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ABSTRACT

In this paper, we derive and analyze a mathematical model of a sexual response. As a starting point, we discuss two studies that proposed
a connection between a sexual response cycle and a cusp catastrophe and explain why that connection is incorrect but suggests an analogy
with excitable systems. This then serves as a basis for derivation of a phenomenological mathematical model of a sexual response, in which
the variables represent levels of physiological and psychological arousal. Bifurcation analysis is performed to identify stability properties
of the model’s steady state, and numerical simulations are performed to illustrate different types of behavior that can be observed in the
model. Solutions corresponding to the dynamics associated with the Masters–Johnson sexual response cycle are represented by “canard”-like
trajectories that follow an unstable slow manifold before making a large excursion in the phase space. We also consider a stochastic version
of the model, for which spectrum, variance, and coherence of stochastic oscillations around a deterministically stable steady state are found
analytically, and confidence regions are computed. Large deviation theory is used to explore the possibility of stochastic escape from the
neighborhood of the deterministically stable steady state, and the methods of an action plot and quasi-potential are employed to compute
most probable escape paths. We discuss implications of the results for facilitating better quantitative understanding of the dynamics of a
human sexual response and for improving clinical practice.

© 2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0143190

Mathematical models have proven to be very effective tools for
understanding the dynamics of various physiological processes
and have significantly contributed to improving monitoring and
treatment for a number of diseases. Of course, success of these
models strongly relies on the possibility of direct experimen-
tal measurements, as well as availability of reasonably accurate
experimental data that are used for model derivation. One excep-
tion is a physiological description of human sexual function,
which has been largely based on self-reporting surveys, and until
very recently not amenable to accurate measurements in con-
trolled conditions, which prevented mathematical analysis of this
process. In this work, we propose a mathematical model of a
sexual response cycle in the human male, which is based on the
ideas of the classical Masters–Johnson theory with a number of
modifications reflecting subsequent improvements of this the-
ory. Formulating the model as an excitable slow–fast system of
two equations for the levels of physiological and psychological
arousal, we explore the roles played by excitations applied to

either of these components and perform numerical simulations to
illustrate how the model can exhibit different types of dynamics
observed in clinical practice. To account for the fact that people
can receive a variety of stimuli, we analyze the effects of stochas-
ticity on model dynamics by studying the structure of stochastic
oscillations close to an equilibrium. Using large deviation the-
ory, we are able to find optimal stochastic escape paths that show
how a sexual response progresses toward an orgasm under the
influence of small stochastic perturbations.

I. INTRODUCTION

Over the last several decades, mathematical models have suc-
cessfully been used to study a variety of problems in human phys-
iology, from respiration to heart and blood circulation, endocrine,
renal and gastrointestinal systems, hearing and inner ear, retina and
vision, and muscles.1–3 At the same time, with sex being an essential
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part of human existence since the dawn of civilization, mathematical
modeling of a sexual response has so far been almost non-existent.
This can largely be attributed to sex being a taboo subject, which for
centuries hindered collection of comprehensive and accurate data
on sexual practices and the dynamics of a sexual response.

Significant progress in this direction was made in the twenti-
eth century, starting with the works of Freud on origins of sexuality4

and continuing with an extensive work by Kinsey and his colleagues
on collecting and producing comprehensive surveys of diversity and
frequency of various human sexual practices.5,6 Despite subsequent
criticisms of some of their methodology, in many respects, Kinsey
reports have stood the test of time and are still regularly used as
sources of data on various aspects of human sexuality. The next
major breakthrough was made by Masters and Johnson,7 who intro-
duced the notion of a human sexual response cycle, a sequence of
physiological changes taking place in the organism during sex. They
proposed a four-stage model of a sexual response cycle: excitation
→ plateau → orgasm → resolution (EPOR model) and described
detailed physiological changes associated with each stage of the cycle
in males and females.

As already noted by Masters and Johnson, there are signifi-
cant differences between male and female sexual response cycles,
including, among others, the presence of a refractory stage for
males, during which additional stimulation cannot produce new
arousal, as well as the possibility of multiple orgasms in females.
To account for these differences, a number of alternative models
of a sexual response cycle were subsequently proposed, including
a desire–excitation–orgasm–resolution (DEOR) model,8–11 a “sexual
man model,”12 and the dual control model.13 Some of the criti-
cisms of the original Masters–Johnson raised in these later works
included lack of contribution from the psychological component
of the arousal14–16 and an observation that arousal was continuing
to increase during the plateau phase.17 Levin18,19 provides a nice
overview and comparison of these and other models of a human
sexual response.

Substantial progress has been made in the last 20 years in
terms of measuring various physiological reactions during a sex-
ual response cycle using fMRI.20–22 Besides providing valuable data
on temporal physiological changes, including activation of differ-
ent parts of the brain during sexual stimulation and orgasms, these
studies have further highlighted differences in the sexual response of
males and females.

In this paper, we propose and study a phenomenological math-
ematical model of a sexual response cycle aimed at reproducing and
explaining salient features of the Masters–Johnson EPOR model in
human males. To overcome some of the above-mentioned deficien-
cies of that model, we will represent sexual arousal as a system of two
coupled ordinary differential equations, with the two variables rep-
resenting current levels of physiological and psychological arousal
during sex. To provide some further background to the model, in
Sec. II, we review two series of studies that pointed to a tenuous
connection between a sexual response cycle and catastrophe theory,
and we explain why that characterization is not correct. Then, in
Sec. III, we present a derivation of the mathematical model of a sex-
ual response, for which stability analysis and numerical simulations
are performed in Sec. IV. Section V considers the role of stochas-
tic effects, including analysis of stochastic fluctuations around a

deterministically stable steady state, and the calculation of most
probable stochastic escape paths. This paper concludes in Sec. VI
with a discussion of results.

II. AN ORGASM IS NOT A CATASTROPHE

Following the development of catastrophe theory by Thom and
Zeeman in the 1960s and 1970, it has subsequently been applied
in a variety of contexts, ranging from ecology23,24 to evolutionary
theory25,26 and sports performance.27,28 Two series of papers, one by
Hubey29,30 and one by Levin,18,31 have suggested that the human sex-
ual response curve and, in particular, orgasms are associated with
the so-called cusp catastrophe. To explain why in both cases this
characterization is incorrect, first, we briefly review cusp catastrophe
as proposed by Zeeman.32,33 Consider a one-dimensional gradient
dynamical system

ẋ =
dV

dx
, (1)

with

V(x) = x4 − ax −
b

2
x2. (2)

Steady states of this model satisfy a cubic equation

x3 = a + bx, (3)

and depending on the values of parameters a and b, there can be one
or three possible roots of this equation. Figure 1(a) shows the surface
of steady states in the space of parameters, which illustrates the cusp
catastrophe: as the values of b increases and crosses zero, there is a
cusp in the a–b parameter plane, with the system having one stable
steady state before the cusp and two stable equilibria after the cusp.

Motivated by ideas from the studies of periodically forced
systems, Hubey29,30 suggested that a sexual response can be math-
ematically modeled as a Duffing oscillator,

θ̈ + αθ̇ + βθ + γ θ 3 = f cos(�t), (4)

where θ is some characterization of sexual arousal, and the param-
eters are described in terms of mechanical interpretation: α is a
damping coefficient, β controls linear stiffness, γ represents nonlin-
earity of restoring force, and f and � are, respectively, amplitude and
frequency of forcing. Expression for this amplitude response curve
can actually be found analytically, using the method of harmonic
balance, which gives34

|θ |2
[
(α�)2 +

(
�2 − β −

3

4
γ |θ |2

)2
]

= f2. (5)

This amplitude response exhibits hysteresis: if one gradually
increases forcing frequency �, this results in the initial increase
in the amplitude of oscillations followed by a drop onto a lower
branch, where a further increase in the forcing frequency would lead
to a decrease in the amplitude of oscillations. Going in the oppo-
site direction, starting with a high forcing frequency and decreasing
it, there would be a jump onto the upper branch of the amplitude
response curve.

Hubey29,30 plotted an amplitude response curve for the model
(2), i.e., amplitude of oscillations |θ | around zero steady state of the
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FIG. 1. (a) Surface of steady states of the system (1). (b) Projection onto the a–b parameter plane illustrating a cusp, as well as fold curves separating parameter regions
with one and two stable steady states. (c) Sample curves illustrating monotonic behavior (black, b = −1) and hysteresis (red, b = 1), with curves of stable steady states
shown in solid and unstable in dashed.

unforced model, as a function of forcing frequency �, and then drew
two conclusions: a sexual response cycle is a periodic trajectory, and
there is a cusp catastrophe in the model due to the presence of sud-
den jumps between upper and lower branches on the amplitude
response curve. The first of these conclusions is incorrectly asso-
ciating motion along the amplitude response curve with periodic
solutions represented as closed curves in the phase plane for two-
dimensional systems. In the former case, once the forcing frequency
is fixed, this will result in some fixed amplitude that will not be
changing with time. To move along the amplitude response curve,
one would actually have to change a forcing frequency, and then
for each value of the frequency, there would be an associated value
of the amplitude of oscillations. In contrast, closed phase trajecto-
ries in the phase plane do represent periodic solutions once system
parameters permit existence of such solutions for certain parame-
ter values. There is no cusp catastrophe associated with the tip of
the amplitude response curve, because even though at that point, a
transition between branches occur, in each case, the system would
exhibit oscillations with only one value of the amplitude, and there
is no change in the number of steady states of the model. Moreover,
whereas the Duffing oscillator can exhibit periodic, quasiperiodic,
and chaotic behavior, as shown in Fig. 2, none of its solutions has
the form that would qualitatively resemble temporal dynamics of
the Masters–Johnson sexual response cycle. Furthermore, the Mas-
ters–Johnson sexual response cycle is concerned with a single tra-
jectory showing growth of arousal culminating in an orgasm, while
any point on the amplitude response curve rather corresponds to
sustained periodic oscillations of a certain fixed amplitude. All this
suggests that while there may be some scope in modeling the dynam-
ics of sexual arousal as a forced two-dimensional system, associating
hysteresis on the amplitude response curve with a cusp catastrophe
is not justified.

Levin18,31 has suggested a modification of a Masters–Johnson
graphical representation of a sexual response cycle, which addresses

the deficiency of the original figure in terms of correctly identifying
the refractory period as the period of time after an orgasm, during
which subsequent stimulation cannot lead to a new arousal. Addi-
tionally, it also introduced a new feature; namely, at the point of an
orgasm, the arousal is assumed to instantaneously change its direc-
tion from growing to decreasing, and this was the argument used to
suggest the existence of a cusp catastrophe. There are two reasons
why this interpretation is incorrect. The first one concerns the fact
that the cusp catastrophe is associated with a change in the num-
ber of steady states of the model, not with changes in its dynamical
behavior, however rapid they may be. The second issue is that look-
ing carefully at this figure, we note that the derivative of central
arousal is discontinuous at the time point of an orgasm, whereas
dynamical systems, for which the cusp catastrophe is defined, are
described by differentiable vector fields, for which such discontinu-
ity would be impossible. Our interpretation of this figure is that it is
rather a conceptual representation of separation of time scales, with
a slow time scale during the plateau phase, followed by a fast time
scale of resolution after an orgasm, which resembles the dynamics
exhibited by excitable systems, and this is exactly the approach we
will use in our model presented in Sec. III.

III. MODEL DERIVATION

Following an observation35 that a sexual response is a complex
process with multiple contributions, we model sexual arousal by two
variables, u(t) and v(t), which are taken to represent current levels
of physiological and psychological/cognitive arousal, respectively. In
doing so, we address some of the above-mentioned criticisms of the
Masters–Johnson model in terms of not appropriately accounting
for the psychological component of the arousal.14–16 The equation
for the physiological component of arousal u is taken to be of the
form

u̇ = f(u) − v + Eu, (6)
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FIG. 2. Numerical solution of Duffing equation (2) with α = 0.3, β = −1, and γ = 1. (a) Periodic solution for f = 0.25. (b) Period-two solution for f = 0.32. (c) Period-four
solution for f = 0.35. (d) Chaotic solution for f = 0.38.

where f(u) is an inverse N-shaped function, as illustrated in Fig. 3(a),
the term (−v) describes increasing physiological arousal by means
of reducing the level of psychological arousal, and Eu is the level
of applied physical stimulation. Function f(·) is chosen to be of
the following form that is inspired by earlier works on excitable
systems:

f(u) =





fL(u), u ≤ uA,
fM(u), uA ≤ u ≤ uB,
fR(u), u ≥ uB,

with two critical points located at uA and uB and sufficiently smooth
functions fL(u), fM(u), and fR(u) describing left, middle, and right
branches, respectively. In general, one can choose three differ-
ent functional forms for fL(u), fM(u), and fR(u), but as long as
they satisfy matching conditions fL(uA) = fM(uA), fM(uB) = fR(uB),
and f′L(uA) = f′M(uA) = f′M(uB) = f′R(uB) = 0, they will still provide
a continuously differentiable right-hand side of Eq. (6). We will

choose these functions to be

f(u) =





fL(u) = fM(u) = f1(u) = a0 + a1u + a2u
2 + a3u

3,

fR(u) = f2(u) = fM(uB) − (u − uB)
5/5

= b0 + b1u + b2u
2 + b3u

3 + b4u
4 + b5u

5.

(7)

In the particular case where f(u) = u − u3/3, we recover the clas-
sical FitzHugh–Nagumo-like function. The purpose of choosing a
higher degree of u on the right branch of function f(u) is to provide
a mechanism for a faster resolution phase after an orgasm.

With the average duration of a sexual intercourse being esti-
mated to be around 5.4 min,36 which includes between 100 and
500 thrusts,37 instead of considering physical stimulation as a peri-
odic forcing Eu cos(ωt) with some very high frequency ω, we rather
represent it as a constant Eu over the entire duration of the sex cycle.

The term (−v) on the right-hand side of Eq. (6) may seem
counter-intuitive, because it appears to suggest that the growth
of physiological arousal decreases with increasing psychological
arousal, and hence, it requires some justification. The first rea-
son for choosing this term comes from PET and fMRI studies of
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FIG. 3. (a) Nullclines of the system (6)–(8). (b) u-nullcline with f(u) + Eu = v (blue) or f(u) + Eu + v − v3/3 = 0 (red).

men, which showed that an orgasm was associated with a decreased
activity of amygdala38 and temporal lobe,39 as well as with deac-
tivation of frontal cortical regions22,40,41 and orbitofrontal cortex.22

This suggests that reaching an orgasm can be characterized as psy-
chologically “letting go,”42 and having a term that decreases with
psychological arousal achieves exactly that. The second reason is
that since a psychological response to sex has been shown to be
neurologically similar to response to other pleasures,21,43,44 one can
rely on known results suggesting that optimal performance is asso-
ciated with some intermediate level of mental/psychological arousal.
An inverted-U curve of performance and arousal describing this
is often associated with the so-called Yerkes–Dodson law in the
context of reward-based training,45 which has been subsequently
applied in a variety of other contexts looking at dependence of per-
formance on arousal.46–48 A simple intuitive explanation behind this
observation is that low levels of mental arousal are associated with
boredom/apathy, whereas very high levels result in anxiety, and
hence, it is the intermediate levels of psychological arousal that result
in the optimal level of physical performance. In Fig. 3(b), we have
plotted the nullcline associated with the right-hand side of Eq. (6),
where the contribution of psychological arousal is given either by
the term (−v) as stated in that equation or, alternatively, as a cubic
function of the form v − v3/3, which could represent the growth
of physiological arousal for small values of psychological arousal,
and a reduction in physiological arousal for high values of psycho-
logical arousal. This cubic function represents the Yerkes–Dodson
law in terms of there being an optimal level of physiological arousal
that provides the highest level of (physiological) performance. We
note from this figure that while the specific values of variables on
the nullclines have changed, its qualitative shape is the same as
that for the linearly decreasing function of the form (−v). This
means that the structure of steady states and their stability would not
change if we were to consider the more complicated cubic function.
Hence, to simplify the analysis, we will use the functional form given
in Eq. (6).

Dynamics of a psychological component of arousal is modeled
by the following equation:

v̇ = ε
[
(Ev − Ev0) + au − bv

]
, (8)

where Ev0 is a baseline level of psychological arousal, Ev is external
psychological stimulation associated with visual, verbal/auditory,
and other stimuli, and it is assumed that as physiological arousal
grows, this will, in turn, also increase psychological arousal, as rep-
resented by the term au. Justification for the last term (−bv) comes
from earlier studies that have demonstrated a similarity between a
psychological response to sex and that to other pleasures,21,43,44 as
well as from the so-called opponent process theory.49–51 This psycho-
logical and neurological theory suggests that the emotional process
can be split into two parts: the A-process, which is a fast response
to an external stimulus [the first two terms in Eq. (8)], and the B-
process that is responsible for returning to the state of psychological
homeostasis. This theory has already been effectively used to study
a number of psychological processes, such as drug addiction and
withdrawal,52–55 as well as sleep.56,57 Finally, whereas physiological
responses are rather quick and are controlled by the autonomic ner-
vous system, processing of psychological stimuli is (much) slower;
hence, we introduce a scaling parameter 0 < ε � 1. In both Eqs. (6)
and (8), parameters Ev0, a, and b are assumed to be positive, while
external stimulations Eu and Ev are non-negative.

IV. STABILITY ANALYSIS AND NUMERICAL

SIMULATIONS

In order to understand the structure of steady states of the
model (6)–(8), it is instructive to explore its nullclines

u̇ = 0 =⇒ v = f(u) + Eu,

v̇ = 0 =⇒ v =
1

b

[
(Ev − Ev0) + au

]
.

(9)
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These nullclines are illustrated in Fig. 3(a), and we observe that
increasing/decreasing either of Eu or Ev results in moving the corre-
sponding nullcline upward or downward, which then affects, where
the two nullclines intersect. We will assume that the following
condition holds:

a

b
> f′(u), ∀u ∈ [uA, uB], (10)

which guarantees that the model (6)–(8) always has a single steady
state E∗ = (u∗, v∗). Introducing auxiliary parameters k = a/b and
d = (Ev0 − Ev) /a, we then have the following classification:

k(uA − d) > f(uA) + Eu, E∗ lies on the left branch,

k(uA − d) = f(uA) + Eu, E∗ = (uA, f(uA) + Eu),

k(uA − d) < f(uA) + Eu, k(uB − d) > f(uB) + Eu,

E∗ lies on the middle branch,

k(uB − d) = f(uB) + Eu, E∗ = (uB, f(uB) + Eu),

k(uA − d) < f(uA) + Eu, k(uB − d) < f(uB) + Eu,

E∗ lies on the right branch.

For the particular choice of the cubic function f given in (7), the
locations of its two critical points are given by

uA,B =
−a2 ∓

√
a2

2 − 3a1a3

3a3

.

Furthermore, since this function is cubic, it will have an inflection
point

uinfl = −
a2

3a3

,

where f′′(uinfl) = 0 and f′(uinfl) reaches its maximum; therefore, the
condition (10) for uniqueness of the steady state turns into

a

b
> f′(uinfl) = a1 −

a2
2

3a3

. (11)

Jacobian of linearization near the steady state E∗ is given by

J0 =
(

f′(u∗) −1
aε −bε

)
, (12)

with Tr(J0) = f′(u∗) − bε and det(J0) = ε
[
a − bf′(u∗)

]
. If the

steady state E∗ lies on the left branch, i.e., u∗ < uA, we have
f′(u∗) < 0, and, therefore, for positive values of parameters, Tr(J0)

< 0 and det(J0) > 0, which implies that the steady state E∗ is

stable. If a is sufficiently small so that
[
f′(u∗) + bε

]2 − 4εa ≥ 0,
E∗ is a stable node, otherwise, it is a stable focus, and at a
=
[
f′(u∗) + bε

]2
/4ε, there are two coinciding characteristic roots

with values λ1 = λ2 =
[
f′(u∗) − bε

]
/2 < 0.

When u∗ is lying on the middle branch, i.e., uA < u∗ < uB,
the condition of uniqueness of the steady state E∗ guarantees that
det(J0) = ε

[
a − bf′(u∗)

]
> 0. Then, the steady state E∗ is stable

for f′(u∗) − bε < 0, unstable for f′(u∗) − bε > 0, and undergoes a
supercritical Hopf bifurcation when f′(u∗) − bε = 0. We note that
since a − bf′(u) > 0 for all values of u, this means that det(J0)

= ε
[
a − bf′(u∗)

]
is always positive, and hence, λ = 0 is not a root of

the characteristic equation. This then implies that the only change
of stability can occur through a Hopf bifurcation, where a pair of
complex conjugate eigenvalues cross the imaginary axis. Similarly

to the case mentioned earlier for the left branch, at
[
f′(u∗) + bε

]2
− 4εa = 0, the two unstable eigenvalues will coincide on the real
axis, and an unstable focus will become an unstable node. As we
move further along the middle branch to the right, at some point,
the unstable node will turn back into an unstable focus, and even-
tually, the inverse supercritical Hopf bifurcation will take place,
where the steady state E∗ will regain its stability. Finally, on the right
branch u∗ > uB, the steady state E∗ is stable. The points u∗ = uA and
u∗ = uB are always stable, and they are either stable nodes if
b2ε ≥ 4a or stable foci otherwise. In light of condition (10) that
ensures uniqueness of the steady state E∗ and the fact that 0 < ε �
1, in most cases, the points u∗ = uA and u∗ = uB will be stable foci.

In order to perform numerical bifurcation analysis and simu-
lations, we fix the coefficients in the definition of function f(u) to
be

f(u) =





f1(u) =
1

2

(
u +

3

2

)
−

3

2
−

1

3

[
1

2

(
u +

3

2

)
−

5

2

]3

=
167

192
−

33

32
u +

7

16
u2 −

1

24
u3, u ≤ uB,

f2(u) =
3

2
−
(

u −
11

2

)5

=
161099

32
−

73205

16
u

+
6655

4
u2 −

605

2
u3 +

55

2
u4 − u5, u ≥ uB,

and the corresponding bifurcation diagram for the steady state E∗ is
shown in Fig. 4. We observe that for a fixed value of physiological
stimulation Eu, increasing the level of psychological stimulation Ev

results in the steady state E∗ changing its stability from an unstable
node to an unstable focus by means of the above-mentioned col-
lision of characteristic eigenvalues on the real axis, followed by a
transition to a stable focus via an inverse supercritical Hopf bifur-
cation, and then to a stable node, after characteristic eigenvalues
collide again on the real axis. If one fixes the value of psychological
stimulation and increases physiological stimulation, the steady state
E∗ experiences the same sequence of stability changes, but in the
reverse order. When looking at stability of E∗ in terms of parameters
a and b, as shown in Fig. 4(b), we observe that there is a bound on
the values of parameter b as given by the condition a − bf′(u) > 0,
which ensures the existence of the steady state E∗. As the value of
parameter a that quantifies how psychological arousal grows with
increasing physiological arousal, we observe the same sequence of
transitions, as if we were increasing physiological stimulation Eu. For
sufficiently high values of a, most of the a–b parameter plane corre-
sponds to the steady state E∗ being a stable focus. However, there is
an intermediate range of a values, for which, provided the value of
parameter b, which characterizes the rate of return to homeostasis
in the level of psychological arousal, is sufficiently small, the steady
state E∗ is a stable node.

In Fig. 5, we present one-dimensional bifurcation diagrams
obtained by fixing all of the parameters except one, and then for each
value of bifurcation parameter, we note the corresponding steady-
state value of psychological arousal v∗, as well as stability type of
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FIG. 4. Bifurcation diagram for the steady state E∗ of the model (6)–(8) with ε = 0.05, Ev0
= 7/4. (a) a = 0.5, b = 0.1. (b) Eu = 1/6, Ev = 1.05. Colors denote a stable

node (black), a stable focus (blue), an unstable focus (red), and an unstable node (yellow).

the steady state E∗. Figure 5(a) illustrates the sequence of transi-
tions shown in Fig. 4 when the level of physiological stimulation Eu

is fixed, while the level of psychological stimulation Ev is increasing.
This corresponds to moving v-nullcline upward, while u-nullcline
remains the same. In this case, we observe transitions from an unsta-
ble node to an unstable focus, followed by an inverse supercritical
Hopf bifurcation, resulting in the stable focus followed by the stable
node. Increasing the level of physiological stimulation Eu does not
alter the shape of the bifurcation curve but results in higher values
of v∗ and stability changes occurring at slightly higher values of Ev.
Figure 5(b) illustrates a similar sequence of transitions, though start-
ing all the way on the right branch of the u-nullcline and moving to
the left along this nullcline for increasing values of a.

Figure 6(a) illustrates the phase plane of the system (6)–(8).
Similarly to the well-known case of a FitzHugh–Nagumo model,
the left and right branches of the u-nullcline are attracting, while
the middle branch is repelling, and there exists a separatrix shown
in green such that initial conditions that lie in the phase space
to the left of this separatrix return to the steady state E∗ without
ever reaching the right branch of the u-nullcline. We define u = uB

as the critical point in the sense that if the level of physiological
arousal has exceeded this value before returning to E∗, this will be
interpreted as an orgasm having happened. Numerically, separa-
trix can be found by either taking initial conditions on the right
branch of u-nullcline and integrating the system backward in time58

or by taking the single point (u, v) = (uB, f(uB) + Eu) as an initial

FIG. 5. One-dimensional bifurcation diagrams showing a steady-state value of v∗ depending on parameters. Colors correspond to those in Fig. 4 and denote an unstable
node (yellow), an unstable focus (red), a stable focus (blue), and a stable node (black). Parameter values are ε = 0.05, b = 0.1, Ev0

= 7/4. (a) a = 0.5. (b) Eu = 1/6,
Ev = 1.05.
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condition and integrating the system backward in time. Importantly,
in the same way as with the FitzHugh–Nagumo model, there is no
clearly defined threshold in the model, and hence, separatrix plays
the role of a quasi-threshold manifold.59 Thus, separatrix has an
important biological interpretation as a manifold separating orgas-
mic and anorgasmic trajectories, which are illustrated in the same
plot in red and blue. These trajectories are reminiscent of “canard”
trajectories that are found in a number of slow–fast systems, includ-
ing the FitzHugh–Nagumo model.60,61 Canards are characterized by
following a slow manifold for a long period of time before making
a fast excursion in the phase space. Such solutions often appear as a
result of folded nodes and singular Hopf bifurcations,60,61 and they
owe their name to the French school of mathematicians,62–64 who
noted a similarity between the shape of canard cycles in the phase
plane and ducks (“canard” is a duck in French). In our case, orgas-
mic trajectory can be characterized as a “canard with head,” while an
anorgasmic trajectory is a “canard without head.”65,66

Temporal dynamics of orgasmic (red) and anorgasmic (blue)
trajectories is shown in Figs. 6(b) and 6(c). They reproduce the
structure of the Masters–Johnson sexual response cycle by going
sequentially through EPOR stages. The cycle starts with a fast ini-
tial excitation, followed by a steady, but slower growth of arousal
during the plateau stage, and then, depending on the initial condi-
tions and the values of parameters, the trajectory will either cross the
orgasmic threshold, and then an orgasm will be followed by a res-
olution, or resolution will occur without an orgasm being achieved.
Unlike the original Masters–Johnson theory, which assumed arousal
to stay constant during the plateau phase, in our model, it con-
tinues to grow, albeit at a slower rate, which agrees with several
studies.17,67 Looking more carefully at an orgasmic trajectory, after
reaching an orgasm, it will return to a steady state E∗, but since this
steady state is a stable focus, approach toward it will occur in an

oscillatory manner. This agrees with an observation that an orgasm
(both in males and females) is characterized by regular periodic
pelvic
muscle contractions.7,68,69 Furthermore, if we look more carefully at
the orgasmic trajectory shown in red, we notice that straight after an
orgasm, for a short period of time, this trajectory has negative val-
ues of physiological arousal. This fits with a clinical observation that
due to penile hyper-sensitivity after an orgasm, ongoing physical
stimulation is often felt as unpleasant or even painful,70,71 extend-
ing for some part of the refractory period. Physiologically, it has
been suggested that this happens due to a substantial release of pro-
lactin immediately after an orgasm, which produces the feeling of
sexual satiety, while also causing a notable drop in the dopamine
level resulting in feeling tired.72,73

V. STOCHASTIC EFFECTS

Since people are exposed on a daily basis to a variety of phys-
ical and emotional stimuli, not to mention circadian and other
changes of hormonal levels, when studying the dynamics of such
complex processes as a sexual response, it is important to con-
sider possible effects of stochasticity. Data show that men experience
an average of 11 erections during the day, plus 3–5 instances of
nocturnal penile tumescence, usually associated with a period of
REM-sleep.74 Since majority of these are not caused by any orga-
nized sexual activity, they can be considered stochastic perturbations
of an otherwise (deterministically) stable state. Understanding sta-
tistical properties of spontaneous erections is also important from
the perspective of using monitoring of nocturnal penile tumescence
and rigidity (NPTR) in clinical practice for a differential diagnosis of
a psychogenic vs physiological (organic) erectile dysfunction.75–77

FIG. 6. (a) u–v phase plane of the model (6)–(8). Dashed black curves indicate nullclines, blue and red curves are anorgasmic and orgasmic trajectories, respectively, and
the green curve indicates the separatrix. (b) Numerical solution of the model (6)–(8), red and blue curves correspond to phase trajectories in plot (a), and the dashed black
line denotes an orgasmic level of physiological arousal. (c) Close-up of plot (b), indicating a period of initial fast-growing excitation (E), followed by a plateau (P), where arousal
continues to increase, but at a slower pace, leading to either an orgasm (O) followed by resolution (R) or resolution without an orgasm. Parameter values are ε = 0.05,
a = 0.5, b = 0.1, Eu = 1/6, Ev = 1.05, Ev0

= 7/4.
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In light of these observations, we modify the model (6)–(8) by
writing it as a system of Langevin equations,

u̇ = f(u) − v + Eu +
√

2D1η1(t),

v̇ = ε
[
(Ev − Ev0) + au − bv

]
+

√
ε
√

2D2η2(t),
(13)

where D1 and D2 are intensities of noise in physiological and psy-
chological components of arousal, respectively, and η1 and η2 are
uncorrelated Gaussian white noises with 〈ηi〉 = 0 and 〈ηi(t)ηj(t

′)〉
= δijδ(t − t′) for i, j = 1, 2. An extra factor

√
ε in the noise term in

the second equation of stochastic model (13) has been introduced to
ensure noises act on their respective timescales.78,79

A. Stochastic oscillations near equilibrium

As mentioned earlier, for most of the time, the level of sexual
arousal, both physiological and psychological, is maintained at some
constant small level, which, in the deterministic model, corresponds
to a stable steady state E∗. To explore the emergence and statisti-
cal properties of arousal in the neighborhood of E∗, we linearize the
model (13) near this deterministically stable steady state and obtain
a system of equations for stochastic fluctuations ξ1,2(t),

d

dt
ξ = J0ξ + Bη, ξ =

(
ξ1

ξ2

)
, η =

(
η1

η2

)
,

B =
( √

2D1 0
0

√
2D2ε

)
,

(14)

where J0 is the Jacobian (12) evaluated at E∗, and we have the fol-
lowing connection to original variables: u(t) = u∗ + ξ1(t) and v(t)
= v∗ + ξ2(t). Since we are considering fluctuations associated with
linearization near a stable steady state E∗, which is characterized by
a pair of complex conjugate eigenvalues with negative real parts,
the system (14) describes a two-dimensional Ornstein–Uhlenbeck
process.80–82 In this case, the covariance matrix 6 for fluctuations is
constant and is given by the solution of the Lyapunov equation,82

known in the context of control problems as the continuous-time
algebraic Riccati equation,83

J06 + 6JT
0 + 2D = 0, (15)

where D is the diffusion matrix,

D =
1

2
BBT =

(
D1 0
0 D2ε

)
.

The solution of this equation can be found in a closed form,80,82

6 = 〈ξ(t)ξT
(t′)〉 = −

det(J0)D + [J0 − Tr(J0)I]D[J0 − Tr(J0)I]
T

Tr(J0) det(J0)

= −
1

f′(u∗) − bε

[(
D1 0
0 D2ε

)
+

1

a − bf′(u∗)

×
(

D1b
2ε + D2 D1abε + D2f

′(u∗)

D1abε + D2f
′(u∗) D1a

2ε + D2

[
f′(u∗)

]2
)]

. (16)

This gives the variance of stochastic fluctuations in the level of
physiological arousal as

σ 2
u = 6uu = −

1

f′(u∗) − bε

[
D1 +

D1b
2ε + D2

a − bf′(u∗)

]
. (17)

The Fokker–Planck equation for the probability density ρ(ξ , t)
associated with system (14) has the form

∂ρ

∂t
= −∇ (ρJ0) +

∑

i,j

∂2

∂ξi∂ξj

(
Dijρ

)
. (18)

Due to the fact that eigenvalues of the Jacobian J0 have negative
real parts, this equation has a solution in the form of stationary
probability density,80,82

ρ(ξ , t) =
1

2π
√

det(J0)
exp

(
−

1

2
ξT

6−1ξ

)
. (19)

Since the covariance matrix 6 describes the magnitude and the
spatial arrangement of stochastic fluctuations around the exponen-
tially stable steady state E∗, for this reason, it is also known as the
stochastic sensitivity function (SSF).84–86 Using SSF, we can find the
so-called confidence ellipse

(x − x0)
T6−1(x − x0) = 2k2, x =

(
u
v

)
, x0 =

(
u∗

v∗

)
,

(20)
where k2 = − ln(1 − p) and p is a fiducial probability; i.e., random
solutions lie in the interior of this ellipse with probability p. Using
eigenvalues (µ1, µ2) and corresponding eigenvectors (v1, v2) of the
covariance matrix 6, the confidence ellipse can be expressed in the
form87

ζ 2
1

µ1

+
ζ 2

2

µ2

= k2,

with new variables ζ1,2 = (x − x0)
Tv1,2. Figure 7(a) illustrates the

confidence ellipse in the u–v plane around the steady state E∗

for different levels of noise. In Fig. 7(b), we show a compari-
son of the deterministic trajectory with a single stochastic realiza-
tion of the system (13), illustrating the phenomenon of stochastic
amplification,88,89 where on average, the system exhibits decaying
oscillations toward deterministically stable steady state E∗, whereas
in individual stochastic realizations, it still shows sustained stochas-
tic oscillations. Physiologically, this is a really important observa-
tion, as it highlights the fact that while generally being at rest, small
physiological and/or psychological excitations can indeed result in
periods of spontaneous penile tumescence, as confirmed by clinical
observations.74

While variance provides some quantitative characterization of
stochastic fluctuations, further insights into their structure can be
obtained by computing their spectra. To this end, we take a Fourier
transform of the system (14), which yields

−iωξ̃(ω) = J0̃ξ(ω) + B̃η(ω)

=⇒ ξ̃(ω) = − (J0 + iωI)−1 B̃η(ω).
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FIG. 7. (a) Phase plane of the system showing confidence ellipses (20) for p = 0.95 with D1 = D2 = 10−4 (blue), D1 = D2 = 10−3 (red), and D1 = D2 = 10−2 (magenta).
The green curve illustrates one stochastic realization of the system (13). Dashed black curves show nullclines of the deterministic model (6)–(8). (b) Comparison of numerical
solutions of the deterministic model (black) and its stochastic counterpart (green), given by Eqs. (6)–(8) and (13), respectively, with initial conditions in the neighborhood of
the steady state E∗. Parameter values are ε = 0.05, a = 0.5, b = 0.1, Eu = 1/6, Ev = 1.05, Ev0

= 7/4, and D1 = D2 = 10−4.

This then gives the power spectrum matrix as

S(ω) = 〈̃ξ(ω)̃ξ(ω)†〉 = (J0 + iωI)−1 BBT
(
JT
0 − iωI

)−1

=
2

[
ω2 − det(J0)

]2 + [Tr(J0)]
2 ω2

×
(

D1(a
2
22 + ω2) + D2εa2

12 −D1a21

−D2εa12 D1a
2
21 + D2ε(a

2
11 + ω2)

)
,

(21)

where † denotes a Hermitian conjugate, and, for notational conve-
nience, we have denoted as aij coefficients of the Jacobian matrix

J0 =
(

a11 a12

a21 a22

)
. (22)

For stochastic fluctuations in physiological arousal, we then have

Su(ω) = 2
D1b

2ε2 + D2ε + D1z(
z − ε[a − bf′(u∗)]

)2 + [f′(u∗) − bε]2z

=
A + Bz

(z − C2)
2 + D2z

, z = ω2, (23)

with

A = 2ε(D1b
2ε + D2), C2 = det(J0) = ε[a − bf′(u∗)],

B = 2D1, D = Tr(J0) = f′(u∗) − bε,

where all four parameters A, B, C, and D are positive. Differentiating
Su as a function of z, we find that Su has extrema at

z± = −
A ±

√
A2 + B(BC4 + 2AC2 − AD2)

B
,

and since we require z > 0 due to the relation z = ω2, Su(ω) will
have an extremum at ω2 = z+, provided

BC4 + 2AC2 − AD2 > 0. (24)

Otherwise, it will be monotonically decreasing from the value of
Su(0) = A/C4 to Su(∞) = 0. When the condition (24) holds, Su(ω)

will have its single extremum at ω2
0 = z+, and, due to continuity, this

extremum will be a maximum.
In order to better understand the structure of stochas-

tic oscillations around the dominant spectral frequency ω2
0

=
[√

A2 + B(BC4 + 2AC2 − AD2) − A
]
/B, we will use the notion

of coherence that can be defined as follows. We consider an inter-
val of frequencies [ω1, ω2] around the dominant frequency ω0, i.e.,
ω1 < ω0 < ω2, and compute a quantity (cf. expressions in Eqs. (2.8)
and (2.9) in Ref. 89)

Pω1 ,ω2 = 2

∫ ω2

ω1

Su(ω)dω = F(ω2) − F(ω1),

where

F(ω) =
√

2

D
√

D2 − 4C2

(
2A + BD

(√
D2 − 4C2 − D

)
+ 2BC2

√
D(D −

√
D2 − 4C2) − 2C2

× arctan
ω

√
2√

D(D −
√

D2 − 4C2) − 2C2

−
2A − BD

(√
D2 − 4C2 + D

)
+ 2BC2

√
D(D +

√
D2 − 4C2) − 2C2

× arctan
ω

√
2√

D(D +
√

D2 − 4C2) − C2

)
,
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and a factor of 2 in front of the integral is introduced to account for
the fact that we will only be considering non-negative frequencies
0 ≤ ω < ∞, rather than the full range −∞ < ω < ∞. Evaluating
the same integral over the entire real line yields

P0 =
∫ ∞

−∞
Su(ω)dω =

π(A + BC2)

DC2
,

and the coherence c can then defined as89

c =
Pω1 ,ω2

P0

, (25)

which is a non-negative quantity satisfying c = 0 for ω1 = ω2 = ω0

and c = 1 for ω1 = −∞ and ω2 = ∞.
Figure 8 illustrates spectra of stochastic oscillations, as given

by (23), together with their variance and coherence. We observe
for fixed values of all other parameters, increasing the strength Ev

of psychological stimulation results in making the frequency distri-
bution of stochastic oscillations much closer to uniform, effectively
smearing out the dominant frequency. In contrast, increasing the
rate b of relaxation of psychological arousal to its state of homeosta-
sis makes the frequency distribution sharper around the dominant
frequency. Reducing psychological stimulation Ev or reducing the
rate a, at which psychological arousal increases with physiologi-
cal stimulation, leads to a higher variance of stochastic oscillations
around the deterministically stable steady state E∗, as well as a
higher level of coherence of these oscillations, reaching its maximum
value of 1 at the boundary of Hopf bifurcations, where this steady
state loses its stability, giving rise to deterministically stable periodic
solutions.

B. Large deviations: An orgasm as an escape

While stochastic oscillations in the neighborhood of the stable
steady state E∗ provide some understanding of how small noise may
affect otherwise decaying oscillations, an interesting and important
question is whether, under small amount of noise, it would be possi-
ble for some stochastic trajectories to leave the neighborhood of E∗

and reach the separatrix, from which they could escape further and
reach the right branch of u-nullcline, associated with an orgasm. We
will, therefore, interpret any trajectory, for which the values of physi-
ological arousal during time evolution exceed the value of u = uB, as
an orgasmic trajectory. To explore the dynamics of such stochastic
escape, we rescale noise parameters

µ = 2D1, d =

√
D2

D1

ε

and change variables to

x =
(

ũ
ṽ

)
, ũ = u, ṽ =

v

d
.

In these new variables, the Langevin model (13) is transformed into
a system

dx = K(x) + √
µdWt, (26)

where

K(x) =
(

f(̃u) − d̃v + Eu
ε

d

[
(Ev − Ev0) + ãu − bd̃v

]
)

is the deterministic part of the model in new variables and Wt, is a
two-dimensional Wiener process. We are interested in solutions of
this equation that will leave some region R ∈ R

2 enclosing the steady
state E∗ after a certain time T. Since this steady state is deterministi-
cally stable, in the case when µ = 0, solutions would never leave its
neighborhood. However, for small noise µ > 0, some of them will
indeed escape, but the probability of this escape becomes smaller and
smaller as µ → 0. Large deviation theory (LDT)90 provides a quanti-
tative characterization of this decay of probabilities. If we introduce
an action functional, also known as the rate function, as

ST[x] =
∫ T

0

L(x, ẋ)dt, (27)

with Lagrangian L(x, ẋ) being defined as follows,

L(x, ẋ) =
1

2
‖ẋ − K(x)‖2,

then for any chosen vector function x0(t), for small enough δ > 0,
the probability of observing a sample path of (26) close to this x0(t)
can be estimated as

P

(
sup

0≤t≤T

|x(t) − x0(t)| < δ

)
� exp

[
−

ST[x0(t)]

µ

]
.

Here, � denotes logarithmic equivalence: f(x) is logarithmically
equivalent to exp[αg(x)] if

lim
α→∞

1

α
log f(x) = g(x).

We can now define quasi-potential V(x1, x2)
91–93 that characterizes

long-term behavior of the system as

V(x1, x2) = inf
T>0

inf
x∈Cx1,x2

ST(x), (28)

where Cx1 ,x2 =
{
x ∈ AC([0, T], R2), x(0) = x1, x(T) = x2

}
is the

space of absolutely continuous vector functions. Since our model has
a single stable steady state E∗, one can write probability density ρ(x)
associated with the invariant density of (26) in the form of WKB
approximation,90

ρ(x) � exp

[
−

UE∗(x)

µ

]
, (29)

where

UE∗(x) = V(E∗, x).

This allows us to estimate the expected time of escape τesc from the
basin of attraction of E∗, denoted B(E∗), as

E[τesc] � exp

[
min

x∈∂B(E∗)
UE∗(x)/µ

]
. (30)

The most probable escape path (MPEP) x∗(t), also known as an
instanton,78,91,94 is effectively the least unlikely trajectory that escapes
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FIG. 8. (a) Power spectrum of Su(ω) from (23) with ε = 0.05, a = 0.5, b = 0.1, Eu = 0.3, and Ev = 1 (black), Ev = 1.13 (blue), Ev = 1.16 (red), Ev = 1.2 (green). (b)
Power spectrum of Su(ω) from (23) with ε = 0.05, Eu = 1/6, Ev = 1.05, a = 2, and b = 0.4 (black), b = 0.8 (blue), b = 1.2 (red), b = 1.6 (green). Variance (c) and (d)
and coherence (e) and (f) of stochastic oscillations around the steady state E∗ computed from (17) and (25), respectively. Parameter values are ε = 0.05, a = 0.5, b = 0.1
for (c) and (e) and ε = 0.05, Eu = 1/6, Ev = 1.05 for plots (d) and (f).

B(E∗), and it produces the smallest action ST[x∗(t)]; i.e.,

x∗(t) = argminx∈CST[x], (31)

where C =
{
x ∈ AC([0, T], R2), x = x0, x(T) ∈ B(E∗)

}
.

We note that the minimization problem defining the most
probable escape path (31) directly corresponds to Hamilton’s prin-
ciple δST[x]/δx = 0. Using this analogy, one can define “conjugate
momenta”

p =
δST

δx
=

∂L(x, ẋ)

∂ ẋ
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and perform the Fenchel–Legendre transform of the Lagrangian to
obtain the Freidlin–Wentzell Hamiltonian,90

H(x, p) = sup
y

(
〈p, y〉 − L(x, y)

)

=
1

2
〈p, p〉 + 〈K(x), p〉 =

1

2
pTp + [K(x)]Tp. (32)

Minimization in Eq. (31) is then equivalent to finding solutions to
Hamilton’s equations of motion, or “instanton equations,”78,91

ẋ = ∇pH(x, p) = K(x) + p,

ṗ = −∇xH(x, p) = − [∇K(x)]T p,

which have the explicit form

˙̃u = f(̃u) + Eu − d̃v + pu,

˙̃v =
ε

d

[
(Ev − Ev0) + ãu − bd̃v

]
+ pv,

ṗu = −f′(̃u)pu −
aε

d
pv,

ṗv = dpu + bεpv,

(33)

with the corresponding equation for the action

Ṡ =
1

2

(
p2

u + p2
v

)
.

Conjugate momenta can be interpreted as some quantitative mea-
sure of the deviation of most probable escape paths from the deter-
ministic dynamics. Steady state E∗ of the original model corresponds
to the steady state (̃E∗, 0) of the extended system (33), but its sta-
bility changes: while originally E∗ was a stable focus, steady state
(̃E∗, 0) of the extended system (33) is a saddle. With separatrix play-
ing the role of quasi-threshold,59 MPEP can be viewed as solutions
of the extended system that originate in the small neighborhood of
the saddle (̃E∗, 0) and cross the separatrix, indicating escape toward
the right branch of the u-nullcline.

One method of computing MPEP is the method of an action
plot,95 in which a large number of initial conditions are chosen to
be uniformly distributed on a small circle around the steady state
(̃E∗, 0), and then for each of them, the Hamiltonian system (33) is
integrated until the solution crosses the separatrix. At that point, the
value of action S is recorded, and the trajectory associated with the
minimum value of the action is taken to represent an optimal escape
path. Another approach is the geometric minimum action method
(gMAM),91–93 in which the fact that the action S(x) is independent of
path parameterization allows one to replace that action by an action
that is parameterized by normalized arc length instead of time. This
allows one to overcome the numerical difficulty associated with
the fact that since the escape trajectory starts at the steady state,
time T in the definition of action is infinite, whereas it would be
replaced by a finite arc length once action is replaced by a geometric
action. Several versions of the gMAM method have been proposed,
including the simplified gMAM91 and the adaptive minimum action
method,96,97 and they have been successfully used to compute MPEP
for a number of systems, including the FitzHugh–Nagumo model,59

a system with overdamped double-well potential,98 a Ludwig spruce
budworm model,78 a predator–prey model with migration,91 and

a Maier–Stein model99 that has long served as a benchmark for
LDT calculations. Below, we will use gMAM to compute the
optimal path for escape from the saddle (̃E∗, 0) to points on a
separatrix.

While path-based methods, such as gMAM and an action
plot, allow one to find MPEP, they have certain limitations, which
include a bias introduced by the initial path, potential inexactness
of a minimizer due to slow convergence, and the possibility that a
found local action minimizer might not be a global minimizer.100 In
this respect, a more comprehensive description is provided by the
global quasi-potential as computed over an entire region of inter-
est. A first-order accurate ordered upwind method (OUM)101 and an
ordered line integral method (OLIM)100,102 have been proposed for
numerically computing quasi-potential as a solution of the Hamil-
ton–Jacobi equation associated with the Hamiltonian (32). OUM
has been used to find quasi-potentials and to compute MPEP in the
Higgins model for glycolysis,103 the Zeldovich–Semenov model for
an exothermic reaction in a continuously stirred tank reactor,104 and
the FitzHugh–Nagumo model of neural excitation,59 among oth-
ers. Once the quasi-potential UE∗ is found, MPEP that goes from
the attractor E∗ to a given point x can be found by integrating the
equation100–102

ẏ = −
K(y) + ∇UE∗(y)

‖K(y) + ∇UE∗(y)‖
, y(0) = x (34)

from the starting point y(0) = x back to E∗, and normalization
is introduced to avoid slowdown of convergence near the steady
state E∗.

To compute quasi-potential and MPEP for the system (26), we
considered a region [−1.5, 7] × [0, 11] that was divided by a rectan-
gular mesh 2000 × 2000, over which quasi-potential was computed
in MATLAB with a modification of the OUM code developed ear-
lier for the Higgins model.105 The resulting quasi-potential and its
contour lines over the ũ–̃v plane are shown in Figs. 9(a) and 9(b).
The shape of quasi-potential can be described as a deep well around
the steady state, with a plateau-like area further away. Since we are
interested in the MPEP, where stochastic trajectories escape a sta-
ble steady state by crossing a quasi-threshold associated with the
separatrix, we investigated how the value of quasi-potential changes
along this separatrix. This analysis reveals that the change is non-
monotonic, and there is a point that we denote as S0 that represents
the minimum of quasi-potential along the separatrix. Since, accord-
ing to (30), such a point would provide the shortest escape time and
would also correspond to the optimal escape path,90 we choose this
point as an initial condition for shooting backward to the steady
state using the flow along the quasi-potential (34), as well as for
gMAM calculation.

For an action plot, we took 20 000 initial conditions cho-
sen as x0i = E∗ + δx0i, where δx0i = (R cos φi, R sin φi)

T, R = 0.1,
i = 1 . . . 20, 000, uniformly distributed around the circle of radius
R centered on the steady state, with initial conditions for conjugate
momenta p and action S chosen accordingly.95,106 Then, we solved
the Hamiltonian system (33) for each of these initial conditions until
the solution reached the separatrix, at which point the value of action
was recorded. The resulting action plot is illustrated in Fig. 9(c),
and it has the shape similar to that for other models;95,103 namely,
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FIG. 9. (a) Logarithm of the quasi-potential UE∗ (x) computed using OUM. (b) Contour lines of quasi-potential. (c) Action plot. (d) Optimal path (MPEP) computed using
quasi-potential (black), action plot (magenta), and gMAM (blue). In all plots, dashed black curves indicate nullclines, and the solid green curve denotes separatrix. The red
square, denoted as S0 in plots (b) and (d), indicates the location of optimal escape, characterized by the lowest value of quasi-potential along the separatrix. Parameter
values are ε = 0.05, a = 0.5, b = 0.1, Eu = 1/6, and Ev = 1.05.

there is a minimum value of action, and there are several other ini-
tial conditions that yield values of action very close to the minimum.
The value of action at the point S0, associated with the minimum
of quasi-potential along the separatrix, differs from the overall min-
imum value of action by less than 0.04%, and hence, this point S0

can be chosen as the target point for computing MPEP in terms
of minimizing action, as computed using an action plot. Hence,
we chose the phase φ = 0.0014646947 to set up initial conditions
and then computed MPEP by following the Hamiltonian system
(33), as shown in Fig. 9. Having E∗ and S0 as two end points, we
employed gMAM to compute MPEP, which is illustrated in blue in
the same plot, and it closely follows the trajectory computed using
the action plot. Finally, we also show in this figure the optimal path
as described by (34), where we used quasi-potential that had already
been computed with OUM.

In terms of interpretation of these results for our model, we
note that the point S0 that corresponds to the minimum of quasi-
potential along the separatrix is characterized by the values of
physiological and psychological arousal that do not significantly
exceed their values at the steady state, with a larger difference being
observed for physiological arousal. Importantly, these results not
only show that it is possible to achieve an orgasm as a result of
stimuli that arise from small amounts of stochastic physiological
and/or psychological stimulation, but they also suggest that actu-
ally when this happens, with it being a stochastic escape through a
separatrix, the levels of physiological and psychological arousal do
not need to be high. One relevant example from clinical practice
concerns males with spinal cord injuries (SCIs), who are known to
experience difficulties with achieving an orgasm post-injury.107–109

While the reasons for this can be both psychogenic and organic, it
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has been shown that with damage to the spinal cord, there may be
greater reliance on psychogenic stimulation for achieving arousal
and orgasm,110,111 and while the distinction between reflexive and
psychogenic erection in able-bodied males may be less clear,112 for
males with SCI, this difference is crucial, and the possibility of
stochastic escape to an orgasm even in the absence of a sufficiently
high level of physiological arousal may prove very important.

The idea of small-noise stochastic escape from the basin of
attraction of a stable steady state is that the probability of escape
is very low and decreasing with noise magnitude, which, in practi-
cal terms, means that stochastic escape is indeed possible, though
this happens very rarely. A good proxy for stochastic escape asso-
ciated with an orgasm can be provided by spontaneous nocturnal
emissions, which are ejaculations that happen during sleep as an
autonomous reflex mediated by sympathetic nervous systems with-
out any stimulation.113,114 While orgasm and ejaculation are two
separate physiological processes and it is possible for males to expe-
rience an orgasm in their sleep without ejaculation,5 though in
the majority of cases, both of these processes happen at the same
time.74 Due to the sensitive nature of the subject, it is difficult to
obtain robust estimates of the frequency of nocturnal emissions,
with significant variations observed for different age groups (men
aged 19–20 having the highest frequency5) and different societal
groups.115 A more recent survey113 estimated the frequency to range
from once a month for males in their late teens and early 20s, to
once or twice per year for older adult males. In almost all cases,
males reported having a sex dream when they experienced a noc-
turnal emission,116 which can be interpreted within the framework
of our model as stochastic escape from the basin of attraction of
an otherwise stable baseline state of low levels of physiological and
psychological arousal under the influence of a small amount of
stochastic psychological stimulation.

VI. DISCUSSION

In this paper, we have studied a mathematical model of a sexual
response in human males with account for physiological and psy-
chological arousal. Depending on the values of system parameters
and initial conditions, the model is able to exhibit solutions, whose
dynamics reproduces that of the Masters–Johnson sexual response
cycle, and more specifically, progression through the stages of exci-
tation–plateau–orgasm–resolution, or the same type of progression
without achieving an orgasm. In the absence of a fixed thresh-
old in the model, dynamics in the phase space is mediated by the
presence of a separatrix, which plays the role of a quasi-threshold,
with only solutions that cross the separatrix proceeding to reach
the right branch of the corresponding nullcline, which is associated
with achieving an orgasm. Dynamically, such trajectories have the
behavior similar to that of canard trajectories in other slow–fast sys-
tem in the sense that they follow an unstable slow manifold for an
extended period of time, before making a fast excursion in the phase
space ending in a stable steady state. Numerical solutions illustrating
orgasmic trajectories also exhibit a short period of negative physi-
ological arousal immediately following an orgasm, a phenomenon
well known from clinical practice.

To obtain a better understanding of the effect stochastic pertur-
bations may have on system dynamics, we have analyzed stochastic

fluctuations in the neighborhood of a stable steady state under the
influence of noise in both types of arousal, while also ensuring that
noise terms are acting on their respective time scales. The results
indicate the possibility of stochastic amplification, where sustained
stochastic oscillations around a deterministically stable steady state
are observed, and we have computed their spectrum, variance, and
coherence. We have also looked at confidence domains that delin-
eate regions in the phase space surrounding that steady state, where
stochastic solutions are contained with a certain probability. Since
an orgasm is associated with a significant increase in physiological
arousal compared to baseline, we have employed large deviation the-
ory to compute quasi-potential, as well as optimal escape paths from
the neighborhood of the stable steady state associated with baseline
arousal. These calculations show that while rare, under the influ-
ence of small stochastic perturbations, it is possible for trajectories to
escape basin of attraction of this stable steady state, cross the separa-
trix, and proceed for a large excursion in the phase space associated
with achieving an orgasm, which again is a clinically known phe-
nomenon of nocturnal emissions often caused by dreams of sexual
nature.

Despite its relative simplicity, the model proposed and studied
in this paper is able to qualitatively reproduce all essential features
of a sexual response in human males, as observed in clinical prac-
tice. There are a number of directions, in which the work presented
in this paper could be further extended. One interesting problem
would focus on more detailed analysis of dynamics in the neigh-
borhood of a baseline state. Masters and Johnson7 were the first
to note that pelvic muscle contractions during an orgasm appeared
to have the period of around 0.8 s almost universally in males and
females. Since our results provide analytic expressions for the fre-
quency of decaying oscillations toward this state, as well as their
decay rate, comparing these against clinical measurements could
provide estimates of some of the fundamental parameters charac-
terizing physiology of a sexual response. Additionally, spectra of
stochastic oscillations can be compared to measurements of NPTR,
which could provide some understanding of the structure of NPTR
as observed in people with normal sexual function and those with
erectile dysfunction. This could then help produce prognostic cri-
teria for a better diagnosis of psychogenic vs physiological erectile
dysfunction, thus improving clinical monitoring and treatment of
this condition, especially with recent advances in wearables and
medical monitoring devices.

While this paper has been concerned with the dynamics
of aggregated levels of physiological and psychological arousal,
another very interesting potential avenue of research concerns a
more detailed representation of neural dynamics associated with
a sexual response. An orgasm has been called “an altered state
of consciousness,”117 and several neurological studies have shown
that neurons in some parts of the brain exhibit the level of syn-
chrony during an orgasm, which is very similar to that observed
during epileptic seizures.118–120 The significance of this observation
is that one can gain insights into emergence and control of neu-
ral synchrony during a sexual response and an orgasm by using
mathematical techniques developed for analysis of various phenom-
ena in systems of coupled neurons, such as amplitude/oscillation
death,121 chaotic synchronization,122 and chimera states.123 In
this context, it has been suggested that periodic physiological
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stimulation, which we modeled as a constant term due to its high-
frequency nature when considered on the timescale of a sexual
response cycle, can actually result in the entrainment of oscilla-
tions among groups of neurons,118 thus suggesting the possibility of
another feedback mechanism between physiological and psycholog-
ical components of the arousal.

One could also revisit the relation between arousal and per-
formance as used in the equation for physiological arousal and
reconsider it from the perspective of reversal theory.124,125 In this
framework, depending on the tone of activity, when in the playful
state, the increase in psychological arousal moves one from bore-
dom to excitement, whereas in the serious state, a similar increase in
psychological arousal moves between relaxation and anxiety. This
allows a more nuanced representation of interactions between the
level of psychological arousal and physiological pleasure, as is asso-
ciated with a sexual response, not to mention that it can provide a
wider range of scenarios for switching between playful and serious
states, and the corresponding changes in arousal. When combined
with the above-mentioned data on neural correlates of a sexual
response and an orgasm, this could yield a much more accurate
representation of a human sexual response. Finally, with insights
obtained from the results in this paper, the next major step would
be to consider how one could modify modeling framework to study
the sexual response in females, which is known to be much more
complex from the perspective of interactions between physiologi-
cal and psychological arousal, as well as in terms of a much wider
range of different temporal dynamics that it can exhibit.7,8 More
specifically, one could incorporate in the model additional feedback
mechanisms proposed by Basson8 in her circular model of a female
sexual response, which pointed to desire and excitation arising as a
by-product of stimulation in addition to spontaneous desire associ-
ated with stochastic inputs, and the role of sexual motivation as a
factor influencing the degree of receptiveness to stimulation.

SUPPLEMENTARY MATERIAL

See the supplementary material for bifurcation analysis and
numerical simulations of the model with a physiological response
to psychological arousal being represented by a cubic function
modeling the Yerkes–Dodson law.
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