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ABSTRACT

In this paper, we model dynamics of pediatric vaccination as an imitation game, in which the rate of switching of vaccination strategies is
proportional to perceived payoff gain that consists of the difference between perceived risk of infection and perceived risk of vaccine side
effects. To account for the fact that vaccine side effects may affect people’s perceptions of vaccine safety for some period of time, we use a
delay distribution to represent how memory of past side effects influences current perception of risk. We find disease-free, pure vaccinator,
and endemic equilibria and obtain conditions for their stability in terms of system parameters and characteristics of a delay distribution.
Numerical bifurcation analysis illustrates how stability of the endemic steady state varies with the imitation rate and the mean time delay,
and this shows that it is not just the mean duration of memory of past side effects, but also the actual distribution that determines whether
disease will be maintained in the population at some steady level, or if sustained periodic oscillations around this steady state will be observed.
Numerical simulations illustrate a comparison of the dynamics for different mean delays and different distributions, and they show that
even when periodic solutions are observed, there are differences in their amplitude and period for different distributions. We also investigate
the effect of constant public health information campaigns on vaccination dynamics. The analysis suggests that the introduction of such
campaigns acts as a stabilizing factor for endemic equilibrium, allowing it to remain stable for larger values of mean time delays.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0143184

Control of infectious diseases using vaccination and other pub-
lic health methods presents a fascinating yet challenging problem
from the perspective of understanding and modeling collective
behavior. People are known to modify their attitudes to vac-
cines due to personal experience, information spread through
word-of-mouth, as well as messages from various public health
bodies, and this can have a profound impact on their vacci-
nation choices. There have been several notable vaccine scares
in the last 30 years, with many countries still suffering from
measles and mumps outbreaks due to insufficient coverage with
measles, mumps, and rubella (MMR) vaccines. More recently,
misinformation about COVID-19 vaccines led to significant chal-
lenges in their adoption in many countries despite excellent
efficacy and safety profiles. This paper will use a known frame-
work of evolutionary game theory and, more specifically, imi-
tation games, where the change in the proportion of vaccina-
tors increases with their perceived payoff that consists of the

difference between their risk of infection and risk of vaccine
side effects. We pay particular attention to the fact that vac-
cine side effects may appear not immediately after vaccination,
and their perceived risk may also not dissipate instantly, which
is modeled using distributed time delays. We identify disease-
free, endemic, and other steady states of the model and study
their stability depending on model parameters and delay dis-
tributions. Whereas stability of the disease-free steady state is
distribution-independent, for the endemic equilibrium, we find
that it is not only the mean time delay, but also the actual
shape of the delay distribution that determines whether there
will be some steady level of infection or periodic oscillations in
disease incidence. We also explore the effect of public health
campaigns on controlling the disease, as well as on stability
of endemic equilibrium. Numerical simulations are performed
to illustrate the behavior of the model in different dynamical
regimes.
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I. INTRODUCTION

In the context of understanding the dynamics and control of
infectious diseases, a significant role is played by human behavior
that can have major effects on epidemic dynamics. This includes
people reducing their contacts and otherwise modifying their behav-
ior, once they become aware of the ongoing outbreak, as well as
using vaccines to prevent infection. At the same time, one should
note that information and awareness can result not only in the pos-
itive outcome in terms of reducing spread of disease, but it can
also have a major detrimental effect when it causes panic and/or
undermines public confidence. One example of the latter is the
uncontrolled spread of plague during the 1994 outbreak in one of the
states in India, where people fled the endemic and, as a result, car-
ried the disease with them and infected other parts of the country.1

Another notable example of vaccine fears with global ramifications
is the case of a 1998 paper in Lancet alleging a possible connection
between MMR vaccines and autism. Despite this paper being sub-
sequently retracted, and the claim itself being thoroughly debunked
with tens, if not hundreds, of controlled studies, and hundreds of
thousands of people, even now, there are significant numbers of
young people who are not vaccinated against measles, mumps, and
rubella in different countries. Another more recent example con-
cerns COVID-19 pandemic and vaccination against SARS-CoV-2,
where misinformation and some rather wild conspiracy theories led
to a notable negative impact on vaccine take-up.2–4 Besides fears
of vaccine-induced side effects, an important role is also played by
the public perception and the way immunization campaign is por-
trayed in public media. For example, a negative press coverage of an
HPV vaccination campaign in Romania, which claimed that vacci-
nation would encourage promiscuous behavior among young girls,5

resulted in a very low take-up of vaccination, leading to Romania
having the highest rates of cervical cancer in Europe.6

When discussing vaccination, important concepts are those of
herd immunity and free-riding. Herd immunity refers to the idea
that if a sufficiently high percentage of population is vaccinated,
even those who are not vaccinated are benefiting from protection,
because an outbreak will not occur, even if infection is introduced
in the population due to the pool of susceptible people being very
small.7–9 Mathematically, if the infectious disease is characterized by
the basic reproduction number R0, then, subject to a number of sim-
plifying assumptions, such as heterogeneity of contacts, absence of
age structure, etc., the critical percentage of population that needs to
be vaccinated in order to achieve herd immunity can be estimated as
pc = 1 − 1/R0. Measles, which is known to be the most contagious
infectious disease to date, has the value of R0 estimated between
12 and 1810 (with some more recent estimates suggesting a range
of between 6.51 and 45.4 in European countries11), with the herd
immunity threshold of 94.4% for R0 = 18. In 2015–2017, over 75%
of European countries had a lower percentage of people with two
doses of an MMR vaccine,12 which explains continuing outbreaks
of measles in these and other countries. Free-riding refers to the
strategy taken up by some people where they are relying on herd
immunity for their protection, instead of actually getting vaccinated
themselves, thus avoiding potential vaccine side effects (VSEs).13–16

This approach is different from simply refusing vaccination on some
religious, philosophical, or other grounds.18 Several studies have

shown that free-riding makes it impossible to completely eliminate
infection from population.13,14,16–19

In terms of mathematical modeling of epidemic dynamics
with account for changes in human behavior, a variety of differ-
ent approaches have been used that focused on behavioral changes
resulting from awareness spread through direct social contacts or
via public health information campaigns. A monograph by Manfredi
and d’Onofrio20 provides an excellent overview of many techniques
used in such modeling (see also a more recent review paper by Wang
et al.21). One popular approach to studying vaccination dynam-
ics, which has been successfully used in various contexts over the
last almost 20 years, is based on evolutionary game theory. This
approach originated in the work of Bauch14,22 that proposed mod-
eling a proportion of vaccinators (people willing to vaccinate) using
an imitation game, where non-vaccinators imitate vaccinators and
take up vaccination at a rate that is proportional to their perceived
payoff from adopting a vaccinator strategy. This payoff is then taken
to be the difference in the perceived risk of disease, which is usually
taken to be proportional to disease incidence, or some other growing
function of it, and the perceived risk of VSE, which is represented as
a linear (or some other) function of vaccination coverage. In the sim-
plest case, where risk of disease is proportional to disease incidence
and the risk of side effects is proportional to vaccination coverage,
dynamics of the proportion of vaccinated people is described by the
well-known replicator equation from evolutionary game theory.23

d’Onofrio et al.24 included in the model additional perceived payoff
from vaccination that arises due to a public health campaign, which,
for simplicity, they considered to be constant. Buonomo et al.25 stud-
ied the effects of seasonality in the transmission rate in such a model,
while Buonomo et al. have used optimal control theory to obtain
optimal time profiles of public health awareness programs in the
case of constant transmission26 or seasonally forced transmission.27

Vaccine-induced side effects often appear not immediately, but
rather some time after vaccination, and once information about the
side effects becomes known, this has the potential to affect vaccine
take-up for some considerable time afterward. One way to account
for these effects in mathematical models is to consider the current
proportion of people deciding to take up vaccination being a pos-
itive decreasing function of a variable representing the perceived
risk of vaccine, which can itself be delayed.19,28 Another approach,
which was briefly mentioned in d’Onofrio et al.,17 uses the imita-
tion game model14 but allows current perceived risk of vaccination
to depend on past vaccine side effects, included with a delay kernel.
While the main bulk of that work focused on an unlagged model,
numerical simulations with exponentially fading memory demon-
strated the possibility of sustained oscillations around the endemic
equilibrium. Following similar methodology, in this paper, we con-
sider a pediatric infectious disease, such as measles or mumps, which
is controlled by a vaccine that is assumed to provide 100% effective-
ness and a lifelong immunity. The disease itself is also assumed to
confer lifelong immunity, which means that disease dynamics can
be modeled using an SIR-type model. Vaccine is administered to
newborns only, and the parents make a choice of whether or not
to vaccinate depending on available information about vaccine risks
vs risks of infection, and in doing so, parents imitate other parents
who have vaccinated their children. The dynamics of such a model
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is then given by the following system of equations:

Ṡ = µ(1 − p) − βSI − µS,

İ = βSI − (µ + v)I, (1)

ṗ = kp(1 − p)1E,

where S and I are proportions of susceptible and infected individ-
uals; µ = 1/L is the population birth rate taken to be the same as
the death rate, where L is the life expectancy at birth; β is the disease
transmission rate; v is the recovery rate; and k is the imitation rate, at
which individuals sample and adopt an alternative vaccination strat-
egy depending on the payoff gain. 1E = Pv − Pi is the difference
in perceived payoffs for vaccinated and unvaccinated individuals,
where Pv = −rv and Pi = −ri, with rv and ri being the perceived
risk of VSE and perceived risk of infection, respectively. Similarly
to other models,14,17,24 we will assume perceived risk of infection
ri to be proportional to disease prevalence; i.e., ri = ωI. Perceived
risk of vaccination rv is taken in the form that depends on past
vaccine-related side effects,

rv(t) = α

∫ ∞

0

g(s) · p(t − s)ds = α

∫ t

−∞
g(t − z)p(z)dz,

where g(s) is the delay kernel, which quantifies how memory of past
VSE is influencing current perception of risk. The delay kernel g(s)
is assumed to be positive-definite, i.e., g(s) ≥ 0 for s ≥ 0, and nor-
malized to unity, i.e.,

∫ ∞
0

g(s)ds = 1. The complete model now has
the form

Ṡ = µ(1 − p) − βSI − µS,

İ = βSI − (µ + v)I,

ṗ = kp(1 − p)

[
I − α

∫ ∞

0

g(s)p(t − s)ds

]
,

(2)

where we have introduced rescaled parameters

k̄ = kω, ᾱ = α

ω

and removed bars for simplicity.
Specific delay kernels we will consider below include a discrete

delay distribution g(s) = δ(s − τ0) that assumes that the perceived
risk of VSE at time t is determined by VSE that occurred some
fixed period of time τ0 ago, i.e., at time t − τ0; Gamma distribution
g(s) = sn−1σ ne−σ s/(n − 1)!, which for n = 1 (weak kernel, expo-
nentially fading memory17) and n = 2 (strong kernel) turns into
g(s) = σ e−σ s and g(s) = σ 2se−σ s, respectively, and an acquisition-
fading (AF) kernel28 g(s) =

(
e−s/T1 − e−s/T2

)
/(T1 − T2). In the limit

T1 → 0, T2 = T (or T2 → 0, T1 = T), this kernel transforms into
the weak kernel with σ = 1/T, and in the limit T1 → T2 = T, AF
kernel becomes the strong kernel with the same σ = 1/T. These
delay kernels are illustrated in Fig. 1, with the exception of discrete
delay kernel given by the Dirac δ-function at τ0. The mean time delay
for each of these delay distributions can be found as

τ =
∫ ∞

0

sg(s)ds,

FIG. 1. Weak, strong, and acquisition-fading distribution kernels with the mean
time delay τ = 2.

and it gives τ = τ0 for the case of discrete delay, τ = n/σ for
a Gamma-distributed delay kernel, and τ = T1 + T2 for the AF
kernel.

The work by d’Onofrio et al.17 mentions the model (2) with
the exponentially fading memory (weak Gamma distribution), and
while no analytical results were obtained, for this specific delayed
kernel, the authors presented a bifurcation diagram for the endemic
steady state in the plane of inverse mean time delay and the imi-
tation rate k. They also illustrated regimes where endemic equilib-
rium is stable or unstable by showing the corresponding numerical
solutions. Unfortunately, the highlighted parts of their bifurcation
diagram (Fig. 6 in Ref. 17) are referred to in the caption to that
figure as stability regions, and in the accompanying text as insta-
bility regions, and without analytical results supporting this, the
reader is left confused. To clarify this confusion, in this paper,
we derive some general kernel-independent results and perform
both analytical and numerical investigations to analyze stability
of all steady states of the model (2) not only for the exponen-
tially fading memory, but for all four of the above-mentioned delay
kernels.

The remainder of this article is organized as follows. In Sec. II,
we identify steady states of model (2) and derive conditions for
their biological feasibility and stability. Section III contains the
results of numerical bifurcation analysis, where we explore numer-
ically stability of endemic equilibrium, and we solve the model
numerically, which allows us to compare and contrast behavior
of the system for the same values of parameters but different
delay distributions. In Sec. IV, we extend the model to include
the impact of public health information campaign and analyze its
impact on disease control and on stability properties of an endemic
steady state. The article concludes in Sec. V with a discussion of
results.
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II. STEADY STATES AND THEIR STABILITY

For any values of parameters, model (2) has steady states E0

= (1, 0, 0) and E1 = (0, 0, 1). It can also have steady states

E2 =
(

µ + v

β
,
µ[β − (µ + v)]

β(µ + v)
, 0

)

and

E3 = (S∗, I∗, p∗)

=
(

µ + v

β
,
µα[β − (µ + v)]

β[µ + α(µ + v)]
,

µ[β − (µ + v)]

β[µ + α(µ + v)]

)
.

The steady state E0 is the disease-free steady state of the model, E1

is the so-called pure vaccinator equilibrium,14,24,27 E2 is the endemic
state in the absence of vaccination, and E3 is the fully endemic
steady state with vaccination. Both steady states E2 and E3 are only
biologically feasible if β > (µ + v).

Stability of any steady state Ê(̂S,̂ I, p̂) of the model (2) is deter-
mined by the roots λ of the characteristic equation
∣∣∣∣∣∣

−µ − β̂I − λ −βŜ −µ

β̂I βŜ − (µ + v) − λ 0
0 k̂p(1 − p̂) k1 − k2{L g}(λ) − λ

∣∣∣∣∣∣
= 0,

(3)
where

k1 = k(1 − 2̂p)(̂I − α̂p), k2 = kα̂p(1 − p̂),

and

{L g}(λ) =
∫ ∞

0

g(s)e−λsds

is the Laplace transform of the kernel g(s). For discrete delay, we
have

{L g}(λ) = e−λτ0 ,

and, similarly, for the Gamma distribution,

{L g}(λ) =
(

σ

λ + σ

)p

,

and for the AF kernel,

{L g}(λ) = 1

(1 + λT1) · (1 + λT2)
.

For the disease-free steady state E0, it immediately follows from
(3) that this steady state is stable, provided

R0 = β

µ + v
< 1, (4)

unstable if R0 > 1, and undergoes a steady-state bifurcation at
R0 = 1. Here, R0 is the basic reproduction number, which, impor-
tantly, only depends on disease parameters but is independent
of delay distributions or parameters k and α characterizing vac-
cination. Boundary equilibrium E1 has eigenvalues λ1 = −µ, λ2

= −(µ + v), and λ3 = αk, the last of which is positive, implying that
this steady state is always unstable. Similarly, one of the eigenvalues
of the steady state E2 is given by λ = kI∗, which indicates that as long
as this steady state exists, it will also always be unstable. We note that

the condition of instability of disease-free steady state R0 > 1 is also
the condition that ensures biological feasibility of the steady states
E2 and E3.

The characteristic equation for the endemic equilibrium E3 has
the form

kµβp∗(1 − p∗)I∗ +
[
kαp∗(1 − p∗){L g}(λ) + λ

]

×
[
λ2 + λ(µ + βI∗) + β2S∗I∗

]
= 0, (5)

and for very small imitation rates 0 < k � 1, this reduces to a sim-
ple quadratic equation λ2 + λ(µ + βI∗) + β2S∗I∗ = 0, whose both
roots have negative real parts. This suggests that for a sufficiently
small k, the steady state E3 is stable for all distribution kernels
independently of the mean time delay.

For discrete delay, characteristic Eq. (5) transforms into a
transcendental equation

P(λ) + Q(λ)e−λτ0 = 0, (6)

where P(λ) and Q(λ) are, respectively, cubic and quadratic polyno-
mials of the form

P(λ) = λ3 + λ2(µ + βI∗) + β2S∗I∗λ + kµβp∗(1 − p∗)I∗

and

Q(λ) = kαp∗(1 − p∗)
[
λ2 + λ(µ + βI∗) + β2S∗I∗

]
.

At τ0 = 0, a transcendental characteristic equation (6) reduces to a
cubic

λ3 + a2λ
2 + a1λ + a0 = 0,

with coefficients

a2 = µ + βI∗ + kαp∗(1 − p∗),

a1 = β2S∗I∗ + kαp∗(1 − p∗)(µ + βI∗),

a0 = kβp∗(1 − p∗)I∗(µ + αβS∗).

Since all coefficients a0, a1, and a2 are positive, the condition for
stability of the endemic steady state E∗ at τ0 = 0 can be found from
the Routh–Hurwitz criterion as

kαp∗(1 − p∗)
[
(βI∗ + µ)[kα(1 − p∗) + 1] − βµp∗

]

+ β2S∗I∗(βI∗ + µ) > 0. (7)

It is easy to check that λ = 0 is not a solution of the characteristic
equation (6), and hence, if the steady state E∗ is stable for τ0 = 0,
for τ0 > 0, its stability can only change through a Hopf bifurcation,
where a pair of complex conjugate eigenvalues crosses the imaginary
axis with a non-zero speed. Looking for solutions of the charac-
teristic equation (6) in the form λ = iζ , substituting this into the
equation, and separating real and imaginary parts, we obtain an
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equation for the Hopf frequency ζ ,

η3 + [(βI∗ + µ)
2 − 2β2S∗I∗ − (kαp∗(1 − p∗))2]η2

+ [(β2S∗I∗)
2 − 2kµβp∗(1 − p∗)I∗(βI∗ + µ)

− (kαp∗(1 − p∗))2
((βI∗ + µ)

2 − 2β2S∗I∗)]η

+ [kβp∗(1 − p∗)I∗]2 ·
[
µ2 − α2β2(S∗)2

]
= 0,

where η = ζ 2. If the free term in this equation is negative, which
happens whenever the following condition holds:

αβS∗ > µ ⇐⇒ αv + µ(α − 1) > 0,

there will exist at least one real positive root η0 of this equation,
which would give the corresponding Hopf frequency as ζ0 = √

η0.
The critical value of the time delay τ0, at which this Hopf bifurcation
would occur, can then be found as

τ0c = arctan
−̂k(ζ 2

0 − β2S∗I∗)
2 + ζ0(µ + βI∗)z0

ζ 2
0 (µ + βI) − k̂(ζ 2

0 − β2S∗I∗)z0

,

where

k̂ = kαζ0p
∗(1 − p∗), z0 = kµβp∗(1 − p∗)I∗ − ζ 2

0 (µ + βI∗).

For a Gamma-distributed kernel, the characteristic equation
(5) transforms into a polynomial equation of degree (n + 3),

kµβp∗(1 − p∗)I∗(λ + σ)n +
[
kαp∗(1 − p∗)σ n + λ(λ + σ)n

]

×
[
λ2 + λ(µ + βI∗) + β2S∗I∗

]
= 0. (8)

Another way of arriving at this equation is to use a linear chain
trick to transform the original model (2) with a distributed delay into
a system of coupled ordinary differential equations. To illustrate this
process for the weak kernel n = 1, we introduce an auxiliary variable
M(t) as

M(t) =
∫ ∞

0

σ e−σ sp(t − s)ds.

Then, the system (2) with a weak kernel can be equivalently rewrit-
ten as

Ṡ = µ(1 − p) − βSI − µS,

İ = βSI − (µ + v)I,

ṗ = kp(1 − p) [I − αM] ,

Ṁ = σp − σM.

(9)

The endemic steady state E3 transforms into the steady state Ẽ3

= (S∗, I∗, p∗, p∗) of the extended system (9). Jacobian of linearization
around this steady state has the form

J̃E3
=




−µ − βI∗ −βS∗ −µ 0
βI∗ 0 0 0
0 kp∗(1 − p∗) 0 −kαp∗(1 − p∗)
0 0 σ −σ


 ,

and the characteristic equation det[J̃E3
− λI] = 0 has exactly the

same form as (8). Because this equation is polynomial, we can again
resort to Routh–Hurwitz criteria to obtain explicit conditions for

stability of endemic equilibrium E3. Rewriting Eq. (8) with n = 1
in the form

λ4 + b3λ
3 + b2λ

2 + b1λ + b0 = 0,

with coefficients

b3 = (βI∗ + µ + σ), b0 = kβσp∗(1 − p∗)I∗(αβS∗ + µ),

b2 = kασp(1 − p) + σ(βI∗ + µ) + β2S∗I∗,

b1 = kp∗(1 − p∗)[ασ(βI∗ + µ) + µβI∗] + σβ2S∗I∗,

and since these coefficients are always positive, conditions for stabil-
ity of E3 are given by

b3b2 − b1 > 0, (b3b2 − b1)b1 − b2
3b0 > 0. (10)

Applying a linear chain trick to the cases of strong and AF kernels
results in the following systems of ODEs:





Ṡ = µ(1 − p) − βSI − µS,
İ = βSI − (µ + v)I,
ṗ = kp(1 − p) [I − αM2] ,
Ṁ1 = σp − σM1,
Ṁ2 = σM1 − σM2,





Ṡ = µ(1 − p) − βSI − µS,
İ = βSI − (µ + v)I,
ṗ = kp(1 − p) [I − αM2] ,
Ṁ1 = a1p − a1M1,
Ṁ2 = a2M1 − a2M2,

(11)
where a1,2 = 1/T1,2, and we again note that setting a1 = a2 = σ

transforms the AF kernel into a strong kernel. The characteristic
equation for the AF kernel is a quintic

[
kαp∗(1 − p∗) + λ(1 + λT1)(1 + λT2)

]

×
[
λ2 + λ(µ + βI∗) + β2S∗I∗

]

+ kµβp∗(1 − p∗)I∗(1 + λT1)(1 + λT2) = 0,

and its stability can also be investigated using Routh–Hurwitz crite-
ria, though expressions would look more cumbersome.

III. NUMERICAL BIFURCATION ANALYSIS AND

SIMULATIONS

To explore how stability of the endemic steady state E3 changes
with parameters, we fix the values of µ = 1/(70 · 365) days−1, which
corresponds to an average life expectancy of 70 years, and v
= 1/7 days−1, which is representative of measles infection. We also
fix the value of basic reproduction number R0 = 10, which then
determines the disease transmission rate β through β = R0(µ + v).
Figure 2 illustrates how stability of endemic steady state E3 varies
with the mean time delay τ and the imitation rate k for the four delay
distributions we consider. For all delay distributions, we note a small
region characterized by very low values of k, where the endemic
steady state is stable for any values of mean delay, in agreement with
our discussion of the characteristic equation (5).

The first thing to note is that the stability region in the case
of a weak Gamma distribution, which is often assumed in epidemic
models and represents exponentially decaying memory of VSE, has a
structure that is very different from that for other delay distributions
in that once an endemic steady state has stabilized for sufficiently
high imitation rate τ , stability is never lost again. In contrast, for
other delay distributions we consider, for not too large time delays,
there is a range of k values, for which endemic equilibrium is stable,
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FIG. 2. Regions of stability and instability of the endemic steady state E3 for
different delay distribution kernels depending on the mean time delay τ and imi-
tation rate k. (a) Discrete delay kernel. (b) Weak Gamma distribution. (c) Strong
Gamma distribution. (d) AF kernel with T1,2 = (0.5 ± 0.4)τ . The color code
denotes max[Re(λ)], with stable regions shown in blue-green and unstable shown
in yellow-red. Parameter values are µ = 3.9 × 10−5 days−1, v = 1/7 days−1,
α = 0.002.

but for smaller and higher values of k, it is unstable, with instability
occurring as a result of a supercritical Hopf bifurcation. Epidemio-
logically, this means that with the exception of exponentially fading
memory, increasing the rate of imitation, i.e., encouraging unvacci-
nators to more stringently follow their vaccinator contacts, results
in destabilizing an endemic steady state, leading to the emergence
of periodic solutions around this steady state, some of which are
illustrated in Fig. 4. Since the AF kernel reduces to a strong Gamma
kernel when T1 = T2, to make the distinction between these two ker-
nels clearer, we consider the situation, where T1,2 = (0.5 ± 0.4)τ .
The comparison of stability regions for discrete delay, a strong
Gamma distribution, and such an AF kernel shows that the stabil-
ity region in the plane of imitation rate k and the mean time delay τ

is increased for a strong Gamma distribution and increased further
still for the AF kernel. This shows that for the same rate of imitation,
a stable endemic steady state, characterized by some steady level of
infection, would be maintained by larger values of τ , in other words,
for a longer period of memory of VSE. For all delay distributions,
regardless of the value of the imitation rate, there is some minimum
value of mean time delay τ such that for a higher value of τ , an
endemic steady state is unstable. Notably, this minimum time delay
required for destabilization of endemic equilibrium is significantly
higher for exponentially fading than for other delay distributions.

With the AF kernel providing a family of kernels with the
same mean delay τ = T1 + T2, in Fig. 3(a), we plot the stability
region of endemic equilibrium E3 depending on parameters T1 and
T2 for some fixed value of imitation rate k. The diagonal T1 = T2

corresponds to the case of a strong Gamma distribution, and we
observe that where the endemic steady state is initially unstable
for a strong Gamma distribution, as the values of T1 and T2 devi-
ate from the value of τ/2, eventually, this leads to stabilization of

FIG. 3. (a) Stability of endemic equilibrium E3 with an AF kernel. The color code
denotes max[Re(λ)], with stable regions shown in blue-green and unstable shown
in yellow-red. The black line corresponds to a mean time delay τ = T1 + T2

= 150. (b) Stability boundaries of endemic steady state E3 depending on the
mean delay τ and the half-difference between T1 and T2, with T1,2 = (τ ± W)/2.
E3 is stable to the left of the boundary and unstable to the right of it. Parameter
values are µ = 3.9 × 10−5 days−1, v = 1/7 days−1, k = 250. (a) α = 0.002.
(b) α = 0.001 (blue), α = 0.004 (red), and α = 0.02 (green).

endemic equilibrium. This is further explored in Fig. 3(b), where we
write parameters T1 and T2 as T1,2 = (τ ± W)/2. Stability bound-
aries of endemic equilibrium in the τ–W plane show that increasing
the width W of the AF distribution results in increasing the range
of mean time delays τ , for which endemic equilibrium is stable.
Interestingly, increasing the rate α, which measures how past VSE
impact current perceived vaccine risk, reduces the range of mean
time delays, for which E3 is stable, for smaller widths W of AF ker-
nel, but increases this range of stable mean time delays for larger
distribution widths W.

Figure 4 illustrates numerical solution of the model (2) for
different delay distributions and different mean time delays. We
observe the emergence of stable periodic solutions around the
endemic steady state for increasing mean delays, which happens
first for a discrete delay distribution, then for the strong Gamma
distribution, and then for the AF kernel. In the case of a weak
Gamma kernel, i.e., exponentially fading memory, endemic steady
state remains stable for all values of the mean time delay we consider,
as the Hopf bifurcation of this steady state occurs for a much higher
value of τ . We note that in the cases, where the periodic solutions
are observed for different delay distributions but the same values of
parameters, these periodic solutions are characterized by different
amplitudes and periods. This further highlights the point that it is
not just the mean time delay, but rather the actual delay distribution
that determines the type of dynamics that will be exhibited by the
model.

IV. INFLUENCE OF PUBLIC HEALTH INFORMATION

CAMPAIGNS

In order to investigate the effect of public health awareness
campaigns on take-up of vaccination and the resulting epidemic
dynamics, we extend our model in a manner similar to d’Onofrio
et al.24 and introduce an extra term in equation for ṗ, namely,

ṗ = kp(1 − p)

[
ωI − α

∫ ∞

0

g(s)p(t − s)ds

]
+ kP1Ep(1 − p),
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FIG. 4. Numerical solution of the model (2) for different delay distribution kernels and mean time delays. Top row (a)–(d): discrete delay; second row (e)–(h): weak Gamma
kernel; third row (i)–(l): strong Gamma kernel; and fourth row (m)–(p): AF kernel. First column: τ = 20 days, second column: τ = 50 days, third column: τ = 100 days, and
fourth column: τ = 150 days. Parameter values are µ = 3.9 × 10−5 days−1, v = 1/7 days−1, α = 0.002, k = 400.

where 1Ep(t) is the perceived payoff from public health information
and kp is the rate of acceptance of public information. For simplicity,
similarly to Refs. 24 and 25, we consider 1Ep to be constant and then
write it in the form kP1Ep = kγ . Rescaling parameters

kω = k̄, ᾱ = α

ω
, γ̄ = γ

ω
,

and dropping bars, we obtain the modified model

Ṡ = µ(1 − p) − βSI − µS,

İ = βSI − (µ + v)I,

ṗ = k(1 − p)

[
p

(
I − α

∫ ∞

0

g(s)p(t − s)ds

)
+ γ

]
.

(12)

Similarly to the original model (2), this modified model can
also have up to four steady states: disease-free state

Ẽ0 =
(

1 −
√

γ

α
, 0,

√
γ

α

)
, pure vaccinator state Ẽ1 = (0, 0, 1), and

steady states

Ẽ2,3 =
(

µ + v

β
,
µ

β
x, 1 − µ + v

β
(x + 1)

)
,

with

x = 1

2(µ + v)[α(µ + v) + µ]

[
[β − (µ + v)] · [2α(µ + v) + µ]

±
√

µ2[β − (µ + v)]2 + 4β2γ (µ + v)[α(µ + v) + µ]
]
.

We have the following connection between steady states of the
modified and original models:

lim
γ→0

Ẽ0 = E0, lim
γ→α

Ẽ0 = Ẽ1 = E1, lim
γ→0

Ẽ2,3 = E2,3.

Before looking at stability of these steady states, we note that any
solution of the system (12) that starts in the region

� = {(S, I, p) ∈ R
3
+ : 0 ≤ S + I ≤ 1, 0 ≤ p ≤ 1}
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will remain in this region for all t ≥ 0, which means that � is a
positively invariant region.

Characteristic roots of the steady state Ẽ1 are λ1 = −µ, λ2

= −(µ + v), and λ = k(α − γ ), suggesting that this steady state is
linearly asymptotically stable for γ > α and unstable for γ < α.
Next, we use the methodology developed in Buonomo et al.25 to
show that for γ ≥ α, the steady state Ẽ1 is actually globally asymp-
totically stable. To demonstrate this, we consider the last equation of
the system (12) that can be rewritten as follows:

ṗ = k(1 − p)

[
p

(
I − α

∫ ∞

0

g(s)p(t − s)ds

)
+ γ

]

≥ αk(1 − p)

[
1 −

∫ ∞

0

g(s)p(t − s)ds

]

= αk(1 − p)

∫ ∞

0

g(s)[1 − p(t − s)]ds ≥ 0.

With p(t) being contained between 0 and 1, this then implies
limt→∞ p(t) = 1, with p monotonically increasing. Therefore, for
any T > 0, there exists ε > 0 such that p(t) > 1 − ε for t > T, and
for T → ∞, we have ε → 0. Considering t > T, equation for S(t)
now takes the form

Ṡ = µ(1 − p) − βSI − µS < µ(ε − S).

An equation of the form

ż = µ(ε − z)

has the solution

z(t) = ε − (ε − z0)e
−µt.

Since limt→∞ z(t) = ε, from the comparison principle, we have
S(t) → 0 as t → ∞. In a similar way, choosing sufficiently large T,
such that S(t) < ε = (µ + v)/β , we would have for t > T,

İ = βSI − (µ + v)I < [βε − (µ + v)]I < 0,

which then implies I(t) → 0 as t → ∞. Taken together, this shows
that for γ ≥ α, the steady state Ẽ1 is indeed globally asymptotically
stable.

Linearization of the modified model (12) near the disease-
free steady state E0, which is only biologically feasible for 0 ≤ γ /

α < 1, has characteristic eigenvalues λ1 = −µ, λ2 = β

(
1 −

√
γ

α

)

− (µ + v), with remaining eigenvalues satisfying the equation

λ = k
[
−γ − αp∗(1 − 2p∗) − αp∗(1 − p∗){L g}(λ)

]
. (13)

Using the relation α(p∗)2 = γ , this equation can be equivalently
rewritten as

λ = k
√

αγ

(√
γ

α
− 1

) [
1 + {L g}(λ)

]
= −C

[
1 + {L g}(λ)

]
,

(14)
where

C = k
√

αγ

(
1 −

√
γ

α

)
> 0. (15)

For the case of discrete delay, the characteristic equation (14) turns

into

λ = −C(1 + e−λτ ). (16)

For τ = 0, the solution of this equation is λ = −C < 0. Obviously,
for τ > 0, there can be no real roots of this equation, as this would
result in a real negative value of the left-hand side and a real pos-
itive value on the right-hand side. What remains to be checked is
whether there can be complex conjugate roots of this equation. Since
at τ = 0, the characteristic eigenvalue is real and negative and λ = 0
is clearly not a solution, we need to check whether a pair of com-
plex conjugate eigenvalues can cross the imaginary axis for some
τ0 = τ0c. If this happens, we would have λ = ±iζ . Substituting this
into Eq. (16) and separating real and imaginary parts, we have

{
ζ = C sin(ζ τ ),
0 = −C[1 + cos(ζ τ )].

From the second equation, we obtain cos(ζ τ ) = −1, which implies
ζ τ = π + 2nπ , n = 0, ±1, ±2, . . ., and substituting this into the
first equation, we then have sin(ζ τ ) = 0, which means that ζ = 0.
Hence, we conclude that there cannot be purely imaginary roots of
Eq. (16), and all of its roots have a negative real part for any values
of τ .

For a Gamma-distributed delay kernel, Eq. (13) takes the form

λ = −C

[
1 +

(
σ

λ + σ

)n]
.

In the case of a weak kernel, this equation transforms into a
quadratic equation

λ2 + (C + σ)λ + 2Cσ = 0,

FIG. 5. Regions of stability and instability of the endemic steady state E3 of
model (12) depending on parameters α and γ . (a) Discrete delay kernel. (b)
WeakGamma distribution. (c) StrongGamma distribution. (d) AF kernel. The color
code denotes max[Re(λ)], with stable regions shown in blue-green and unstable
shown in yellow-red. White indicates that the endemic steady state E3 is biologi-
cally infeasible. Parameter values areµ = 3.9 × 10−5 days−1, v = 1/7 days−1,
τ = 100 days, k = 400.
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FIG. 6. Regions of stability and instability of the endemic steady state E3 for different delay distribution kernels depending on the mean time delay τ and imitation rate k. Top
row: discrete delay kernel, second row: weak Gamma distribution, third row: strong Gamma distribution, and fourth row: AF kernel with T1,2 = (0.5 ± 0.4)τ . Left column:
γ = 10−6, middle column: γ = 10−5, and right column: γ = 10−4. The color code denotes max[Re(λ)], with stable regions shown in blue-green and unstable shown in
yellow-red. Parameter values are µ = 3.9 × 10−5 days−1, v = 1/7 days−1, α = 0.002.
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whose both roots have a negative real part for any σ > 0. In the case
of a strong kernel, the characteristic equation becomes a cubic

λ3 + (C + 2σ)λ2 + σ(σ + 2C)λ + 2Cσ 2 = 0.

Since all coefficients of this equation are positive, the Routh–Hurwitz
criterion for stability gives the condition

σ(2C2 + 3Cσ + 2σ 2) > 0,

which is always satisfied. Hence, as in the case of discrete delay,
Eq. (13) does not have roots with a positive real part.

Finally, for the AF kernel, Eq. (13) is also cubic,

T1T2λ
3 + (CT1T2 + T1 + T2)λ

2 + [C(T1 + T2) + 1]λ + 2C = 0,

and the Routh–Hurwitz criterion,

(CT2 + 1)[(CT2 + 1)T1 + T2] + T1 > 0,

is always satisfied. From these calculations, we conclude that irre-
spective of which distribution kernel we consider, stability of the
disease-free steady state E0 is determined by the sign of the eigen-
value λ2, which will be negative, provided

R0p < 1, R0p = β

µ + v

(
1 −

√
γ

α

)
= R0

(
1 −

√
γ

α

)
.

This shows that increasing the value of γ reduces the value of basic
reproduction number, thus increasing stability of the disease-free
equilibrium.

For endemic equilibrium, the characteristic equation has the
form

kµβp∗(1 − p∗)I∗ +
[
λ2 + λ(µ + βI∗) + β2S∗I∗

]

×
[
k(1 − p∗)[αp∗{L g}(λ) + (I∗ − αp∗)] + λ

]
= 0. (17)

The difference from the case of no public health intervention is in
the extra term (I∗ − αp∗) inside the last bracket, and this term is
equal zero when γ = 0.

In Fig. 5, we have fixed the value of imitation rate k and the
mean time delay τ and plotted regions of stability and instability of
endemic equilibrium Ẽ3 of the modified model (12) depending on
the strength γ of the public health information campaign and the
rate α, at which past VSE determines current perceived vaccine risk.
For the case of discrete delay, there is a very narrow region, charac-
terized by the highest values of γ , at which an endemic steady state
is still feasible, where it is stable, while in the rest of the parameter
plane, it is unstable. For a weak Gamma distribution, the region of
instability is constrained to a small region of the parameter plane
with very small values of α and γ , and endemic equilibrium is sta-
ble in the rest of the parameter plane. In the case of a strong Gamma
distribution, the situation is somewhat reminiscent of the case of dis-
crete delay in that endemic equilibrium is unstable for smaller values
of γ and stable for larger values of γ , but a major difference is that
now the region of instability is quite small and constrained to very
small values of γ . Finally, for the AF kernel, the picture is similar to
that for the strong kernel in terms of an endemic steady state being
unstable for smaller values of γ and stable for higher values of γ . The
difference from the case of a strong Gamma distribution is that the
value of γ , at which the transition from instability to stability takes

place, decreases with α, as opposed to a strong Gamma distribution,
where it was increasing with α.

To better understand the effect of public heath information
campaigns on (in)stability of an endemic steady state, in Fig. 6, we
have plotted regions of stability of an endemic steady state for all
four delay distributions and different values of γ . Compared to the
situation shown in Fig. 2, which corresponds to the case γ = 0,
as the impact of a public health information campaign becomes
positive, we observe that for all delay distributions, regions of sta-
bility of endemic equilibrium increase with increasing values of γ .
Counter-intuitively, this means that for the same imitation rates,
an endemic steady state remains stable for higher values of mean
time delay characterizing memory of past VSE. We also note that
for the AF kernel, an increase in the size of the stability region for an
endemic steady state is much more substantial than for the strong
Gamma kernel, and it is not too dissimilar from a stability region
observed for the case of a weak Gamma kernel. This suggests that
more impactful public health information campaigns result in mak-
ing the case of the AF kernel become more akin to the situation,
where there is a discrete period of memory of past VSE.

V. DISCUSSION

In this paper, we have analyzed dynamics of pediatric vacci-
nation when modeled as an imitation game, where a perceived risk
of vaccine is determined as a delayed history of side effects, repre-
sented as an integral with some delay kernel. We have identified
parameter regions of feasibility and stability of different steady states
and obtained conditions for their stability. The results show that
while the basic reproduction number that controls disease eradica-
tion only depends on parameters characterizing the disease, stability
of the endemic steady state is determined not only by the mean
time delays, but also by the shape of a specific delay distribution.
Exponentially fading memory, which is often assumed in epidemic
models, provides largest values of mean time delays, for which
the endemic steady state remains stable for the same values of the
imitation rate.

Since a major role in achieving high vaccination take-up is
played not only by the spread of information through direct social
contacts but also by targeted public health information campaigns,
we have analyzed the effects such campaigns have on model dynam-
ics. Increasing the impact of these campaigns leads to a reduction
in the basic reproduction number, thus making it easier to achieve
disease eradication, and this result is independent of the delay dis-
tribution characterizing memory of past VSE. Interestingly, and
somewhat counter-intuitively, higher values of the intensity of pub-
lic health information campaigns are associated with larger regions
of stability of endemic equilibrium for all delay distributions. While
in the absence of public health campaigns, dynamics of the model
with an acquisition-fading kernel is more similar to that of the
strong Gamma distribution, as the impact of public health informa-
tion campaigns increases, the stability region of an endemic steady
state for the AF kernel more closely resembles that for discrete delay,
suggesting that the effect of memory of past VSE becomes sharper in
that they are rather remembered for some fixed period of duration.

There are several directions, in which the work presented
in this paper could be extended. One possibility is to include
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time-dependent public health information campaigns and deter-
mine optimal information strategies using techniques of control
theory, as it was done in Buonomo et al.26,27 To achieve better
biological realism, the model can be modified to include seasonal
variation in the disease transmission rate, which is known to be
a major factor, particularly, for childhood diseases.29–31 For many
infectious diseases, there is a non-negligible period of time, where
individuals are already exposed to disease and are incubating it,
but are not yet infectious. In the model, this could be implemented
by introducing an extra compartment of exposed individuals or
by representing an infection process as some distribution, such
as a Gamma distribution with a certain number of stages, which
can vary from 3 for SARS32,33 or influenza34,35 to 20 for measles.36

Another interesting avenue for research would be to consider vac-
cination dynamics with delay-distributed memory of past VSE on
social networks,37,38 which could provide a more realistic represen-
tation of how spread of information through social contacts affects
vaccination decision-making. Finally, an interesting and important
question in the context of modeling dynamics of infectious diseases
is the role of stochastic effects. In the specific context of vaccina-
tion dynamics considered in this paper, three issues would be of
particular interest: stochastic amplification, stochastic switching of
strategies, and stochastic extinction. Stochastic amplification is a
phenomenon, where sustained stochastic oscillations are observed
in individual stochastic realizations around a deterministically stable
endemic steady state.39,40 The model presented in this paper effec-
tively describes mean-field dynamics for a very large population,
and an alternative would be to allow payoff gains for vaccina-
tor and unvaccinator strategies to rather determine probabilities of
switching to an alternative strategy.41,42 Finally, stochastic extinction
concerns an observation that if disease prevalence becomes very low
during inter-epidemic periods [which is what can be seen, e.g., in
Fig. 4(l)], due to stochasticity, disease can completely disappear from
the population,43–45 and it would be insightful to explore the extent
to which this can happen in the present model.
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