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This paper studies the stability of synchronized states in networks, where couplings between nodes

are characterized by some distributed time delay, and develops a generalized master stability

function approach. Using a generic example of Stuart-Landau oscillators, it is shown how the sta-

bility of synchronized solutions in networks with distributed delay coupling can be determined

through a semi-analytic computation of Floquet exponents. The analysis of stability of fully

synchronized and of cluster or splay states is illustrated for several practically important choices of

delay distributions and network topologies. VC 2014 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4898771]

Many coupled real-life systems exhibit complex dynami-

cal regimes, including the emergence of coherent dynam-

ics known as synchronization. An important practical

issue is understanding for what types of networks the syn-

chronization can occur and is stable, which determines

whether or not it can be observed experimentally. Quite

often, connections between different elements of the net-

work are non-instantaneous, and one has to explicitly

include time delays in these connections in the analysis of

synchronization. In this paper, we show how one can ana-

lyze stability of different types of synchronization in net-

works with distributed delay coupling, which represents

a realistic situation in which the time delays themselves

may not be constant or fixed. Our results suggest that the

parameter space and network topologies for which a sta-

ble synchronization occurs are affected not only by the

mean time delay but also by the width of the delay

distribution.

I. INTRODUCTION

In the last decade, there has been a substantial growth of

research interest in the dynamics of coupled systems, ranging

from a few elements to large networks.1–4 From a perspec-

tive of potential applications, one of the central research

questions for such systems is the emergence and stability of

different types of collective dynamics and, in particular,

synchronization.5,6 In order to study the stability of synchro-

nization, Pecora and Carroll7 put forward a master stability
function (MSF) approach that allows one to separate the

local dynamics of individual nodes from the network topol-

ogy, which is achieved by a proper diagonalization of the

matrix representing the full network dynamics.

An important aspect of network dynamics concerns the

fact that interactions between nodes are often non-

instantaneous due to a finite speed of signal propagation. In

order to account for this feature, one has to explicitly include

time delays in the analysis, and this is known to have a

significant impact on network behaviour.8–20 Some work has

been done on the extension of the master stability function to

networks with time-delayed coupling10,21–26 but so far it has

only included single constant time delays. Hunt et al.27,28

have considered complex networks of linearly coupled nodes

with time delays and noise and established conditions for

synchronizability of such networks. At the same time, in

many realistic systems, time delays may be not constant and

may either vary depending on the values of system variables,

or just not be explicitly known,29–31 and in these cases, the

standard methodology of considering one or several constant

time delays is not sufficient. To describe such situations

mathematically, one can use the formalism of distributed

time delays, where the time delay is represented through an

integral kernel describing a particular delay distribution.32–35

Distributed time delays have been successfully used to

describe situations when only an approximate value of time

delay is known in engineering experiments,35–37 for model-

ling distributions of waiting times in epidemiological mod-

els,38 maturation periods in population and ecological

models,39,40 as well as in models of traffic dynamics,41 and

neural systems.42–44 In a recent paper, Morarescu et al.45

have looked at systems with gamma-distributed delay cou-

pling and analyzed the stability of the synchronized equili-

bria (steady states), which are not affected by the coupling.

In this paper, we consider networks of coupled identical

dynamical systems with linear distributed delay coupling as

represented by some integral kernel. Linearization near the

synchronization manifold yields a variational equation,

which after block-diagonalization of the coupling matrix

reduces to a single complex-valued integro-differential equa-

tion, whose maximum Floquet or Lyapunov exponent gives

the master stability function in terms of the system parame-

ters. Using the example of a network of Stuart-Landau oscil-

lators, we make further analytical progress by showing how

the computation of the master stability function can be

reduced to finding solutions of a single transcendental char-

acteristic equation. For particular choices of the delay distri-

bution kernel, all terms in this equation can be found in a

closed analytical form in terms of coupling and system pa-

rameters. The methodology we develop is quite generic anda)Electronic mail: y.kyrychko@sussex.ac.uk
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can be applied to analyze the stability of fully synchronized

and of cluster states in any systems with distributed delay

coupling.

The outline of this paper is as follows. In Sec. II, we de-

velop a general master stability function formalism for net-

works of identical coupled elements with distributed delay

coupling. Section III illustrates how this general framework

can be made more explicit by means of an amplitude-phase

representation for the example of coupled Stuart-Landau

oscillators. Section IV contains the results of analytical and

numerical computations of the master stability function for

coupled Stuart-Landau oscillators with uniform and gamma

distributed delays and different coupling topologies. In Sec.

V, the methodology of the master stability function for sys-

tems with distributed delay coupling is extended to the analy-

sis of cluster states representing generalized synchronization.

The paper concludes with discussion of results in Sec. VI.

II. MASTER STABILITY FUNCTION

We consider a network of N identical dynamical systems

with distributed delay coupling

_xk ¼ Fk½xkðtÞ� þ r
XN

j¼1

GkjHkj

� ð1
0

gðt0Þxjðt� t0Þdt0 � xkðtÞ
�
;

k ¼ 1;…;N; (1)

where xk 2 Rm is the state vector of each system, Fk½ðxkðtÞ�
describes the local dynamics of the node k, r 2 C is the cou-

pling strength, G is an N�N matrix describing the coupling

topology and the strength of each link in the network, Hkj is

an m�m matrix representing the coupling scheme, and gð�Þ
is a delay distribution kernel, satisfying

gðuÞ � 0;

ð1
0

gðuÞdu ¼ 1:

For gðuÞ ¼ dðuÞ, one recovers instantaneous coupling

ðxj � xkÞ; for gðuÞ ¼ dðu� sÞ, the coupling takes the form

of a discrete time delay: ½xjðt� sÞ � xkðtÞ�. The matrix G,

whose non-zero entries Gij define a relative strength of a link

between nodes j and i, is related to the adjacency matrix of

the network topology, whose elements are zero or one

depending on the existence of the respective link.

Next, we discuss a number of assumptions regarding the

individual dynamical systems and their interactions in the

network. All nodes are assumed to be identical, so that their

dynamics is described by a single function Fk½�� ¼ F½��. The

time delays in the propagation of signals from different

nodes are also taken to be the same and described by the

delay distribution kernel g(u). Since we are interested in syn-

chronization and its stability, we will further assume that the

matrix G has a constant row sum

XN

j¼1

Gkj ¼ l: (2)

This condition is necessary for the existence of the synchron-

ized solution. Finally, we assume that the coupling schemes

are identical for different nodes, i.e., Hkj ¼ H for

k; j ¼ 1;…N. The last two assumptions ensure that all nodes

received the same input. With those assumptions, the model

(1) simplifies to

_xk ¼ F½xkðtÞ� þ r
XN

j¼1

GkjH

� ð1
0

gðt0Þxjðt� t0Þdt0 � xkðtÞ
�
;

k ¼ 1;…;N: (3)

Let us now consider the synchronization manifold,

defined as xkðtÞ � xsðtÞ for all k ¼ 1;…N. The dynamics on

the synchronization manifold is given by

_xs ¼ F½xsðtÞ� þ rlH

� ð1
0

gðt0Þxsðt� t0Þdt0 � xsðtÞ
�
; (4)

where l is the row sum, Eq. (2). It is worth noting that the

dynamics of synchronization manifold is independent of the

coupling strength in the case of zero row sum l¼ 0 or in-

stantaneous coupling gðuÞ ¼ dðuÞ, and in all other cases it

will also depend on the coupling strength r.

To study the stability of the synchronization manifold,

we linearize the full system (3) near xkðtÞ ¼ xsðtÞ, which

yields with xkðtÞ ¼ xsðtÞ þ nkðtÞ,

_nkðtÞ ¼ J0ðtÞnkðtÞþr
XN

j¼1

GkjH

�ð1
0

gðt0Þnjðt� t0Þdt0 � nkðtÞ
�
;

k¼ 1;…;N; (5)

where

J0ðtÞ ¼ DF½xsðtÞ�

is the Jacobian of F. Introducing a vector n ¼ ðn1; n2;
…; nNÞT , the above equation can be rewritten as

_n ¼ IN � ½J0ðtÞ � rlH� nþ r½G�H�
ð1

0

gðt0Þnðt� t0Þdt0;

(6)

where � denotes the Kronecker product, and IN is the N�N
unity matrix. We will assume that matrix G is diagonaliz-
able, i.e., there exists a unitary transformation U such that

UGU�1 ¼ diagðl; �1; �2;…; �N�1Þ:

Here, the first eigenvalue of the matrix G, which is equal to

the row sum �0 � l, corresponds to the eigenvector

ð1; 1;…; 1Þ describing the dynamics on the synchronization

manifold. Hence, this eigenvalue is called the longitudinal
eigenvalue of G, whereas all other eigenvalues are called

transverse eigenvalues as they correspond to directions

transverse to the synchronization manifold.

To make further analytical progress, it is instructive to

diagonalize the coupling matrix G, which results in a block-

diagonalized variational equation

_fkðtÞ ¼ ½J0ðtÞ � rlH�fkðtÞ þ r�kH

ð1
0

gðt0Þfkðt� t0Þdt0;

k ¼ 0;…;N � 1; (7)
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where �k is the k-th eigenvalue of the coupling matrix G. It

is worth noting that in this system of equations, the Jacobian

J0ðtÞ and H are the same for all k, and one can consider the

variational equation in dependence on the complex parame-

ter wþ ib

_fðtÞ ¼ ½J0ðtÞ � rlH�fðtÞ þ ðwþ ibÞH
ð1

0

gðt0Þfðt� t0Þdt0:

(8)

Computation of the maximum Lyapunov exponent (or real

part of the Floquet exponent) for this equation yields the

master stability function

Re½Kmaxðw; b; rÞ�

and the analysis of stability of the synchronization manifold

reduces to checking that for all transverse eigenvalues of the

coupling matrix r�k ¼ wþ ib; k ¼ 1;…;N � 1, one has

Re[Kmaxðw; b; rÞ� < 0. A positive value of the Lyapunov

exponent (real part of the Floquet exponent) associated with

the longitudinal eigenvalue �0 indicates that the synchron-

ized solution is chaotic (unstable). The significant advantage

of this approach lies in the separation of the actual dynamics

from the topology of the coupling, as the computation of

Kmaxðw; b; rÞ can be done once for Eq. (8) independently of

the coupling matrix. It is worth noting that although the

computation of the master stability function can be per-

formed independently of the coupling topology, it has to be

done separately for each value of the coupling strength r.

The reason for this is the fact that the row sum l is, in gen-

eral, non-zero, and also the synchronized state xsðtÞ itself

depends on the coupling strength due to the delayed nature

of the coupling, as follows from Eq. (4). The above approach

can be generalized in a straightforward manner to more com-

plex forms of the coupling function H.

III. COUPLED STUART-LANDAU OSCILLATORS

In order to illustrate the analysis of the stability of syn-

chronization, we consider an array of N identical diffusively

coupled Stuart-Landau oscillators (k ¼ 1;…;N)

_zkðtÞ ¼ ðkþ ixÞzkðtÞ � ð1þ icÞjzkðtÞj2zkðtÞ

þ r
XN

j¼1

Gkj

� ð1
0

gðt0Þzjðt� t0Þdt0 � zkðtÞ
�
; (9)

which is a prototype of dynamics near a supercritical Hopf

bifurcation. Here, zk 2 C, k, x 6¼ 0, and c are real constants,

where x is the intrinsic oscillation frequency, and

r ¼ Keih; K 2 Rþ; h 2 R;

where K and h are the strength and the phase of coupling,

respectively. Such complex-valued couplings, which are

equivalent to a rotational matrix H if zk is written in terms of

real and imaginary part, have been shown to be important in

overcoming the odd-number limitation of time-delayed feed-

back control,46 in controlling amplitude death,47,48 and in

anticipating chaos synchronization.49

Introducing amplitude and phase variables as rk ¼ jzkj
and /k ¼ argðzkÞ, Eq. (9) can be recast as a system of 2N
real equations

_rk ¼ k� r2
k tð Þ

� �
rk tð Þ þ K

XN

j¼1

Gkj

� ð1
0

g t0ð Þrj t� t0ð Þcos

� /j t� t0ð Þ � /k tð Þ þ h
h i

dt0 � rk tð Þcos h

�
;

_/k ¼ x� cr2
k þ K

XN

j¼1

Gkj

� ð1
0

g t0ð Þ rj t� t0ð Þ
rk tð Þ sin

� ½/j t� t0ð Þ � /k tð Þ þ h�dt0 � sin h

�
; k ¼ 1;…;N:

(10)

The fully synchronized solution of the system (10) is given

by

rkðtÞ ¼ r0; /k ¼ Xt; k ¼ 1;…;N; (11)

with the common radius r0 and the common frequency X of

oscillations being determined by the solutions of the follow-

ing equations:

r2
0 ¼ kþ Kl½Fcð�X; hÞ � cos h�;
X ¼ x� cr2

0 þ Kl½Fsð�X; hÞ � sin h�;
(12)

where we have introduced the auxiliary quantities

Fcða; bÞ ¼
ð1

0

gðt0Þ cosðat0 þ bÞdt0;

Fsða; bÞ ¼
ð1

0

gðt0Þ sinðat0 þ bÞdt0: (13)

To analyse the stability of the fully synchronized solution

(11), we use a slightly modified ansatz for small perturba-

tions around this solution, namely,

rkðtÞ ¼ r0½1þ drkðtÞ�; /kðtÞ ¼ Xtþ d/kðtÞ;
k ¼ 1;…;N;

which yields a variational equation of the form

_nk ¼ ðJ0 � KlR0Þnk þ K
XN

j¼1

Gkj

ð1
0

gðt0ÞR1ðt0Þnjðt� t0Þdt0;

k ¼ 1;…;N; (14)

where nk ¼ ðdrk; d/kÞT , and the matrices J0; R0 and R1 are

given by

J0 ¼
�2r2

0 0

�2cr2
0 0

 !
;

R0 ¼
Fcð�X; hÞ �Fsð�X; hÞ
Fsð�X; hÞ Fcð�X; hÞ

� �
;

R1ðt0Þ ¼
cosðh� Xt0Þ �sinðh� Xt0Þ
sinðh� Xt0Þ cosðh� Xt0Þ

� �
:
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Equivalently, the above system can be rewritten as

_n ¼ IN � ðJ0 � KlR0Þn

þ K

ð1
0

gðt0Þ½G� R1ðt0Þ� n ðt� t0Þdt0; (15)

with the 2N-dimensional vector n ¼ ðn1;…; nNÞT .

Diagonalizing the matrix G results in a block-diagonalized

variational equation

_fkðtÞ ¼ ðJ0 � KlR0ÞfkðtÞ þ K�k

ð1
0

gðt0ÞR1ðt0Þfkðt� t0Þdt0:

(16)

Since in these equations, none of the matrices depends ex-

plicitly on time t, it is possible to find Floquet exponents as

the eigenvalues K 2 C of the following characteristic

equation

det

�
J0 � KlR0 � KI2 þ K�k

ð1
0

gðt0ÞR1ðt0Þe�Kt0dt0
	
¼ 0;

(17)

where I2 is a 2� 2 identity matrix. More explicitly, this tran-

scendental equation has the form

K2 þ 2½r2
0 þ KðlFcð�X; hÞ � �kFL

c ð�X; h;KÞÞ�K
þ 2r2

0K½lFcð�X; hÞ � �kFL
c ð�X; h;KÞ�

þ2cr2
0K½lFsð�X; hÞ � �kFL

s ð�X; h;KÞ�
þ K2½lFcð�X; hÞ � �kFL

c ð�X; h;KÞ�2

þK2½lFsð�X; hÞ � �kFL
s ð�X; h;KÞ�2 ¼ 0; (18)

where by analogy with (13), we have introduced the

quantities

FL
c ða; b; zÞ ¼

ð1
0

gðt0Þ cosðat0 þ bÞe�zt0dt0;

FL
s ða; b; zÞ ¼

ð1
0

gðt0Þ sinðat0 þ bÞe�zt0dt0;

where the superscript L refers to these integrals representing

the Laplace transform of modified kernels gðsÞ cosðasþ bÞ
and gðsÞ sinðasþ bÞ. Comparing these expressions to (13)

yields the following relations:

Fcða; bÞ ¼ FL
c ða; b; 0Þ; Fsða; bÞ ¼ FL

s ða; b; 0Þ:

Equation (18) generalises an earlier result of Choe et al.,21,22

which considered the master stability function for the case of

a single discrete time delay.

IV. COMPUTATION OF MASTER STABILITY FUNCTION

In order to illustrate how the master stability function can

be used for the analysis of stability of a synchronization mani-

fold, we first have to specify a particular topology of the net-

work G, as well as the distributed delay kernel g(u). We will

consider a number of different coupling topologies, each of

which is characterized by a particular spectrum of eigenvalues

f�kg, as shown in Fig. 1. Assuming that the constant row sum l
is different from zero, we normalize matrices G by dividing all

elements by l, which results in a row sum equal to unity. The

coupling matrices G and their eigenvalues are then given by

Guni ¼

0 1 0 0 � � � 0

0 0 1 0 � � � 0

..

. ..
. ..

. ..
.
� � � ..

.

0 0 0 0 � � � 1

1 0 0 0 � � � 0

0
BBBBBB@

1
CCCCCCA
; �k ¼ e2pik=N;

k ¼ 0;…;N � 1; (19)

for uni-directional ring coupling,

Gbi ¼ 1

2

0 1 0 0 � � � 1

1 0 1 0 � � � 0

0 1 0 1 � � � 0

..

. ..
. ..

. ..
.
� � � ..

.

0 0 0 0 � � � 1

1 0 0 0 � � � 0

0
BBBBBBBBBB@

1
CCCCCCCCCCA
; �k ¼ cos

2pk

N
;

k ¼ 0;…;N � 1; (20)

for bi-directional ring coupling, and

Gall
ij ¼

1

N � 1
; i 6¼ j;

0; i ¼ j;
; �0 ¼ 1; �k ¼ �

1

N � 1
;

8<
:

k ¼ 1;…;N � 1; (21)

FIG. 1. Eigenvalues of the coupling

matrices for N¼ 7. (a) Uni-directional

coupling without (big circle) and with

(small circle) self-coupling. (b) Bi-

directional coupling without (blue

squares) and with (green stars) self-

coupling, all-to-all coupling without

(black diamond) and with (magenta as-

terisk) self-coupling. The longitudinal

eigenvalue �0 ¼ 1 is marked by a full

black circle.
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for all-to-all coupling. If one allows for self-feedback, then

the above matrices and eigenvalues transform to

Guni
s ¼

1

2

1 1 0 0 � � � 0

0 1 1 0 � � � 0

..

. ..
. ..

. ..
.
� � � ..

.

0 0 0 0 � � � 1

1 0 0 0 � � � 1

0
BBBBBBBB@

1
CCCCCCCCA
; �k ¼

1

2
1þ e2pik=N

 �

;

k ¼ 0;…;N � 1; (22)

for uni-directional ring coupling with self-feedback,

Gbi
s ¼

1

3

1 1 0 0 � � � 1

1 1 1 0 � � � 0

0 1 1 1 � � � 0

..

. ..
. ..

. ..
.
� � � ..

.

0 0 0 0 � � � 1

1 0 0 0 � � � 1

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA
;

�k ¼
1

3
1þ 2 cos

2pk

N

� �
; k ¼ 0;…;N � 1; (23)

for bi-directional ring coupling with self-feedback, and

Gall
s;ij ¼

1

N
; i; j ¼ 1;…;N; �0 ¼ 1; �k ¼ 0;

k ¼ 1;…;N � 1; (24)

for all-to-all coupling with self-feedback.

All of the above-considered coupling matrices of uni-

directional, bi-directional, and all-to-all couplings with or

without self-feedback are special cases of an important class

of networks, whose topology is described by the so-called

circulant matrices, which are N�N matrices of the form

C ¼

c1 cN � � � c3 c2

c2 c1 cN � � � c3

..

.
c2 c1

. .
. ..

.

cN�1
. .

. . .
.

cN

cN cN�1 � � � c2 c1

0
BBBBBBB@

1
CCCCCCCA
: (25)

The eigenvalues of this general matrix C are given by

�k ¼ c1 þ cNxk þ cN�1x
2
k þ � � � þ c2x

N�1
k

¼
XN

m¼1

cmxð1�mÞþN mod N
k ;

k ¼ 0;…;N � 1; (26)

where xk ¼ expð2pik=NÞ.
In terms of the distributed delay kernel, we consider two

practically important choices of the delay kernel: the uni-

formly distributed kernel and the gamma distributed delay

kernel. The uniformly distributed delay kernel is given by

g uð Þ ¼
1

2q
for s� q 	 u 	 sþ q;

0 elsewhere:

8<
: (27)

This distribution has the mean time delay

sm � hsi ¼
ð1

0

ugðuÞdu ¼ s;

and the variance

Var ¼
ð1

0

u� smð Þ2g uð Þdu ¼ q2

3
: (28)

The uniformly distributed delay kernel (27) has been suc-

cessfully used in a number of different contexts, including

models of traffic dynamics with delayed driver response,41

stem cell dynamics,50 time-delayed feedback control,29 and

genetic regulation.51

The second example we consider is that of the gamma

distribution, which can be written as

g uð Þ ¼ up�1ape�au

C pð Þ
; (29)

with a; p � 0, and CðpÞ being the Euler gamma function

defined by

CðpÞ ¼
ð1

0

xp�1e�xdx;

and satisfying Cð0Þ ¼ 1 and Cðpþ 1Þ ¼ pCðpÞ for any real

p. For integer powers p, the delay distribution (29) can be

equivalently written as

g uð Þ ¼ up�1ape�au

p� 1ð Þ! : (30)

For p¼ 1, this is simply an exponential distribution (also

called a weak delay kernel) with the maximum contribution

to the coupling coming from the instantaneous values of the

variables zk.

For p> 1 (known as strong delay kernel in the case

p¼ 2), the biggest influence on the coupling at any moment

of time t is from the values of zk at t� ðp� 1Þ=a. The delay

distribution (30) has the mean time delay

sm ¼
ð1

0

ug uð Þdu ¼ p

a
; (31)

and the variance

Var ¼
ð1

0

u� smð Þ2g uð Þdu ¼ p

a2
:

The gamma distributed delay kernel (30) was originally ana-

lysed in models of population dynamics,52–54 and has subse-

quently been used to study machine tool vibrations,55

intracellular dynamics of HIV infection,56 traffic dynamics

with delayed driver response,57 and control of objects over

wireless communication networks.58
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Once the distributed delay kernel is fixed, one can ex-

plicitly compute the functions Fc;s and FL
c;s as follows. For

the uniform distribution (27), they are given by

Fc �X; hð Þ ¼ 1

qX
sin qXð Þcos h� Xsð Þ;

Fs �X; hð Þ ¼ 1

qX
sin qXð Þsin h� Xsð Þ;

and the case of a discrete time delay can be recovered by set-

ting q¼ 0. For the weak distribution kernel (30) with p¼ 1,

we have

Fc �X; hð Þ ¼ a
a cos hþ X sin h

a2 þ X2
;

Fs �X; hð Þ ¼ a
a sin h� X cos h

a2 þ X2
;

and similarly, for the strong delay kernel (30) with p¼ 2

Fc �X; hð Þ ¼ a2 a2 � X2ð Þcos hþ 2aX sin h

a2 þ X2ð Þ2
;

Fs �X; hð Þ ¼ a2 a2 � X2ð Þsin h� 2aX cos h

a2 þ X2ð Þ2
:

In the same way, Laplace transforms with the modified ker-

nels give

FL
c �X; h;Kð Þ ¼ e�Ks

2q K2 þ X2ð Þ ½KeKq cos
�
h� X s� qð Þ�

� Ke�Kq cos h� X sþ qð Þ
� �

þXeKq sin h� X s� qð Þ
� �

� Xe�Kq sin h� X sþ qð Þ
� ��

;

FL
s �X; h;Kð Þ ¼ e�Ks

2q K2 þ X2ð Þ
�
KeKq sin h� X s� qð Þ

� �
� Ke�Kq sin h� X sþ qð Þ

� �
þXe�Kq cos h� X sþ qð Þ

� �
� XeKq cos h� X s� qð Þ

� ��
;

for the uniform distribution kernel,

FL
c �X; h;Kð Þ ¼ a

aþ Kð Þcos hþ X sin h

aþ Kð Þ2 þ X2
;

FL
s �X; h;Kð Þ ¼ a

aþ Kð Þsin h� X cos h

aþ Kð Þ2 þ X2
;

for the weak distribution kernel, and

FL
c �X;h;Kð Þ ¼ a2

aþKð Þ2�X2

h i
coshþ 2 aþKð ÞX sinh

aþKð Þ2þX2

h i2
;

Fs �X;hð Þ ¼ a2
aþKð Þ2�X2

h i
sinh� 2 aþKð ÞXcosh

aþKð Þ2þX2

h i2
;

for the strong distribution kernel.

As a first step in the analysis of stability of the fully

synchronized solution (12), one should note that this state

does not always exist for arbitrary values of the coupling

strength and phase and parameters of the delay distribution.

The regions of parameter space where this state exists

are determined by the condition r2
0 ¼ kþ Kl½Fcð�X; hÞ

�cos h� � 0. Figures 2(a) and 2(b) illustrate such regions for

a uniform delay distribution with different choices of the

mean time delay, and suggest a natural conclusion that

increasing the linear rate k increases the range of values of

the coupling strength K for which a fully synchronized solu-

tion exists. Once the parameter regions where the fully

synchronized state exists have been identified, we choose

particular values of the coupling strength K and the mean

time delay s, and then compute the master stability function

Re ½Kmaxðw; bÞ� by solving Eq. (18), as shown in Figures

2(c)–2(f). Stability for individual coupling topologies is veri-

fied by checking that Re ½Kmaxðw; bÞ� < 0 for all transverse

eigenvalues �k of the coupling matrix G with K�k ¼ wþ ib.

These figures suggest that for the same value of the mean

time delay, a uniform distribution with a larger width of the

distribution results in the same or a slightly larger region of

stable synchronization in the ðw; bÞ plane. Note, however,

that this region might also shrink, according to the choice of

the mean delay. In the particular case of mean time delay

s ¼ 2p, all coupling topologies result in a stable synchroni-

zation manifold regardless of the width of the distribution q.

On the other hand, for s ¼ 0:52p, the synchronization

FIG. 2. (a) and (b) Existence of synchronized solution and (c)–(f) master sta-

bility function Re ½Kmaxðw; bÞ� for coupled Stuart-Landau oscillators with

uniform delay coupling. Parameter values are x¼ 1, c¼ 0, h¼ 0, and l¼ 1.

(a) s ¼ 2p, (b) s ¼ 0:52p; k ¼ 0:05 (black solid), k ¼ 0:1 (blue dashed),

k ¼ 0:2 (red dotted), fully synchronized state exists below the corresponding

curves. (c) and (d) Master stability function, k ¼ 0:1, K¼ 0.3, s ¼ 2p, (c)

q¼ 0, (d) q ¼ 1:49. (e) and (f) Master stability function, k ¼ 0:1, K¼ 0.08,

s ¼ 0:52p, (e) q¼ 0, (f) q ¼ 0:5p. All eigenvalues of the coupling matrix lie

on or inside the black circle.
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manifold is always unstable for uni-directional coupling

(both with and without self-feedback) and is always stable

for bi-directional and all-to-all couplings without and with

self-feedback. The values of the coupling strength K were

taken to be the same as in the earlier work on synchroniza-

tion of coupled Stuart-Landau oscillators21,22 to illustrate the

role played by the width of the delay distribution.

Figure 3 illustrates the computation of regions of exis-

tence of the fully synchronized solution, and the master sta-

bility function for the gamma delay distribution in the case

of p¼ 1 and p¼ 2. Similarly to the case of the uniform delay

distribution, increasing the bifurcation parameter k leads to

an increase in the region of parameters, where the fully

synchronized solutions exist. For both weak (p¼ 1) and

strong (p¼ 2) gamma distribution kernels, decreasing the av-

erage time delay (which is equivalent to increasing the pa-

rameter a in the gamma distribution) leads to a wider region

of stability. Unlike the case of the uniform distribution ker-

nel, varying a can lead to (de)stabilization of certain cou-

pling topologies: while for small values of a only the bi-

directional and all-to-all couplings can be stable, as a
increases the uni-directional coupling is also stabilized.

V. STABILITY OF CLUSTER AND SPLAY STATES

So far, we have considered identical or zero-lag synchro-

nization, where all oscillators have exactly the same ampli-

tudes and phases. It is possible to use a similar approach for

studying other types of synchronization, with one particularly

important type being that of cluster and splay states. In this

case, all oscillators still have the same amplitude r0;m and the

same common frequency Xm, but rather than having equal

phases, now they have constant differences in their phases

rkðtÞ ¼ r0;m; /kðtÞ ¼ Xmtþ kD/m; k ¼ 1;…;N; (32)

with D/m ¼ 2pm=N, where m ¼ 0;…;N � 1. The case

m¼ 0 corresponds to identical (or in-phase) synchronization

considered earlier, while m ¼ 1; 2;…;N � 1 correspond to

cluster and splay states. The cluster number Nc ¼ lcm

ðm;NÞ=m, where lcmð�; �Þ denotes the least common multi-

ple, determines how many clusters of oscillators exist, with

Nc¼N corresponding to a splay state.21,59

As it has been shown in Ref. 22, the cluster solution

(32) exists if and only if the following conditions hold

XN

j¼1

Gkj cos ½ðj� kÞD/m� ¼ Gc
m ¼ const;

XN

j¼1

Gkj sin ½ðj� kÞD/m� ¼ Gs
m ¼ const; (33)

independently of k. Although these conditions can be satis-

fied by different kinds of matrices (see Ref. 22 for a detailed

discussion), importantly, they are satisfied by all circulant

matrices, of which many standard network topologies are

special cases. Provided that the above conditions hold, the

common radius r0;m and the common frequency Xm are

determined by the following equations:

r2
0;m ¼ kþ Kl½Gc

mð�Xm; hÞ � cos h�;
Xm ¼ x� cr2

0;m þ Kl½Gs
mð�Xm; hÞ � sin h�;

(34)

where

Gc
mð�Xm; hÞ ¼ Gc

mFcð�Xm; hÞ � Gs
mFsð�Xm; hÞ;

Gs
mð�Xm; hÞ ¼ Gs

mFcð�Xm; hÞ þ Gc
mFsð�Xm; hÞ:

Using the ansatz rkðtÞ ¼ r0;m½1þ drkðtÞ�; /kðtÞ ¼ Xmt
þ kD/m þ d/kðtÞ, the variational equation for linearization

near the cluster state (32) can be found as follows:

_nk ¼ðJ0;m�KlGÞnkþK
XN

j¼1

�Gkj

ð1
0

gðt0ÞRj;mðt0Þnjðt� t0Þdt0; k¼ 1;…;N; (35)

where nk ¼ ðdrk; d/kÞT , and we have also introduced the

matrices

J0;m ¼
�2r2

0;m 0

�2cr2
0;m 0

0
@

1
A;

G ¼
Gc

mð�Xm; hÞ �Gs
mð�Xm; hÞ

Gs
mð�Xm; hÞ Gc

mð�Xm; hÞ

 !
;

Rj;mðt0Þ ¼
cos Um

j �sin Um
j

sin Um
j cos Um

j

 !
;

FIG. 3. Same as Fig. 2 with gamma distributed delay coupling. Parameter

values are x¼ 1, c¼ 0, h¼ 0, and l¼ 1. (a) weak kernel (p¼ 1), k ¼ 0:1
(black solid), k¼ 0.25 (blue dashed), k ¼ 0:4 (red dotted), fully synchron-

ized state exists below the corresponding curve; (b) strong kernel (p¼ 2),

k ¼ 0:15 (black solid), k¼ 0.25 (blue dashed), k ¼ 0:35 (red dotted), fully

synchronized state exists below the corresponding curve. (c) and (d) weak

kernel (p¼ 1), k¼ 0.25, K¼ 0.5, (c) a ¼ 0:8. (d) a¼ 1. (e) and (f) strong

kernel (p¼ 2), (e) a ¼ 1:5, (f) a¼ 3. All eigenvalues of the coupling matrix

lie on or inside the black circle.
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and the phase difference Um
j ¼ �Xmt0 þ ðj� kÞD/m þ h.

Using the same approach as before, one can recast this equa-

tion in the form

_n ¼ IN � ðJ0;m � KlGÞnþ K

ð1
0

gðt0Þ½G� Rj;m� n ðt� t0Þdt0;

(36)

with n ¼ ðn1;…; nNÞT . To make further progress in the anal-

ysis of stability of the cluster state, one has to diagonalize

the matrix G and study Floquet exponents corresponding to

transverse eigenvalues of this matrix. However, unlike the

case of identical synchronization m¼ 0, this is, in general,

impossible, unless the matrix G has certain properties which

make the matrix Rj;m independent of k. This is the case for

all topologies considered in Sec. IV, which are represented

by circulant matrices.

To illustrate the computation of the master stability func-

tion for cluster states, we consider the network of the Stuart-

Landau oscillators with uni-directional ring coupling:

Gk;kþ1 ¼ GN;1 ¼ 1 ¼ l, and all other Gkj¼ 0. In this case, we

have Um
j ¼ �Xmt0 þ D/m þ h, and the matrix Rj;m reduces to

Rj;mðt0Þ ¼R1ðt0Þ

¼
cosðh�Xmt0 þD/mÞ �sinðh�Xmt0 þD/mÞ
sinðh�Xmt0 þD/mÞ cosðh�Xmt0 þD/mÞ

 !
:

Since this matrix does not depend on k, one can use the same

approach as in the case of a fully synchronized solution to

diagonalize the matrix G, which results in the block-

diagonalized variational equation

_fkðtÞ ¼ ðJ0;m � KlGÞfkðtÞ þ K�k

ð1
0

gðt0ÞR1ðt0Þfðt� t0Þdt0;

where the eigenvalues �k of the matrix G are explicitly given

by �k ¼ e2ikp=N; k ¼ 0; 1;…;N � 1. Since all terms in the

above equation are independent of time, the Floquet expo-

nents can be found as the eigenvalues K of the characteristic

equation

det

�
J0;m � KlG � KI2 þ K�k

ð1
0

gðt0ÞR1ðt0Þe�Kt0dt0
	
¼ 0;

(37)

where I2 is a 2� 2 identity matrix. More explicitly, this tran-

scendental equation has the form

K2þ 2½r2
0;mþKðlGc

mð�Xm;hÞ � �kFL
c ð�Xm;hþD/m;KÞÞ�K

þ2r2
0;mK½lGc

mð�Xm;hÞ � �kFL
c ð�Xm;hþD/m;KÞ

þ cðlGs
mð�Xm;hÞ � �kFL

s ð�Xm;hþD/m;KÞÞ�

þK2½lGc
mð�Xm;hÞ � �kFL

c ð�Xm;hþD/m;KÞ�2

þK2½lGs
mð�Xm;hÞ � �kFL

s ð�Xm;hþD/m;KÞ�2

þK2½lGs
mð�Xm;hÞ � �kFL

s ð�Xm;hþD/m;KÞ�2 ¼ 0:

(38)

In the case of a single discrete time delay gðuÞ ¼ dðu� sÞ,
this equation reduces to a case investigated by Choe

et al.21,22

Figure 4 illustrates the computation of the master stabil-

ity function of the cluster state for uni-directional ring cou-

pling and uniform or gamma delay distributions. For both of

these delay distributions, an increase in the number of oscil-

lators appears to increase the range of coupling strengths, for

which the cluster state exists, and also proportionally

increase the region of stability of this state. In the case of the

gamma distributed delay kernel, one can note that whenever

it exists, the cluster state is stable for lower values of the

coupling strength across the full range of admissible values

of parameter a.

VI. DISCUSSION

In this paper, we have shown how the framework of the

master stability function for the computation of stability of

zero-lag and cluster synchronized states in systems of

coupled oscillators can be generalized to the case of distrib-

uted delay coupling. To illustrate how the master stability

function framework can be used for studying the stability

of synchronized states, we have considered the example of

a network of coupled Stuart-Landau oscillators, which is a

normal form of a supercritical Hopf bifurcation. In this

example, computation of the master stability function, i.e.,

the Floquet exponents, reduces to finding the corresponding

eigenvalues of a characteristic equation, which can be done

semi-analytically in terms of system parameters,

FIG. 4. Master stability function for a splay state with m¼ 1 for a ring of

uni-directionally coupled Stuart-Landau oscillators. Parameter values are

x¼ 1, c¼ 0, h¼ 0, and l¼ 1. (a) and (b) uniform delay distribution,

s ¼ 2p; k ¼ 0:1, (a) N¼ 4, (b) N¼ 10. (c) and (d) weak kernel (p¼ 1),

k¼ 0.25, (c) N¼ 4, (d) N¼ 10. (e) and (f) strong kernel (p¼ 2), k¼ 0.25, (e)

N¼ 4, (f) N¼ 10. The splay state does not exist in the white region.
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topological eigenvalues of the coupling matrix, and the

coupling parameters, where the Laplace transform of the

delay kernel enters. Calculations for the case of uniform

and gamma distributed delay kernels show that increasing

the width of the delay distribution (for a uniform kernel) or

reducing the mean time delay (for a gamma distributed

delay kernel) leads often to a larger region of stability, thus

allowing the fully synchronized state to be stable for a

larger class of coupling topologies.

Although the analysis presented in this paper has

focused upon the case of linear coupling between different

oscillators in the network, it is straightforward to generalize

our results on the stability of zero-lag and cluster synchroni-

zation to systems with nonlinear coupling,60 since the master

stability equation is still a linear variational equation involv-

ing the appropriate delay distribution kernel. Recent studies

of amplitude death in systems of delay-coupled oscilla-

tors47,48,61 have highlighted the important role played by the

coupling phase in determining the regions of possible sup-

pression of oscillations. Due to substantial analytical head-

way provided by considering Stuart-Landau oscillators, it

would be insightful to use the master stability framework

developed in this paper to investigate the effects of the cou-

pling phase on existence and stability of synchronized solu-

tions in networks of such oscillators.
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