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ABSTRACT

In this article, we derive and analyze a novel predator–prey model with account for maturation delay in predators, ratio dependence, and
Holling type III functional response. The analysis of the system’s steady states reveals conditions on predation rate, predator growth rate,
and maturation time that can result in a prey-only equilibrium or facilitate simultaneous survival of prey and predators in the form of
a stable coexistence steady state, or sustain periodic oscillations around this state. Demographic stochasticity in the model is explored by
means of deriving a delayed chemical master equation. Using system size expansion, we study the structure of stochastic oscillations around
the deterministically stable coexistence state by analyzing the dependence of variance and coherence of stochastic oscillations on system
parameters. Numerical simulations of the stochastic model are performed to illustrate stochastic amplification, where individual stochastic
realizations can exhibit sustained oscillations in the case, where deterministically the system approaches a stable steady state. These results
provide a framework for studying realistic predator–prey systems with Holling type III functional response in the presence of stochasticity,
where an important role is played by non-negligible predator maturation delay.
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Recent years have witnessed an explosion of interest in differ-
ent aspects of modelling biological interactions, driven both by
new ecological evidence and by theoretical advances. One par-
ticular class of models that have attracted particular attention
are models with ratio dependence, where the per-capita rate of
predation depends on the ratio between predator and prey pop-
ulations. Motivated by recent work on plant diseases based on
plant–insect interactions, in which insects are the predators feed-
ing on plants playing the role of food source, we have proposed
a new predator–prey model with ratio dependence and a Holling
type III (sigmoidal) functional response. Predator population in
the model is assumed to be maturing with a non-negligible mat-
uration time, which is explicitly included in the model in the
form of time delay. We explore the role of different parame-
ters and time delay and show that the model always supports
a prey-only equilibrium, which is stable if the predation rate is

sufficiently small or when the predators take too long to mature.
In the opposite case, the model can exhibit coexistence, where
both prey and predators are present, and the conditions for
biological feasibility and stability of this steady state are estab-
lished depending on different parameters. The model is also
reformulated as a stochastic delayed system to explore the role
of demographic stochasticity in the dynamics of predator–prey
interactions. We derive equations for stochastic fluctuations
around the deterministically stable coexistence steady state and
use these to quantify the variance and coherence of these fluc-
tuations. Numerical simulations illustrate how even when the
coexistence steady state is deterministically stable, in individual
stochastic realizations, the model still exhibits stochastic oscil-
lations around it, which can have major implications for under-
standing the dynamics of interactions between real biological
species.
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I. INTRODUCTION

Ever since the pioneering work of Lotka1 and Volterra,2 math-
ematical models of predator–prey type have provided tremendous
insights into the dynamics of interactions between different species
or, more widely, between interacting agents that have found appli-
cation not only in biology but also in a diversity of other areas, from
immunology to economics.3–6 The starting point for many of these
models in ecological context is a general predator–prey model of
Gause–Kolmogorov type,7–9

u̇ = uf(u) − vg (u, v),

v̇ = bvg (u, v) − dv,

where u(t) and v(t) are abundances or population densities of prey
and predator, respectively; f(u) describes the intrinsic per-capita
growth rate of prey in the absence of predator; and d is the preda-
tor’s natural death rate. In order to guarantee boundedness of prey
population, the function f(u) is often chosen in the form of a
monotonically decreasing linear function f(u) = r(1 − u/K), which
biologically describes an intra-specific prey competition and corre-
sponds to the logistic growth of prey with linear growth rate r and
carrying capacity K. Function g(u, v) is known as the trophic function
or the so-called functional response of the predator,10 and it quan-
tifies how efficiently predators are consuming prey and how this
enhances their own reproduction. To account for the details of the
process of predators searching for prey and, more specifically, for
the idea that at higher predator densities, predators would have to
share some of the prey, Arditi and Ginzburg11,12 proposed that at the
time scales of population dynamics, the overall rate of predation is
better represented by a function that depends on the ratio of prey to
predators. To this end, they suggested choosing the trophic function
g(u, v) in the form g(u/v),

u̇ = uf(u) − vg
(u

v

)
,

v̇ = bvg
(u

v

)
− dv,

which is known as ratio dependence. Subsequently, besides a large
number of theoretical models with ratio dependence,13–19 several
field and experimental studies12,20,21 have also provided support for
using ratio-dependence predation as a more realistic representation
of predator–prey dynamics.

While in the classical Lotka–Volterra model, the trophic func-
tion g is simply proportional to the number of prey g(u) = au, a
more realistic representation that has become one of the most com-
monly used in ecology was suggested by Holling.22,23 It accounts
for two distinct aspects of interaction between prey and predators,
namely, predators searching for prey and predators handling (i.e.,
chasing, killing, and digesting) the prey. Holling proposed three
types of functional response g(u), which all satisfy g(0) = 0, they all
approach some constant for large values of u, and the difference is in
their behavior for smaller prey numbers/densities. Type I response
is linearly increasing for small prey densities, whereas for large prey
numbers it saturates at some constant value; type II and type III
are also functions that are saturating at high prey numbers and are,
respectively, concave and sigmoidal. In this article, we are interested
in Holling type III functional response, which is a sigmoidal function

and is often represented in the form,24,25

g(z) =
azn

1 + ahzn
, n > 1.

A large number of authors have analyzed predator–prey mod-
els with this type of functional response and ratio dependence,
both without26–28 and with time delays,29–31 as well as with spatial
dependence.32–34 Holling type III response with prey dependence
and ratio dependence has been observed in a number of experimen-
tal settings.35–38 In this article, we will instead consider the following
form of the Holling type III functional response:

g(z) = ae−α/z,

which satisfies the conditions of g(0) = 0, is monotonically increas-
ing, and settles at a constant value as z → ∞. This functional
response is reminiscent of the Ivlev (Holling II) trophic function
g(z) = a

(
1 − e−αz

)
39,40 and of the Ricker model41 for single-species

populations. It is also not entirely dissimilar from a logistic-type
term of the form g(u, v) = a(1 − v/u) used in models of plant–insect
interactions, where plants serve as hosts for insect predators, and
current plant population represents carrying capacity for insect
population.42,43 With account for ratio dependence, we, therefore,
have the trophic function g(u, v) in the form,

g(u, v) = ae−αv/u. (1)

A recent work has used a delayed version of this trophic function to
analyze the dynamics of vector–plant interactions in the context of
modelling plant mosaic disease.44

The last aspect we want to include in our model is the idea
that predators normally take some time to mature, and only mature
predators can reproduce. Mathematically, this is often represented
by stage-structured models that separate populations into imma-
ture and mature individuals and include a maturation delay, which
describes the period of time it takes for immature individuals to
reach maturity when they start to reproduce.45–48 Including matu-
ration delay in the above model, we obtain the following system:

u̇ = ru
(
1 −

u

K

)
− av(t)e−αv(t)/u(t),

v̇ = bv(t − τ)e−αv(t−τ)/u(t−τ)e−dτ − dv,

(2)

which represents a predator–prey model with ratio dependence and
Holling type III function response and which will be studied in this
article. Here, a is the predation or consumption rate, b is the con-
version rate from prey into predator biomass, τ is the maturation
delay, v(t) represents the population of mature predators, and the
factor e−dτ represents the fraction of newly born predators that have
survived to maturation. It is easy to show that this model is well-
posed in that for any non-negative initial condition, its solutions will
remain non-negative and bounded.

Rescaling the variables and parameters,

u = K û, v = K̂v, dt = t̂, dτ = τ̂ ,

r

d
= r̂,

a

d
= â,

b

d
= b̂,

Chaos 31, 073141 (2021); doi: 10.1063/5.0055623 31, 073141-2

Published under an exclusive license by AIP Publishing.

https://aip.scitation.org/journal/cha


Chaos ARTICLE scitation.org/journal/cha

the model (2) can be rewritten as follows:

u̇ = ru(1 − u) − av(t)e−αv(t)/u(t),

v̇ = bv(t − τ)e−αv(t−τ)/u(t−τ)e−τ − v,
(3)

where we have dropped hats for notational convenience.
The remainder of this article is organized as follows. In Sec. II,

we find steady states of model (3), derive conditions for their bio-
logical feasibility, and study their stability, both analytically and
using numerical computations. To understand the role of intrin-
sic stochasticity of finite population sizes, in Sec. III, we develop
and analyze a stochastic version of the model, with an emphasis on
deriving analytical expressions for spectra of fluctuations around the
deterministically stable coexistence steady state. This will be used
to numerically compute variance and coherence of stochastic oscil-
lations depending on system parameters. In that section, we will
also solve the stochastic model numerically and compare its solu-
tions to that of the deterministic model to illustrate the phenomenon
of stochastic amplification. The article concludes in Sec. IV with a
discussion of results.

II. STEADY STATES AND THEIR STABILITY

For any values of parameters, the model (3) has a prey-only
steady state Ep = (1, 0). In the neighborhood of point (u, v) = (0, 0)
in the first quadrant, the term ve−αv/u is well-defined and positive,
and in the limit, we have

0 ≤ |ve−αv/u| ≤ |v| −−−−−→
(u,v)→(0,0)

0,

which shows that E0 = (0, 0) is another steady state of the system
that exists for any parameter values and biologically represents the
extinction of both species.

Besides the above two steady states, the model can also have a
coexistence steady state E∗(u∗, v∗), where

u∗ =
αb̄r − a ln(b̄)

αb̄r
, v∗ =

ln(b̄)
(
αb̄r − a ln(b̄)

)

α2b̄r
, (4)

where b̄ = be−τ . In order for this steady state to be biologically fea-
sible, i.e., to have both of its components positive, one has to require

b̄ > 1 (which immediately implies b > 1) and

αb̄r − a ln b̄ > 0 ⇐⇒
αr

a
−

ln
(
be−τ

)

be−τ
> 0.

This last conditions can be written as h(z) > 0, where

h(z) = c −
ln(be−τ )

be−τ
, c =

αr

a
.

Function h(z) is convex, with two branches going up from a
global minimum, which is located at z0 = ln(b) − 1. Depending on
whether z0 and h(z0) are positive or negative, the function h(z) can
have zero, one, or two real positive roots. This gives the following
restrictions on maturation delay τ , for which the coexistence steady

state is biologically feasible:

1 < b ≤ e :

{
c ∈

(
0, ln(b)/b

]
, τ ∈ [τ2, τmax],

c ∈
(
ln(b)/b, ∞

)
, τ ∈ [0, τmax],

b > e :





c ∈
(
0, ln(b)/b

]
, τ ∈ [τ2, τmax],

c ∈
(
ln(b)/b, 1/e

]
, τ ∈ [0, τ1]

⋃
[τ2, τmax],

c ∈ (1/e, ∞) , τ ∈ [0, τmax],

(5)

where

τ1 = − ln

(
−

W−1(c)

cb

)
, τ2 = − ln

(
−

W0(c)

cb

)
, τmax = ln(b),

and W0(·) and W−1(·) are Lambert functions with k = 0 (principal
branch) and k = −1.

The characteristic equation for the linearization of the system
(3) near the steady state Ep has the form,

(λ + r) ·
(
be−τ e−λτ − 1 − λ

)
= 0,

which shows that one of the eigenvalues is λ = −r < 0, and other
eigenvalues satisfy a transcendental equation

λ = be−τ e−λτ − 1. (6)

For τ = 0, the condition for stability, i.e., Re(λ) < 0, becomes b̄ < 1,
which simplifies to b < 1. Let us assume the condition

b̄ < 1 ⇐⇒ be−τ < 1 (7)

also holds for τ > 0. To check, whether or not the steady state
Ep is stable, we look for roots of Eq. (6) in the form λ = ρ + iκ .
Substituting this into (6) and separating real and imaginary parts
yields

ρ = b̄e−τρ cos(τκ) − 1,

κ = b̄e−τρ sin(τκ).

Since b̄ < 1, the first of these equations has no roots with ρ > 0,

which implies that the steady state Ep is stable. If b̄ > 1, due to the

definition of b̄, this means that b > 1, and hence, the steady state Ep

is unstable already at τ = 0, though the analysis we have just per-
formed shows that this steady state can get stabilized for sufficiently
large τ , provided the condition (7) holds. For a fixed value of b > 1,
the loss of stability of the steady state Ep occurs at

τc = ln(b), (8)

with Ep being stable for τ > τc and unstable for τ < τc. We note

that the condition b̄ > 1 for instability of Ep is also one of the con-
ditions for biological feasibility of the coexistence steady state E∗.
Since parameters in the model (3) have been rescaled using d, whose
inverse is the average life expectancy of predators, this suggests an
additional biological constraint of τ ≤ 1 to avoid a possibility of
maturation time exceeding the overall life expectancy. This restric-
tion implies that for b > e, the prey-only equilibrium Ep is unstable
within the entire range of possible maturation delays 0 ≤ τ ≤ 1.
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For the coexistence steady state E∗, the characteristic equation
has the following form:
∣∣∣∣∣∣∣∣∣∣∣

r

(
2

a ln(b̄)

αb̄r
− 1

)
−

a[ln(b̄)]
2

αb̄
− λ −

a(1 − ln(b̄))

b̄

[ln(b̄)]
2

α
e−λτ (1 − ln(b̄))e−λτ − 1 − λ

∣∣∣∣∣∣∣∣∣∣∣

= 0.

(9)
For τ = 0, this simplifies to a quadratic equation

λ2 − λ

[
− ln(b) + r

(
2

a ln(b)

αbr
− 1

)
−

a[ln(b)]2

αb

]

+ ln(b)

(
r −

a ln(b)

αb

)
= 0,

and with the last term being positive to ensure feasibility of the
steady state E∗, the condition for stability of E∗ at τ = 0 can be
readily found as

− ln(b) + r

(
2

a ln(b)

αbr
− 1

)
−

a[ln(b)]2

αb
< 0.

Since the coefficients of the characteristic equation themselves

depend on τ through b̄ = be−τ , for τ > 0 it does not prove possible
to obtain closed form explicit conditions for stability of the steady
state E∗. Hence, we compute characteristic eigenvalues numerically
using traceDDE.52

For the extinction steady state E0, we note that the system (3) is
not differentiable at this steady state; hence, the stability analysis of
this steady state cannot be performed in a standard fashion. A stan-
dard approach to the analysis of stability of extinction steady state in
systems with ratio dependence is the so-called Briot–Bouquet trans-
formation that replaces the variable v by a new variable z defined
as v = zu.49–51 In the particular case of system (3), due to the fact

that the ratio-dependent term is instantaneous in one equation and
time-delayed in another equation, such a transformation would not
remove the singularity in the Jacobian at the point (0, 0). How-
ever, since solutions to the system (3) are always non-negative and
bounded, and the axes u = 0 and v = 0 are invariant manifolds
of the system, one can use Poincaré–Bendixson theorem for time-
delayed systems53,54 to conclude that in the parameter region, where
the prey-only equilibrium Ep is unstable, and the coexistence steady
state E∗ is infeasible, the system approaches a stable extinction steady
state E0.

Figure 1 shows the bifurcation diagram of the system (3)
depending on parameters a, b, and the maturation delay τ . In
plot 1(a), we observe that since b < e, there is a critical value of
maturation delay τc, as determined by Eq. (8), such that the prey-
only equilibrium Ep is stable for τ > τc (region D) and unstable for
τ < τc, and at τ = τc, it loses stability through steady-state bifur-
cation. For τ < τc, which biologically means that predators are
maturing quite fast, and the sufficiently small predation rate a, we
have a stable coexistence equilibrium E∗ (region C), where both
prey and predator populations are maintained at some steady lev-
els given by Eq. (4). For higher values of a, as the maturation delay τ

is decreased, the steady state E∗ loses its stability through a super-
critical Hopf bifurcation, resulting in the appearance of periodic
solutions (region B). For even smaller values of time delay (or higher
values of a), once the feasibility boundary of the coexistence steady
state is crossed, which is also stability boundary for this steady state,
the system approaches a stable extinction steady state E0 (region A).
Numerical solutions to the system (2) in each of these parameter
regions are illustrated in Fig. 2.

Similar behavior is observed in Fig. 1(b), where due to the fact
that now b > e, the prey-only equilibrium Ep is unstable in the entire
admissible range of τ values. For smaller values of predation rate a
and small maturation time τ , we have a stable coexistence steady
state E∗. If the predation rate is sufficiently small, the coexistence
steady state remains stable in the entire range of τ values. However,

FIG. 1. Bifurcation diagram of the system (3) in the parameter planes of τ -a (a) and (b) and τ -ln(b̄) (c). Solid blue line denotes stability boundary of the prey-only equilibrium
Ep, which is stable for τ > τc and unstable for τ < τc. Solid black line delineates boundary of feasibility of the coexistence steady state E

∗, which is not feasible above this
line. Dashed lines indicate the boundary of Hopf bifurcation of the coexistence steady state E∗, with this steady state being stable below the corresponding line, and unstable
above the line. In plot (a), A, B, C, and D denote parameter regions of a stable extinction steady state E0, periodic solution around the coexistence steady state E

∗, stable
coexistence steady state E∗, and stable prey-only equilibrium Ep. Parameter values are r = 2, α = 1. (a) b = 2; (b) b = 4.
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FIG. 2. Numerical solutions to the system (2) in parameter regions A, B, C, and D of Fig. 1(a). Parameter values are r = 2, K = 20, α = d = 1, b = 2, a = 6, and
(u0, v0) = (16, 6). (a) τ = 0.05, (b), τ = 0.3, (c) τ = 0.6, and (d) τ = 0.8.

starting with some value of a, as the maturation time increases,
this again results in the loss of stability of E∗ through a supercriti-
cal Hopf bifurcation. In this case, the boundary of feasibility of the
steady state E∗ at τ = τc is outside the admissible range of 0 ≤ τ ≤ 1;
once the periodic solution emerges, it remains present for all val-
ues of τ up to τ = 1. Increasing the predation rate eventually makes
the coexistence steady state biologically infeasible (and unstable),
which signifies that the rate of predation is so high that the prey is
not replenished fast enough to be maintained at some steady level,
which, in turn, also drives the predator population down, and the
system approaches a stable extinction steady state E0.

We also note that as b is reduced to 1, the stability boundary
τ = τc of the steady state Ep comes closer to zero, and for b < 1,
this steady state is stable for all values of τ , which biologically corre-
sponds to a case, where predator fecundity is too small to maintain
predator population, regardless of how quickly it matures. As a
result, the coexistence steady state does not exist, and the system
always approaches the prey-only equilibrium Ep.

Maturation delay τ plays a dual role in the dynamics of the sys-
tem (3)—it reduces the fecundity of predators by means of replacing

b with b̄, and it also enters the model through delayed values of prey

and predator populations in the predator growth term. To explore
separate roles of these two effects, in Fig. 1(c), we plot the bifurcation
diagram of the model in terms of maturation delay τ and rescaled

predator fecundity b̄. As discussed above, the prey-only steady state

Ep loses stability once the value of b̄ exceeds b̄ = 1, at which point the

coexistence steady state E∗ becomes biologically feasible. For lower

values of b̄, the steady state E∗ is stable for all admissible values of

maturation delay. In contrast, for much higher values of b̄, increas-

ing maturation delay τ results in a destabilization of E∗ through a

supercritical Hopf bifurcation and the emergence of a stable periodic

solution around this steady state. Biologically, this could be inter-

preted as high fecundity of predators, which results in the higher
number of new adult predators, is counterbalanced by the longer
time it actually takes for those predators to reach maturity, and it is
the balance of those two factors that determines whether the system

will exhibit a stable coexistence steady state, observed for smaller b̄

and τ , or a periodic solution around this steady state for higher b̄ and
τ . We also note that increasing the predation rate a has the effect of
increasing the size of the parameter region, where the coexistence
steady state is stable, with instability occurring at higher values of
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b̄ and τ . This can be attributed to the fact that increasing a results
in a decreased growth of prey population, which means that for the
same values of other parameters, lower prey availability facilitates
the maintenance of stable coexistence, as is observed in Figs. 1(a)
and 1(b).

III. STOCHASTIC MODEL

In order to explore the role of stochasticity in the dynamics,
we begin by constructing a continuous-time Markov chain corre-
sponding to the deterministic system (2). To this end, we intro-
duce Xu, Xv ∈ {0, 1, 2, . . .} as discrete random variables representing,
respectively, the numbers of prey and predators, with the initial
condition X(s) = φ(s), s ∈ [−τ , 0]. Interpreting prey and predator
populations as chemical reactants, we can derive a delayed chemical
master equation (DCME)55,56 corresponding to system (2), in which
we separately account for non-delayed reactions, where there is a
single time point, where the update happens for both reactants and
the products terms, and the consuming delay terms, where there are
two update points: original reactants are updated at the start of reac-
tion, while the products are updated at the end of the reaction.56–58

In the particular case of system (2), the logistic growth term of prey
and natural death of predators are non-delayed reactions, whereas
predation is a delayed reaction.

If we denote by P(n, t) the probability of finding the system in
the state n = (nu, nv), nu, nv ∈ {0, 1, 2, . . .} at time t, i.e., we have

P(n, t) = Prob [(Xu(t), Xv(t)) = (nu, nv)|φ(s)],

then it satisfies the following DCME:

∂P(n, t)

∂t

b
∑

m∈I(n)

mv(t − τ)e−αmv(t−τ)/mu(t−τ)
(
ε−

v − 1
)

P(n, t; m, t − τ)

+
{
r
(
ε−

u − 1
)

nu + d
(
ε+

v − 1
)

nv

+ a
(
ε+

u − 1
)

nve
−αnv/nu + �

r

N

(
ε+

u − 1
) (nu

�

)2 }
P(n, t),

(10)

where I(n) is the set of all possible past states of the system,
from which the state n can be reached via a chain of transitions,
P(n, t; m, t − τ) is the joint probability of finding the system in state
n at time t and in state m at time t − τ , and the shift operators ε±

u,v

are defined as follows:

ε±
u f(nu, nv) = f(nu ± 1, nv), ε±

v f(nu, nv) = f(nu, nv ± 1).

To make further progress in the analysis and, in particular, to get a
handle on stochastic fluctuations around the deterministically stable
steady state, we perform the system size expansion of the DCME,59

which will allow us to separate deterministic and stochastic compo-
nents. To apply system size expansion to Eq. (10), we anticipate nu

and nv to be of order �, with fluctuations of order �1/2,

nu(t) = �u(t) + �1/2ξ1(t), nv(t) = �v(t) + �1/2ξ2(t), (11)

where [u(t), v(t)] are determined by the original deterministic model
(2) and [ξ1(t), ξ2(t)] describe random fluctuations around the deter-
ministic solution. Similarly, we can express delayed variables,60

mu(t − τ) = �u(t − τ) + �1/2η1(t),

mv(t − τ) = �v(t − τ) + �1/2η2(t).
(12)

One can then express probability distributions P(n, t) and
P(n, t; m, t − τ) in terms of ξ = (ξ1, ξ2)

T and η = (η1, η2)
T as

P(n, t) = P(�(u, v)T + �1/2ξT, t) = 5(ξ , t),

P(n, t; m, t − τ) = 5(ξ , t; η, t − τ),

which then implies

∂P(n, t)

∂t
=

∂5

∂t
− �1/2u̇

∂5

∂ξ1

− �1/2v̇
∂5

∂ξ2

. (13)

Expanding this equation in powers of �, at the order �1/2, one
recovers the system (2) describing deterministic dynamics, and at
the next order, i.e., at order �0, one obtains a delayed Fokker–Planck
equation that describes stochastic oscillations around the deter-
ministic trajectory (see the Appendix). Following the methodology
of Galla60 (see also61–64), we can use this delayed Fokker-Planck
equation to obtain the following system of Langevin equations
describing the dynamics of fluctuations around a deterministic
steady state (u∗, v∗) of the model (2):

ξ̇1 = r

(
1 −

2u∗

K

)
ξ1 −

ad

b̄

[
(1 − F) ξ2 + F2ξ1

]
+ ζ1,

ξ̇2 = d
[
(1 − F) ξ2(t − τ) + F2ξ1(t − τ) − ξ2(t)

]
+ ζ2,

(14)

where

F =
ln(b̄/d)

α

and ζ (t) = (ζ1(t), ζ2(t))
T is a vector of two independent Gaussian

white noise variables with zero mean, and the noise correlators are
given by

〈ζ1(t)ζ1(t
′)〉 = 2ru∗δ(t − t′), 〈ζ2(t)ζ2(t

′)〉 = 2dv∗δ(t − t′),

〈ζ1(t)ζ2(t
′)〉 = 0.

The deterministic part of these equations is exactly the same as
what can be obtained directly from system (2) after linearizing
it near a steady state (u∗, v∗), while the noise covariance matrix
describing large-scale oscillations around this steady state can only
be derived from the system size expansion of the DCME.68,69 The
Fourier transform of system (14) can be found as

M(ω)̃ξ(ω) = ζ̃ (ω),

where

M =




iω − r

(
1 −

2u∗

K

)
+

adF2

b̄

ad

b̄
(1 − F)

−dF2e−iωτ iω + d
[
1 − (1 − F)e−iωτ

]


 .
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Introducing the matrix of spectra S(ω) as Sij(ω) = 〈̃ξi(ω)̃ξj(ω
′)〉, we

then have

S(ω) = M(ω)−1 〈̃ζ (ω)̃ζ (ω)†〉(M(ω)†)
−1

, (15)

where † denotes Hermitian conjugate, and

〈̃ζ (ω)̃ζ (ω′)
†〉 =

(
2ru∗ 0

0 2dv∗

)
δ(ω + ω′).

This then gives the power spectra of fluctuations in prey and preda-
tors around the coexistence steady state as

Pu(ω) =
〈
|ξ1|2

〉

=
2

(
ru∗

∣∣iω + d − d(1 − F)e−iωτ
∣∣2 + dv∗

[
ad

b̄
(1 − F)

]2
)

| det(M)|2
,

Pv(ω) =
〈
|ξ2|2

〉

=
2

(
ru∗d2F4 + dv∗

[(
r
(
1 − 2u∗

K

)
− adF2

b̄

)2

+ ω2

])

| det(M)|2
, (16)

with

| det(M)|2 =
[
ωd

(
1 +

adF2

b̄
− (1 − F) cos ωτ

)

−r

(
1 −

2u∗

K

)
(ω + (1 − F) sin ωτ)

]2

+
[
rd

(
1 −

2u∗

K

)
((1 − F) cos ωτ − 1)

−ω(ω + d(1 − F) sin ωτ) +
adF2

b̄

]2

.

The power spectrum of fluctuations in prey population is shown in
Fig. 3. One can observe that increasing the predation rate a makes
the dominant frequency of oscillations more pronounced, while

increasing the maturation delay makes the dominant frequency
smaller, though this effect is less pronounced for higher values of
a, where the system is closer to stability boundary of the coexistence
steady state.

When looking at the dynamics of fluctuations around a
steady state, the covariance matrix 4 defined as 4ij = 〈ξi(t)ξj(t)〉
− 〈ξi(t)〉〈ξj(t)〉〈ξi(t)ξj(t)〉 is time-independent, and it can be found
from the matrix of spectra S as follows:65

4 =
1

2π

∫ ∞

−∞
S(ω)dω,

while for stochastic systems without time delay, one could use a
Lyapunov equation to obtain the covariance matrix.61,66,67

The level of fluctuations around the dominant spectral fre-
quency for each of the two populations Xu(t) and Xv(t) around their
steady-state values X∗

u and X∗
v can be quantified using their respective

mean-square variances

Au,v = lim
T→∞

∫ T

−T

[Xu,v(t) − X∗
u,v]

2dt =
∫ ∞

0

2Pu,v(ω)dω.

Focusing on particular frequency interval [ω1, ω2] around the peak
frequency in the distribution of Pu,v(ω), one can then compute the
quantity

Ap
u,v =

∫ ω2

ω1

2Pu,v(ω)dω

and use this quantity to define the coherence of stochastic fluctuations
as cu,v = A

p
u,v/Au,v.61,62,68

Introducing Y(t) = (Y1(t), Y2(t))
T as a vector of two contin-

uous random variables, we can derive the following Itô stochastic
delay differential equation model:

dY = µdt + QdW(t), Y(s) = φ(s), s ∈ [−τ , 0], (17)

where the drift vector µ and the matrix Q are given by

µ =
(

P1 − P2

P3 − P4

)
, Q =

(√
P1 + P2 0

0
√

P3 + P4

)
,

FIG. 3. Power spectra Pu(ω) of stochastic fluctuations in prey population around the coexistence steady state E∗ as given by Eq. (16). Parameter values are r = 2, K = 20,
α = d = 1, and b = 2. (a) a = 1, (b) a = 3, and (c) a = 5.
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FIG. 4. Numerical solution (black) to the deterministic model (2) shown together
with a single stochastic trajectory (red) from (17). Shaded area indicates a
region of one standard deviation obtained from the mean of 20 000 sim-
ulations. Parameter values are r = 2, K = 20, α = d = 1, a = 5.5, and
τ = 0.4.

where

P1 = rY1(t), P2 =
rY1(t)

2

K
+ aY2(t)e

−αY2(t)/Y1(t),

P3 = b̄Y2(t − τ)e−αY2(t−τ)/Y1(t−τ), P4 = dY2(t),

and W(t) = [W1(t), W2(t)]
T is a vector of two independent Wiener

processes. Equation (17) was solved using the strong predic-
tor–corrector method with the implicitness in the drift coefficient
being chosen to be equal to 1/7, which ensures the method has the
largest stability region.

Figure 4 illustrates the result of a comparison between 20 000
of stochastic realizations obtained by solving the SDDE (17). For
chosen parameter values, the coexistence steady state is determin-
istically stable, with the largest eigenvalues being a pair of complex
conjugate eigenvalues with a negative real part. As a result of this,
the deterministic trajectory, which coincides with the average of
those stochastic simulations, shows the behavior of decaying oscil-
lations toward a stable steady state E∗. In contrast, an individual
stochastic realization can still exhibit stochastic oscillations around
this deterministically stable steady state. This phenomenon is known
as endogenous “stochastic resonance” or stochastic amplification68–70

of demographic stochasticity. The fundamental point is that sus-
tained oscillations around the deterministically stable steady state
are driven not by external noise but rather by intrinsic finite size
effects. The ecological importance of this result lies in the obser-
vation that even in the absence of other external drivers, such
as seasonality or environmental variability, the system can exhibit
sustained stochastic oscillations. We also note that similar to the
deterministic case, predator population in the stochastic simulation
also lags behind the prey population.

In Fig. 5, we explore how the variance and coherence of
stochastic fluctuations in prey population around the coexistence
steady state change with parameters. For b < e, there appears to
be little variation in the level of variance of stochastic fluctuations
with the value of maturation delay, while increasing predation rate
is associated with higher variance. In contrast, for b > e, we observe
a spilt of the stable parameter region of the coexistence steady state
in two parts: for smaller values of maturation, delay variance is
decreasing with a, while for higher values of maturation, it increases
with a, particularly in the neighborhood of stability boundary. In
terms of coherence, we observe the split of stability region of coexis-
tence steady state into two parts. The first part is represented by the
right region in plot (a) or left region in plot (b), where the largest
eigenvalue of linearization around E∗ is real and negative; hence,
deterministically, there are now decaying oscillations around the
steady state E∗, and we observe that there is very little difference
in the coherence of stochastic oscillations with maturation delay,
though it does slowly grow with a. The second part of the stabil-
ity region of E∗, which corresponds to the left region in plot (a) or
right region in plot (b), is characterized by steady state E∗ being sta-
ble but with the leading eigenvalues being complex. In this case, the
system deterministically exhibits decaying oscillations toward this
steady state, and there are significantly larger values of coherence,
which also demonstrate larger variation with time delay. As the val-
ues of a are increased, and we approach the deterministic boundary
of Hopf bifurcation of E∗, coherence increases and reaches the value
of 1 at the boundary, where stable deterministic oscillations around

E∗ emerge. When plotted in the τ -b̄ parameter plane, the part of the
stability region of E∗, where stability eigenvalues for this steady state

are complex, is confined to intermediate value of b̄ and larger values
of τ . In this part of the parameter plane, one observes the lowest val-
ues of variance and coherence of stochastic oscillations around the
deterministically stable steady state. Similar to what was discussed
above, approaching the boundary of Hopf bifurcation, the coherence
of stochastic oscillations increases.

IV. DISCUSSION

In this article, we have proposed and analysed a predator–prey
model with ratio dependence, Holling type III functional response
of Ricker type, and maturation time delay in predators. The model
always admits a prey-only equilibrium, and depending on the val-
ues of system parameters, it can also have a coexistence steady state
with positive values of prey and predator populations. If the preda-
tor growth rate is rather small, and the predation rate is large, then
there is some minimum maturation delay, for which the coexis-
tence steady state is feasible, while for small predation rates, it is
always feasible. In contrast, for higher rates of predator growth and
intermediate values of predation, the coexistence steady state is only
feasible for small and for large values of maturation delay, and we
have identified these critical values of time delays required for feasi-
bility in terms of Lambert W function. Stability conditions have been
derived for both steady states, and they show that the coexistence
steady state is only feasible when the prey-only equilibrium is unsta-
ble. The coexistence steady state can undergo supercritical Hopf
bifurcation, giving rise to stable periodic solutions, and numerical
simulations have been performed both to identify stability regions
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FIG. 5. Variance 4u,u (top line) and coherence cu (bottom line) of stochastic fluctuations in prey population around the coexistence steady state E∗. In the gray region, the
steady state E∗ is infeasible, and the prey-only steady state E0 is stable. Parameter values are r = 2, K = 20, and α = d = 1. (a) and (d) b = 2; (b) and (e) b = 4; (c)
and (f) a = 2.

of the coexistence steady state and to illustrate the dynamics of the
model around it.

To explore the role of demographic stochasticity, we have
derived a stochastic counterpart of the model and then applied
van Kampen system size expansion to the delayed chemical master
equation to obtain a system of equations describing stochastic fluc-
tuations around the deterministically stable coexistence steady state.
Due to the linearity of these Langevin equations, it proved possi-
ble to obtain spectra of stochastic oscillations in a closed form, and
these were then used to study the dependence of variance and coher-
ence of fluctuations on system parameters and maturation delay.
The comparison of numerical solution to the Itô SDDE model with
the deterministic analog illustrates that while in the limit of very
large system size, the system may approach a coexistence steady state
that is deterministically stable, individual stochastic realizations still
exhibit stochastic oscillations around this state. This result can be
important in the context of applying models of this kind to analyze
data emerging from ecological observations of real predator–prey
interactions.
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APPENDIX: SYSTEM SIZE EXPANSION OF THE

MASTER EQUATION

Before proceeding with system size expansion, we rewrite the
DCME (10) in the form

∂P(n, t)

∂t
=
{(

ε−
u − 1

)
a1(n) +

(
ε+

u − 1
) [

�a2

( n

�

)
+ a3(n)

]

(
ε+

v − 1
)

a4(n)
}

P(n, t)

+
b̄

a

∑

m∈I(n)

(
ε−

v − 1
)

a3(m)P(n, t; m, t − τ), (A1)

where reaction propensities together with associated state change
vectors are given by

aj(n) =





rnu(t), v1 = (1, 0),
rnu(t)

2/K, v2 = (−1, 0),

anv(t)e
−αnv(t)/nu(t), v3 = (−1, b̄/a),

dnv(t), v4 = (0, −1).

We can expand shift operators

ε±
u,v − 1 = ±�−1/2 ∂

∂ξ1,2

+
1

2
�−1 ∂2

∂ξ 2
1,2

± · · ·
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and use expansions (11) and (12) for nu,v(t) and nu,v(t − τ) to obtain

a1(n) = ru� + ruξ1�
1/2, a4(n) = dv� + dξ2�

1/2,

a2

( n

�

)
=

r

K

(
u2 + 2uξ1�

−1/2 + ξ 2
1 �−1

)
,

a3(n) = a
(
�v + �1/2ξ2

)
e−α(v+�−1/2ξ2)/(u+�−1/2ξ1)

= ave−αv/u

{
� +

[(
1 −

v

u

)
ξ2 +

(
v2

u2

)2

ξ1

]
�1/2

}

+ O(�0).

Substituting these expressions into the DCME (10), rewriting the
left-hand side in terms of 5(ξ , t), and using the relation (13), we
collect terms of the same order of �. At the highest order, i.e., �1/2,
we have

u̇ = ru(t)

(
1 −

u(t)

K

)
− av(t)e−αv(t)/u(t),

v̇ = b̄v(t − τ)e−αv(t−τ)/u(t−τ) − dv(t),

which are nothing else but the original deterministic model (2)
describing macroscopic dynamics.

To next order in �, i.e., collecting terms O
(
�0
)
, one obtains a

delayed Fokker–Planck equation,

∂5(ξ , t)

∂t
= −

∂

∂ξ2

[
dξ25(ξ , t)

]
−

∂

∂ξ1

{[
r

(
1 −

2u(t)

K

)
ξ1

−ae−αv(t)/u(t)

((
1 −

v(t)

u(t)

)
ξ2 +

(
v(t)2

u(t)2

)2

ξ1

)]
5(ξ , t)

}

− b̄e−αv(t−τ)/u(t−τ) ∂

∂ξ2

∫

η

[(
1 −

v(t − τ)

u(t − τ)

)
η2

+
(

v(t − τ)2

u(t − τ)2

)2

η1

]
5(ξ , t; η, t − τ)dη

+
1

2

[
ru(t)

(
1 +

u(t)

K

)
+ av(t)e−αv(t)/u(t)

]
∂25(ξ , t)

∂ξ 2
1

+
1

2

[
b̄v(t − τ)e−αv(t−τ)/u(t−τ) + dv(t)

] ∂25(ξ , t)

∂ξ 2
2

.

(A2)

Since we are interested in the long-time asymptotic limit, where
the mean-field trajectory approaches a stable coexistence steady
state E∗, we replace in the above equation u(t) = u(t − τ) = u∗ and
v(t) = v(t − τ) = v∗ and use relations

v∗

u∗ =
1

α
ln

(
b̄

d

)
≡ F, b̄v∗e−αv∗/u∗ + dv∗ = 2dv∗,

ru∗
(

1 +
u∗

K

)
+ av∗e−αv∗/u∗ = 2ru∗, b̄e−αv∗/u∗ = 1

to obtain

∂5(ξ , t)

∂t
= −

∂

∂ξ2

[
dξ25(ξ , t)

]
−

∂

∂ξ1

{[
r

(
1 −

2u∗

K

)
ξ1

−
ad

b̄

(
(1 − F) ξ2 + F2ξ1

)]
5(ξ , t)

}

− d
∂

∂ξ2

∫

η

[
(1 − F) η2 + F2η1

]
5(ξ , t; η, t − τ)dη

+ ru∗ ∂25(ξ , t)

∂ξ 2
1

+ dv∗ ∂25(ξ , t)

∂ξ 2
2

, (A3)

which correspond to the system of the delayed Langevin
equation (14) describing the dynamics of fluctuations known as the
linear noise approximation.
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