þ

dtn

� ��1
" #

¼ sign
v0h0ðv0Þ

U


 �
¼ sign h0ðv0Þ

� 	
:

We can therefore conclude the following result.

Theorem 4.1. Let the coefficients of the characteristic equation at the

steady state Ej, j = 1, 2, 3, with t1,2 = 0, be given by (12). Suppose these

coefficients satisfy the Routh-Hurwitz criteria, namely, p0, . . ., p4 > 0,

p3p2 > p1p4, and p3p2p1 > p4p2
1 þ p2

3p0. Additionally, let v0 and t�n,

n = 1, 2, be defined as in (21) with h0ðv2
0Þ>0, where tm = 0 for m 6¼ n.

Then, the steady state Ej of the system (1) is stable for tn < t�n, unstable

for tn > t�n, and undergoes a Hopf bifurcation at tn ¼ t�n.
Remark. The Theorem 4.1 only holds if the quartic (16) has at least
one positive real root, which is guaranteed in the special case of
c0 < 0. However, when c0 � 0, it is impractical to consider the
analytical distribution of roots. Hence, one would have to compute
these roots numerically to verify the assumptions of the theorem.
4.2. Garbage- and mRNA-associated amplification delays are non-zero

Let us now consider the most complex situation where both
time delays t1 and t2 associated with the primed amplification are
positive. In this case the characteristic equation (12) can be
rearranged into the following equation

sðlÞ ¼ s0ðlÞ þ s1ðlÞe�lt1 þ s2ðlÞe�lt2 ¼ 0; (24)

where

s0 ¼ ½s01ðlþ dgÞ þ s02�ðlþ aÞ þ abpn2SM2ðlþ dgÞ;
s1 ¼ ab2n2MSðb3Sþ lþ dgÞðbMS�lM�ĥÞ;

s2 ¼ �ab3n2S �bb1n3M2S2 þ b3Sþ lþ 2 dg

� 

ðlM þ ĥÞG

h i
;

s01 ¼ �S2M2 þ Dal n2 þ Sl2
� �

M þ ĥlSþ aĥn2D;

s02 ¼ �bb3ðb1n3 þ bÞM2 þ b3ðan2Dþ dgGÞðlM þ ĥÞS
þb3lðlM þ ĥSÞS2:

To analyse the distribution of roots of Eq. (24) we follow the
methodology introduced by Gu et al. (2005) and subsequently
used for analysis of other systems with multiple time delays
(Neofytou et al., 2016; Blyuss et al., 2008). Let T denote the
stability crossing curves which is the set of all the crossing points

ðt1; t2Þ 2R2
þ, for which the characteristic polynomial s(l) has at

least one purely imaginary root. Introducing the parameterisa-
tion

dkðlÞ ¼
sjðlÞ
s0ðlÞ

; k ¼ 1;2; (25)

Eq. (24) transforms into

dðl; t1; t2Þ ¼ 1þ d1ðlÞe�lt1 þ d2ðlÞe�lt2 ¼ 0: (26)

It is important to note that this parameterisation is only valid as
long as s0 does not have any imaginary zeros. Hence, by
Proposition 3.1 in Gu et al. (2005), for each v 6¼ 0, l = iv is a
solution of s(l, t1, t2) = 0 for some ðt1; t2Þ 2R2

þ if and only if
(i) G
iven s0(iv) 6¼ 0

jd1ðivÞj þ jd2ðivÞj �1;
�1� jd1ðivÞj�jd2ðivÞj�1:

(27)

Given s0(iv) = 0,
(ii)
js1ðivÞj ¼ js2ðivÞj: (28)

Let V denote the crossing set, i.e the set of all v > 0 which satisfy the
conditions (i),(ii) above. This set consists of N intervals with a finite
length. Moreover, if the intervals are ordered such that the left-end
point of Vk is an increasing function of k, k = 1, 2, . . ., N, then we have
that

V ¼
[N

k¼1
Vk: (29)

Thus, for any given v 2V satisfying sj(iv) 6¼ 0, j = 0, 1, 2, the
critical time delay pairs satisfying s(l, t1, t2) = 0 with l = iv are
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given by

ðt�1; t�2Þ 2 T ¼ T vjv2V
� �

;

T v ¼
[

u�uþ
0
;v� vþ

0

T þv;u;v
� �

[
[

u�u�
0
;v� v�

0

T �v;u;v
� �

;
(30)

where

T �v;u;v ¼ ðtu�
1 ; tv�

2 Þ
� �

; (31)

with

t1 ¼ tu�
1 ðvÞ ¼

Arg½d1ðivÞ� þ ð2u�1Þp�u1

v
� 0; u ¼ u�0 ;u

�
0 þ 1;u�0 þ 2; . . .

t2 ¼ tv�
2 ðvÞ ¼

Arg½d2ðivÞ� þ ð2v�1Þp� u2

v
�0; v ¼ v�0 ; v

�
0 þ 1; v�0 þ 2; . . .

(32)

and the angles u1,2 2 [0, p] are computed as follows

u1 ¼ arccos
1þ jd1ðivÞj2�jd2ðivÞj2

2jd1ðivÞj

 !
;

u2 ¼ arccos
1þ jd2ðivÞj2�jd1ðivÞj2

2jd2ðivÞj

 !
;

(33)

where u�0 and v�0 are the smallest possible integers for which the

corresponding delays t
u�

0
�

1 ; t
v�

0
�

2 are non-negative.

5. Numerical stability analysis and simulations

In order to understand the effects of different parameters on
feasibility and stability of different steady states and investigate
the role of the time delays associated with primed amplification,
we have used a pseudospectral method implemented in a
traceDDE suite for MATLAB (Breda et al., 2006) to numerically
compute the eigenvalues of the characteristic equation (24). The
baseline parameter values are mostly taken from Groenenboom
et al. (2005) and are shown in Table 1. It is assumed that mRNA is
stable with a half-life of 5 h, garbage RNA decays 20 times faster
than mRNA, and the half-life of siRNA is taken to be 21 min as
measured in human cells (Chiu and Rana, 2003). The rest of the
baseline parameters are chosen such as to illustrate all the
different types of dynamical behaviour that the model (1) can
exhibit. Since RNA interference is a very complex multi-compo-
nent process, many parameter values are case-specific and hard to
obtain experimentally (Melnyk et al., 2011; Liang et al., 2012;
Himber and Dunoyer, 2015). Hence, rather than focus on a specific
set of parameters, we explore the dynamics through an extensive
bifurcation analysis.
Table 1
Baseline parameter values for the system (1). The majority of the param

Parameter Biological meaning

dm mRNA decay rate

ds siRNA decay rate

dg Garbage RNA decay rate

h mRNA transcription rate

p Rate of dsRNA synthesis from RNA

a Rate of dsRNA cleavage by Dicer

b1 Rate of RISC-mRNA complex formation

b2 Rate of RdRp-mRNA complex formation

b3 Rate of RdRp-garbage complex formation

n1 Transgene copy number

n2 Yield of siRNA per cleaved dsRNA

n3 Yield of garbage RNA from degraded mRNA

t1 Delay in dsRNA synthesis from mRNA

t2 Delay in dsRNA synthesis from aberrant RN
Fig. 1(b) shows that if the rate b1, at which the RISC-mRNA
complex is formed, is sufficiently small, then only a single steady
state E1�3 is feasible, and it is stable for small or high numbers of
transgenes, and unstable for intermediate values of n1. As the value
of b1 increases, sustained silencing occurs at higher numbers of
transgenes and higher mRNA levels. The system also acquires an
additional unstable feasible steady state E2 with an intermediate
level of mRNA, thus creating a region of bi-stability, as shown in
Fig. 1(c) and (d). The range of values of transgenes n1, for which the
bi-stability is observed, itself increases with b1, which means that if
the RISC complexes are more efficient in cleaving mRNA (RISC
overexpression), it is possible to have the stable states with high
and low values of mRNA for higher and lower numbers of
transgenes, respectively, and that the range of transgenes for
which introduction of dsRNA triggers sustained silencing becomes
larger.

A very interesting and counter-intuitive observation from
Fig. 1(c) and (d) is that the actual values of the steady state mRNA
concentration are also growing with b1. One possible explanation
for this is that the reduced availability of mRNA means that a
smaller amount of it can be directly used to synthesize dsRNA, as
described by the pM(t) term in the second equation of (1), and more
mRNA is directly degraded into the garbage RNA, thus generating a
smaller feedback loop in the model for sufficient silencing to occur.

When one considers the effect of varying the rate b2 of forming
RdRp-mRNA complexes, the behaviour is qualitatively different in
that increasing b2 leads to the reduction in the size of the bi-
stability region, and for sufficiently high values of b2, the
intermediate steady state E2 completely disappears, and the
system possesses a single feasible steady state E1�3, which is stable
for low and high numbers of transgenes, and unstable for
intermediate values of n1, as shown in Fig. 2. Increasing the rate
b2 leads to a decrease in the maximum values that can be attained
by the mRNA concentration. Similar behaviour is observed in Fig. 3,
where the rate b3 of forming RdRP-garbage complexes is varied.
Increasing this rate b3 results in a reduced region of bi-stability and
smaller values of the maximum mRNA concentration, but at the
same time, it does not result in the complete disappearance of the
bi-stability region, as was the case when the rate b2 was varied
(Fig. [2_TD$DIFF]2)[3_TD$DIFF]. These results are further illustrated in Fig. 4, which shows
how the regions of feasibility and stability vary with the number of
transgenes and the complex formation rates.

Comparing the influence of the rate p, at which RdRp
synthesises dsRNA directly from the mRNA, to the number of
siRNA n2 produced by Dicer per cleaved dsRNA, one can notice that
for sufficiently small n2 and p, only the steady state E3 is feasible
eter values are taken from Groenenboom et al. (2005).

Value Units

0.14 h�1 (half life of 5 h)

2 h�1 (half life of 21 min)

2.8 h�1 (half life of 15 min)

160 h�1 cell�1

0.002 h�1

2 h�1

8	10�4 cell mol�1 h�1

8	10�5 cell mol�1 h�1

9	10�4 cell mol�1 h�1

1

10

1

0

A 0
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Fig. 1. Stability of the steady states E1, E2 and E3 depending on the rate b1 and the number of transgenes n1, with other parameter values taken from Table 1.
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and stable, and, therefore, the strength of RNA silencing is severely
limited, with a relatively high concentration of mRNA surviving,
as illustrated in Fig. 5(a) and (b). This agrees very well with
experimental observations in which plants carrying a mutation in
RdRp cannot synthesise trigger-dsRNA directly from mRNA, and,
thus, fail to induce transgene-induced silencing (Dalmay et al.,
2000), but similarly to mammals who do not carry RdRp, might
experience transient silencing (Caplen et al., 2001). Increasing p,
reduces the range of n2 values, for which bi-stability occurs, and
eventually it leads to the complete disappearance of the
intermediate steady state E2. For higher value of p, the state
E1�3 can exhibit instability in a small range of n2 values, and for
even higher rates of dsRNA production, this steady state is always
stable, thus signifying that gene silencing has been achieved. From
a biological perspective, this should be expected, as by increasing
p, more mRNA can be used for dsRNA synthesis, which is then used
for the production of siRNA, which in turn amplifies the process
even further. This is consistent with experimental observations
which show that strains of the fungus Neurospora crassa, which
overexpress RdRp, are able to progressively carry fewer trans-
genes without reverting back to their wild type. As such, even a
single transgene is sufficient to induce gene silencing and thus
preserve the phenotypic stability of the species (Forrest et al.,
2004).

When one considers the relative effects of the degradation rates
of mRNA dm and garbage RNA dg, it becomes clear that if the mRNA
decays quite slowly, while garbage RNA decays fast, in a certain
range of dg values the system does not converge to any steady
states but rather exhibits periodic solutions, as shown Fig. 5(a) and
(b). As the rate of mRNA degradation is increased, this reduces the
range of possible dg values where periodic behaviour is observed,
until it eventually disappears completely. It is important to note
that higher values of dg correspond to E3 and lower values
correspond to E1, which suggests that decreasing the rate dg of
garbage RNA degradation results in more of it being available for
additional dsRNA synthesis, which subsequently results in a more
efficient gene silencing.

Fig. 6 shows how the region where the system (1) is bi-stable
depends on the number of transgenes and the time delay t2,
associated with a delayed production of dsRNA from aberrant RNA
when the delay associated with production of dsRNA from mRNA is
fixed at t1 = 1. This figure shows that when t2 = 0, the system is bi-
stable in the approximate range 7.5 � n1 � 8.9, and for sufficiently
small t2 up until t2 � 7, the behaviour of the system remains
largely unchanged, whereas for t2 > 7 and sufficiently small
number of transgenes, the silenced steady state E1 loses stability.
This stability can be regained for some higher values of t2, but then
it will be lost again. Steady states E1 with higher values of n1 are not
affected by the variations in t2 and remain stable throughout the
bi-stability region. In a similar way, the steady state E3 can also lose
its stability, but unlike E1, this happens for high values of
transgenes, and the range of n1 values where instability happens
is smaller than for E1. These results suggest that the time delays
associated with primed amplification can result in a destabilisation
of the steady states E1 and E3, thus disrupting gene silencing. When
both time delays are varied, as shown in Figs. 7 and 8, the steady
state E3 without sufficient silencing is always stable, whereas
increasing t1 and/or t2 causes the silenced steady state E1 to switch
between being stable or unstable. We note that the boundaries of
the stability crossing curves shown in Fig. 7 are analytically
described by (32). Fig. 8 illustrates that whilst the time delays do
not affect the shape of the hysteresis curve, they can cause some
extra parts of it to be unstable, which happens for smaller values of
the time delay to E1 only, and for higher values of the time delays to
E3 as well. A possible interpretation of this result is that the
feedback loop in the model is highly sensitive to the speed dsRNA
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Fig. 2. Stability of the steady states E1, E2 and E3 depending on the rate b2 and the number of transgenes n1, with other parameter values from Table 1.
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production from its constituent parts. When the dsRNA synthesis is
hindered by the time delays, the production cannot maintain the
required consistent pace, and, as a result, one of the steady states
loses stability, which gives birth to stable periodic solutions.

[(Fig._3)TD$FIG]

Fig. 3. Stability of the steady states E1, E2 and E3 depending on the rate b3 and
Figs. 9 and 10 illustrate how the initial dosage of the dsRNA
D(0), garbage RNA G(0) and mRNA M(0) affect the behaviour of the
model. Starting with the smaller number of transgenes, for which
the system (1) is bi-stable we see that in Fig. 9(a) and (b) and
the number of transgenes n1, with other parameter values from Table 1.
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Fig. 4. Regions of feasibility and stability of different steady states depending on the number of transgenes n1, and varying one of the complex formation rates as shown by the

vertical axis. Other parameter values are taken from Table 1.
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Fig. 10(a) and (b), when the delays t1 and t2 are both set to zero, the
system mostly converges to the steady state with a relatively high
concentration of mRNA E3 for smaller numbers of transgenes n1,
and to the steady state with a lower concentration of mRNA E1 for
higher numbers of transgenes n1. As the time delays associated
with the primed amplification increase, this increases the basin of
attraction of E1 for smaller n1, and the basin of attraction of E3 for
higher n1, as shown in Figs. 9 and 10(c) and Figs. 9 and 10(c),
respectively. These figures suggest that for sufficiently high dosage
of dsRNA and initial garbage RNA or mRNA being present in the
cell, the system achieves a stable steady state where gene silencing
is sustained. For higher values of the time delays, there is a
qualitative difference in behaviour between lower and higher
numbers of transgenes. For lower numbers of transgenes, the
system exhibits a bi-stability between a stable steady state E3 with
a high concentration of mRNA and a periodic orbit around the now
unstable steady state E1. On the other hand, for higher values of n1,
there is still a bi-stability between E1 and E3. Whilst in this case, the
system may appear not to be as sensitive to the effects of time
delays in the primed amplification pathway, it is still evident that
in the presence of time delays one generally requires a higher
initial dosage of dsRNA to achieve sustained silencing. Further-
more, in the narrow range of n1 values, where the steady state E3 is
destabilised by the time delays, numerical simulations show that
the system always moves towards a stable steady state E1 rather
than oscillate around E3, thus suggesting that the Hopf bifurcation
of the steady state is subcritical.

To illustrate the dynamics of the system (1) in different
dynamical regimes, we have solved this system numerically, and
the results are presented in Fig. 11. Figures (a) and (b) demonstrate
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Fig. 5. Regions of feasibility and stability of different steady states depending on the degradation rate of mRNA dm, and varying a second parameter as shown by the vertical

axis. Other parameter values are taken from Table 1.
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the regime of bi-stability shown in Figs. 9 and 10(e), where under
the presence of both time delays and depending on the initial
conditions, the system either approaches the default stable steady
state E3 under a low initial dsRNA dosage, or tends to a periodic
orbit around the silenced steady state E1 despite a high initial
dsRNA dosage. Figure (c) corresponds to a situation where the
number of transgenes is sufficiently high, and the steady state E3 is
destabilised by the time delays, in which case the system
approaches a silenced steady state E1. It is interesting to note
that prior to settling on the silenced state E1, the system exhibits a
prolonged period of oscillations around this state – a phenomenon
very similar to the one observed in models of autoimmune
dynamics (Blyuss and Nicholson, 2012, 2015), where the system
can also show oscillations and then settle on some chronic steady
state. This behaviour highlights an important issue that during
experiments one has to be able to robustly distinguish between
genuine sustained oscillations and long-term transient oscillations
that eventually settle on a steady state.

6. Discussion

In this paper we have considered a model of RNA interference
with two primed amplification pathways associated with the
production of dsRNA from siRNA and two separate RdRp-carrying
complexes formed by targeting mRNA and garbage RNA. For better
biological realism, we have explicitly included distinct time delays
for each of these pathways to account for delays inherent in dsRNA
synthesis. The system is shown to exhibit up to three biologically
feasible steady states, with a relatively low (E1), medium (E2), or
high (E3) concentration of mRNA.
Stability analysis of the model has shed light onto relative
importance of different system parameters. For sufficiently small
levels of host mRNA, the system has a single stable steady state E3,
whose mRNA concentration is growing with the number of
transgenes n1. Experimental observations suggest that the amount
of transcribed mRNA is an important factor in the ability of
transcripts to trigger silencing. Production of mRNA can generally
be enhanced in two ways: either the target transgene is under
control of a 35S promoter with a double enhancer so that the gene
is transcribed at a higher rate (Elmayan and Vaucheret, 1996), or
there are enough transgenic copies to maintain an adequate
production of mRNA to trigger silencing. In our model, the number
of trangenes n1 and the transcription rate of mRNA h are
qualitatively interchangeable. Hence, as the number of transgenes
increases, there is a range of transgenic copies for which the system
is bi-stable, exhibiting steady states with a high (E3) and low (E1)
mRNA concentrations, where E1 describes a silenced state. For
higher values of n1, only the steady state E1 is feasible and stable,
suggesting that a sustained state of gene silencing is achieved.
From a biological perspective, it is very interesting and important
to note that in the bi-stable region, it is not only the parameters,
but also the initial conditions that determine whether RNA
silencing occurs. This implies that the dosage of dsRNA, which
initialises the RNA interference mechanism, as well as the current
levels of mRNA and garbage RNA within the cell, determine the
evolution of the system. In the absence of time delays, a high
dosage of dsRNA and an initial concentration of mRNA or garbage
RNA results in a silenced steady state.

In the case when the delays associated with the primed
amplification are non-zero, our analysis shows that for specific
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Fig. 6. The top row shows the number of feasible (a) and stable (b) steady states depending on the time delay t2 and the number of transgenes n1, with t1 = 1, and the rest of the

parameter values taken from Table 1. The bottom row shows max[Re(l)] for the steady states E1 (c) and E3 (d) with a low and high concentration of mRNA, respectively, while

the steady state E2, which has a medium mRNA concentration, is unstable everywhere.

[(Fig._7)TD$FIG]

Fig. 7. Colour code denotes max[Re(l)] for the steady state E1 with a low concentration of mRNA depending on the two time delays t1 and t2 associated with primed

amplification, with the rest of the parameter values taken from Table 1. In the regions where E1 is stable, the system is actually bi-stable, as the steady state E3 with a high

mRNA concentration is also stable. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
[(Fig._8)TD$FIG]

Fig. 8. Stability of the three steady states E1, E2 and E3 with parameter values from Table 1. The red and cyan lines denote the regions where the steady states with a low (E1)

and high (E3) levels of mRNA are stable, respectively. The black line signifies the steady state E2 with a medium concentration of mRNA which is always unstable. The violet

and light-brown lines denote the regions where the steady states E1 and E3 are unstable, respectively. (For interpretation of the references to color in this figure legend, the

reader is referred to the web version of this article.)
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Fig. 9. Basins of attraction of different steady stated depending on the initial dosage of dsRNA and garbage RNA within the host cell. The red and cyan regions are where the

system converges to the steady state with a high, E3, and low, E1, levels of mRNA, respectively. In the dark-blue region the system exhibits periodic oscillations around the

steady state E1. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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range of t1 and t2, both steady states E1 or E3 can lose stability in
the bistable region. Once again, not only the parameters, but also
the initial conditions control whether the system will converge
to the remaining stable state or will oscillate around the unstable
steady state. Additionally, in the presence of time delays, one
generally requires an even higher initial dosage of dsRNA to
achieve sustained silencing compared to the non-delayed model.
Interestingly, oscillations can only happen around the silenced
steady state E1, and when the steady state E3 loses its stability,
the system just moves towards a stable steady state
E1. Oscillations around E1 biologically correspond to switching
between higher and lower concentrations of mRNA, implying
that at certain moments during time evolution, the exogenous
mRNA is silenced, and at other times it is not affected by the
RNAi. It follows that this switching behaviour might have case-
specific implications for the phenotypic stability of a species,
which most likely depends on the amplitude of oscillations
around the silenced steady state. The biological significance of
this result lies in the fact that there are cases where even a high
initial dosage of dsRNA will not always result in a silenced steady
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Fig. 10. Basins of attraction of different steady stated depending on the initial dosage of dsRNA and initial mRNA within the host cell. The red and cyan regions are where the

system converges to the steady state with a high, E3, and low, E1, levels of mRNA, respectively. In the dark-blue region the system exhibits periodic oscillations around the

steady state E1. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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state. Thus, the augmented model exhibits an enriched dynam-
ical behaviour compared to its predecessor which otherwise can
only be replicated by different extensions to the core pathway,
like the RNase model developed in Groenenboom et al. (2005),
which assumes the presence of a specific siRNA-degrading RNase
with saturating kinetics. An interesting open question is whether
the switching behaviour could also act as a form of protection
against the self-inflicted response to an erroneous distinction of
target mRNA, and whether periodic silencing can, to some extent,
minimise the damage to the host cell. Another issue is that the
time delays considered in the model are assumed to be discrete,
and hence it would be very insightful and relevant from a
biological perspective to investigate how stability results for this
model would change in the case where the time delays obey
some distribution. Recent results suggest that distributed delays
can in some instances increase (Kyrychko et al., 2011, 2013,
2014), and in others reduce (Rahman et al., 2015) parameter
regions where oscillations are suppressed. Our future research
will look into the effects of distributed time delays on primed
amplification in RNAi.
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Fig. 11. Numerical solutions of the model (1). (a) Stable steady state E3 for t1 = t2 = 5, n1 = 7.5. (b) Periodic oscillations around the steady state E1 for t1 = t2 = 5, n1 = 7.5. (c)

Transient oscillations settling on a stable steady state E1 for t1 = 1, t2 = 30 and n1 = 8.87. Other parameter values are taken from Table 1.
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Appendix

Tables 2–5
Table 2
Coefficients pi, i = 1, . . ., 4, from the characteristic equation (12).

p0 = p03S3 + p02S2 + p01S + p10 p1 = p13S3 + p12S2 + p11S + p10

p2 = p22S2 + p21S + p20 p4 = MS

p3 ¼ b3MS2 þ aþ dg

� 

M þ n1h

� 	
Sþ an2DM

Table 3
Coefficients p0i, i = 0, 1, 2, 3, from the characteristic equation (12).

p00 = n1n2ahdgD p03 =�bb3M2[n3b1(1�n2T2) + b�b2n2T1]

p01 = an1n2h[ab3D�dg(2b3T2G + b2T1M)] + adg(n2pbM2 + n1hb3G)

p02 = bM2(pn2b3 + n2b2dgT1�bdg)�n1n2hb3(b2T1M + b3T2G)

Table 4
Coefficients p1i, i = 0, 1, 2, 3, from the characteristic equation (12).

p10 = an2D[adgM + n1h(a + dg)] p13 ¼ �M2bb3 b1n3 þ bð Þ

p11 = n2a(bp�b2dgT1)M2 + a[n2(ab3D�n1hb2T1) + b3dgG(1�2n2T2)]M

p12 ¼ ahb3n1 þ ab2n2T1ðb�b3Þ�b2ðaþ dgÞ
h i

M2�ab3
2n2T2GM

Table 5
Coefficients p2i, i = 0, 1, 2, from the characteristic equation (12).

p20 = an2D[n1h + M(a + dg)] p22 = n1hb3 + M(ab3�b2
[1_TD$DIFF]M)

p21 ¼ �ab2n2T1M2 þ b3dg�ab3n2T2

� 

Gþ ab3n2Dþ adg

� 	
M þ aþ dg

� 

n1h
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