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Abstract In this paper, we study the SIS (susceptible–infected–susceptible) and SIR
(susceptible–infected–removed) epidemic models on undirected, weighted networks
by deriving pairwise-type approximate models coupled with individual-based net-
work simulation. Two different types of theoretical/synthetic weighted network mod-
els are considered. Both start from non-weighted networks with fixed topology fol-
lowed by the allocation of link weights in either (i) random or (ii) fixed/deterministic
way. The pairwise models are formulated for a general discrete distribution of
weights, and these models are then used in conjunction with stochastic network simu-
lations to evaluate the impact of different weight distributions on epidemic thresholds
and dynamics in general. For the SIR model, the basic reproductive ratio R0 is com-
puted, and we show that (i) for both network models R0 is maximised if all weights
are equal, and (ii) when the two models are ‘equally-matched’, the networks with a
random weight distribution give rise to a higher R0 value. The models with different
weight distributions are also used to explore the agreement between the pairwise and
simulation models for different parameter combinations.
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1 Introduction

Conventional models of epidemic spread consider a host population of identical in-
dividuals, each interacting in the same way with each of the others (see Anderson
and May 1992; Diekmann and Heesterbeek 2000; Keeling and Rohani 2007 and
references therein). At the same time, in order to develop more realistic mathe-
matical models for the spread of infectious diseases, it is important to obtain the
best possible representation of the transmission mechanism. To achieve this, more
recent models have included some of the many complexities that have been ob-
served in mixing patterns. One such approach consists of splitting the population
into a set of different subgroups, each with different social behaviours. Even more
detail is included within network models that allow differences between individu-
als to be included. In such models, each individual is represented as a node, and
interactions that could permit the transmission of infection appear as edges linking
nodes. The last decade has seen a substantial increase in research into how infectious
diseases spread over large networks of connected nodes (Keeling and Eames 2005;
Newman 2002), where the networks themselves can represent either small social con-
tact networks (Moreno et al. 2002) or larger scale travel networks (Danon et al. 2011;
Dorogovtsev and Mendes 2003), including global aviation networks (Pastor-Satorras
and Vespignani 2001a, 2001b). Importantly, the characteristics of the network, such
as the average degree and the node degree distribution, have a profound effect on
the dynamics of infectious disease spread, and hence significant efforts are made to
capture properties of realistic contact networks.

One of the common simplifying assumptions of network models is that all links are
equally capable of transmitting infection (Boccaletti et al. 2006; Eubank et al. 2004;
Keeling and Eames 2005; Riley 2007). However, in reality, this is often not the case.
Some links will be more likely to transmit infection than others due to closer contacts
(e.g. within households Beutels et al. 2006) or long-duration interactions (Edmunds
et al. 1997; Read et al. 2008; Riley 2007; Riley and Ferguson 2006). To account for
this heterogeneity in properties of social interactions, network models can be adapted,
resulting in weighted contact networks, where connections between different nodes
have different weights. These weights may be associated with the duration, proxim-
ity, or social setting of the interaction, and the key point is that they are expected
to be correlated with the risk of disease transmission. The precise relationship be-
tween the properties of an interaction and its riskiness is hugely complex; here, we
will consider a ‘weight’ that is directly proportional to the transmission rate along a
link.

A substantial amount of work has been done on the analysis of weighted net-
works (Barrat et al. 2004a, 2004b, 2004c; Li and Chen 2004) and scale-free networks
with different weight distributions (Wang and Zhang 2004). In an epidemiological
context, Britton et al. (2011) have derived an expression for the basic reproductive
ratio in weighted networks with generic distributions of node degree and link weight,
and Deijfen (2011) has performed a similar analysis to study vaccination in such net-
works. In terms of practical epidemiological applications, weighted networks have al-
ready been effectively used to study control of global pandemics (Colizza et al. 2007;
Cooper et al. 2006; Eames et al. 2009) and the spread of animal disease due to cattle
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movement between farms (Gilbert et al. 2005). Eames et al. (2009) have consid-
ered an SIR model on an undirected weighted network, where rather than using a
theoretical formalism to generate an idealised network, the authors have used social
mixing data obtained from questionnaires completed by members of a peer group
(Read et al. 2008) to construct a realistic weighted network. Having analysed the dy-
namics of epidemic spread in such a network, they showed how information about
node-specific infection risk can be used to develop targeted preventative vaccination
strategies. Yang et al. (2008) have shown that disease prevalence can be maximised
when the edge weights are chosen to be inversely proportional to the degrees of nodes
that they link to but, in this case, the transmissibility was not directly proportional to
the weights, and weights were also asymmetric. Yang and Zhou (2012) have con-
sidered SIS epidemics on homogeneous networks with uniform and power law edge
weight distributions and shown how to derive a mean-field description for such mod-
els. Furthermore, their simulation results show that the more homogeneous weight
distribution leads to higher epidemic prevalence.

In this paper, we consider the dynamics of an infectious disease spreading on
weighted networks with different weight distributions. Since we are primarily con-
cerned with the effects of weight distribution on the disease dynamics, the connection
matrix will be assumed to be symmetric, representing the situation when the weights
can be different for different network edges, but for a given edge the weight is the
same irrespective of the direction of infection. From an epidemiological perspective,
we consider both the case when the disease confers permanent immunity (represented
by an SIR model), and the case when the immunity is short-lived, and upon recov-
ery individuals become susceptible once again (SIS model). For both of these cases,
we derive the corresponding ODE-based pairwise models and their closure approxi-
mations. Numerical simulations of both the epidemic spread on the network and the
pairwise approximations are performed.

The outline of this paper is as follows. In the next section, the construction of
specific weighted networks to be used for the analysis of epidemic dynamics is dis-
cussed. This is complemented by the derivation of corresponding pairwise models
and their closure approximations. Section 3 contains the derivation of the basic re-
productive ratio R0 for the SIR model with different weight distributions, as well as
numerical simulations of both stochastic network models and their pairwise ODE
counterparts. The paper concludes in Sect. 4 with discussion of results and possible
further extensions of this work.

2 Model Derivation

2.1 Network Construction and Simulation

There are two conceptually different approaches to constructing weighted networks
for modelling infectious disease spread. In the first approach, there is a seed or a prim-
itive motif, and the network is then grown or evolved from this initial seed according
to some specific rules. In this method, the topology of the network is co-evolving with
the distribution of weights on the edges (Barrat et al. 2004b, 2004c; Barrat et al. 2005;
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Li and Chen 2004; Yang et al. 2008). Another approach is to consider a weighted
network as a superposition of an un-weighted network with a distribution of weights
across edges which could be independent of the original network, or it may be cor-
related with node metrics, such as their degree (Britton et al. 2011; Deijfen 2011;
Garlaschelli 2009). In this paper, we use the second approach in order to investi-
gate the particular role played by the distribution of weights across edges, rather than
network topology, in the dynamics of epidemic spread. Besides computational effi-
ciency, this will allow us to make some analytical headway in deriving and analysing
low-dimensional pairwise models.

Here, we consider two different methods of assigning weights to network links: a
network in which weights are assigned to links at random, and a network in which
each node has the same distribution of weighted links connected to it. In reality, there
is likely to be a great deal more structure to interaction weights, but in the absence of
precise data and also for the purposes of developing models that allow one to explore
a number of different assumptions, we make these simplifying approximations.

2.1.1 Random Weight Distribution

First, we consider a simple model of an undirected weighted network with N nodes
where the weights of the links can take values wi with probability pi , where i =
1,2, . . . ,M . The underlying degree distribution of the corresponding un-weighted
network can be chosen to be of the more basic forms, e.g. homogeneous random or
Erdős–Rényi-type random networks.

The generation of such networks is straightforward, and weights can be assigned
during link creation in the un-weighted network. For example, upon using the config-
uration model for generating un-weighted networks, each new link will have a weight
assigned to it based on the chosen weight distribution. This means that in a homoge-
neous random network with each node having k links, the distribution of link weights
of different types will be multi-nomial, and it is given by

P(nw1 , nw2, . . . , nwM
) = k!

nw1 !nw2 ! . . . nwM
!p

nw1
1 p

nw2
2 . . . p

nwM

M , (1)

where, nw1 + nw2 + · · · + nwM
= k and P(nw1 , nw2, . . . , nwM

) stands for the prob-
ability of a node having nw1 , nw2, . . . , nwM

links with weights w1, w2, . . . ,wM , re-
spectively. While the above expression is applicable in the most general set-up, it is
worth considering the case of weights of only two types, where the distribution of
link weights for a homogeneous random network becomes binomial

P(nw1 , nw2 = k − nw1) =
(

k

nw1

)
p

nw1
1 (1 − p1)

k−nw1 , (2)

where p1 + p2 = 1 and nw1 + nw2 = k. The average link weight in the model above
can be easily found as

wrandom
av =

M∑
i=1

piwi,
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which for the case of weights of two types w1 and w2 reduces to

w(2r)
av = p1w1 + p2w2 = p1w1 + (1 − p1)w2.

2.1.2 Fixed Deterministic Weight Distribution

As a second example, we consider a network, in which each node has ki links with
weight wi (i = 1,2, . . . ,M), where k1 +k2 +· · ·+kM = k. The different weights here
could be interpreted as being associated with different types of social interaction: e.g.
home, workplace, and leisure contacts, or physical and non-physical interactions. In
this model, all individuals are identical in terms of their connections, not only having
the same number of links (as in the model above), but also having the same set of
weights. The average weight in such a model is given by

wfixed
av =

M∑
i=1

piwi, pi = ki

k
,

where pi is the fraction of links of type i for each node. In the case of links of two
types with weights w1 and w2, the average weight becomes

w
(2f )
av = p1w1 + p2w2 = k1

k
w1 + k2

k
w2 = k1

k
w1 + k − k1

k
w2.

2.1.3 Simulation of Epidemic Dynamics

In this study, the simple SIS and SIR epidemic models are considered. The epidemic
dynamics are specified in terms of infection and recovery events. The rate of trans-
mission across an un-weighted edge between an infected and susceptible individual
is denoted by τ . This will then be adjusted by the weight of the link which is as-
sumed to be directly proportional to the strength of the transmission along that link.
Infected individuals recover independently of each other at rate γ . The simulation
is implemented using the Gillespie algorithm (Gillespie 1977) with inter-event times
distributed exponentially with a rate given by the total rate of change in the network,
with the single event to be implemented at each step being chosen at random and
proportionally to its rate. All simulations start with most nodes being susceptible and
with a few infected nodes chosen at random.

2.2 Pairwise Equations and Closure Relations

In this section, we extend the classic pairwise model for un-weighted networks (Keel-
ing 1999; Rand 1999) to the case of weighted graphs with M different link-weight
types. Pairwise models successfully interpolate between classic compartmental ODE
models and full individual-based network simulations with the added advantage of
high transparency and a good degree of analytical tractability. These qualities make
them an ideal tool for studying dynamical processes on networks (Eames 2008;
Hatzopoulos et al. 2011; House and Keeling 2011; Keeling 1999), and they can be
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used on their own and/or in parallel with simulation. The original versions of the pair-
wise models have been successfully extended to networks with heterogeneous degree
distribution (Eames and Keeling 2002), asymmetric networks (Sharkey et al. 2006)
and situations where transmission happens across different/combined routes (Eames
2008; Hatzopoulos et al. 2011) as well as when taking into consideration network
motifs of higher order than pairs and triangles (House et al. 2009). The extension
that we propose is based on the previously established precise counting procedure
at the level of individuals, pairs, and triples, as well as on a careful and systematic
account of all possible transitions needed to derive the full set of evolution equations
for singles and pairs. These obviously involve the precise dependency of lower order
moments on higher order ones, e.g. the rate of change of the expected number of
susceptible nodes is proportional to the expected number of links between a suscep-
tible and infected node. We extend the previously well-established notation (Keeling
1999) to account for the added level of complexity due to different link weights. In
line with this, the number of singles remains unchanged, with [A] denoting the num-
ber of nodes across the whole network in state A. Pairs of type A−B , [AB], are now
broken down depending on link weights, i.e. [AB]i represents the number of links
of type A − B with the link having weight wi , where as before i = 1,2, . . . ,M and
A,B ∈ {S, I,R} if an SIR model is used. As before, links are doubly counted (i.e. in
both directions), and thus the following relations hold: [AB]m = [BA]m and [AA]m
is equal to twice the number of uniquely counted links of weight wm with nodes at
both ends in state A. From this extension, it follows that

∑M
i=1[AB]i = [AB]. The

same convention holds at the level of triples where [ABC]mn stands for the expected
number of triples where a node in state B connects nodes in states A and C via links
of weight wm and wn, respectively. The weight of the link impacts on the rate of
transmission across the link, and this is achieved by using a link-specific transmis-
sion rate equal to τwi , where i = 1,2, . . . ,M . In line with the above, we construct
two pairwise models, one for SIS and one for SIR dynamics.

The pairwise model for the SIS dynamics can be written in the form:

[Ṡ] = γ [I ] − τ

M∑
n=1

wn[SI ]n,

[İ ] = τ

M∑
n=1

wn[SI ]n − γ [I ],

[ṠI ]m = γ
([II ]m − [SI ]m

) + τ

M∑
n=1

wn

([SSI ]mn − [ISI ]nm

) − τwm[SI ]m, (3)

[ ˙II ]m = −2γ [II ]m + 2τ

M∑
n=1

wn[ISI ]nm + 2τwm[SI ]m,

[ṠS]m = 2γ [SI ]m − 2τ

M∑
n=1

wn[SSI ]mn,
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where m = 1,2,3, . . . ,M and infected individuals recover at rate γ . When recov-
ered individuals have life-long immunity, we have the following system of equations
describing the dynamics of a pairwise SIR model:

[Ṡ] = −τ

M∑
n=1

wn[SI ]n,

[İ ] = τ

M∑
n=1

wn[SI ]n − γ [I ],

[Ṙ] = γ [I ],

[ṠS]m = −2τ

M∑
n=1

wn[SSI ]mn,

[ṠI ]m = τ

M∑
n=1

wn

([SSI ]mn − [ISI ]nm

) − τwm[SI ]m − γ [SI ]m,

[ ˙SR]m = −τ

M∑
n=1

wn[ISR]nm + γ [SI ]m,

[ ˙II ]m = 2τ

M∑
n=1

wn[ISI ]nm + 2τwm[SI ]m − 2γ [II ]m,

[ ˙IR]m = τ

M∑
n=1

wn[ISR]nm + γ
([II ]m − [IR]m

)
,

[ṘR]m = γ [IR]m,

(4)

where again m = 1,2,3, . . . ,M with the same notation as above. As a check and
reference to previous pairwise models, in Appendix A we show how systems (3) and
(4) reduce to the standard un-weighted pairwise SIS and SIR model (Keeling 1999)
when all weights are equal to each other, w1 = w2 = · · · = wM = W .

The above systems (i.e. Eqs. (3) and (4)) are not closed, as equations for the pairs
require knowledge of triples, and thus, equations for triples are needed. This depen-
dency on higher-order moments can be curtailed by closing the equations via approx-
imating triples in terms of singles and pairs (Keeling 1999). For both systems, the
agreement with simulation will heavily depend on the precise distribution of weights
across the links, the network topology, and the type of closures that will be used to
capture essential features of network structure and the weight distribution. A natural
extension of the classic closure is given by

[ABC]mn = k − 1

k

[AB]m[BC]n
[B] , (5)

where k is the number of links per node for a homogeneous network, or the average
nodal degree for networks with other than homogenous degree distributions. How-
ever, even for the simplest case of homogeneous random networks with two weights
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(i.e. w1 and w2), the average degree is split according to weight. Namely, the aver-
age number of links of weight w1 across the whole network is k1 = p1k ≤ k, and
similarly, the average number of links of weight w2 is k2 = (1 − p1)k ≤ k, where
k = k1 + k2. Attempting to better capture the additional network structure generated
by the weights, the closure relation above can be recast to give the following, poten-
tially more accurate, closures

[ABC]11 = [AB]1(k1 − 1)
[BC]1

k1[B] = k1 − 1

k1

[AB]1[BC]1

[B] ,

[ABC]12 = [AB]1k2
[BC]2

k2[B] = [AB]1[BC]2

[B] , (6)

[ABC]21 = [AB]2k1
[BC]1

k1[B] = [AB]2[BC]1

[B] ,

[ABC]22 = [AB]2(k2 − 1)
[BC]2

k2[B] = k2 − 1

k2

[AB]2[BC]2

[B] ,

where, as in Eq. (5), the form of the closure can be derived by considering the central
individual in the triple, B . The first pair of the triple ([AB]i ) effectively “uses up” one
of B’s links of weight wi . For triples of the form [ABC]11, the presence of the pair
[AB]1 means that B has (k1 − 1) remaining links of weight w1 that could potentially
connect to C. For triples of the form [ABC]12, however, B has k2 weight w2 links

that could potentially connect to C. Furthermore, expressions such as [BC]i
ki [B] denote

the fraction of B’s edges of weight wi that connect to an individual of type C. The
specific choice of closure will depend on the structure of the network and, especially,
on how the weights are distributed. For example, for the case of the homogeneous
random networks with links allocated randomly, both closures offer a viable option.
For the case of a network where each node has a fixed pre-allocated number of links
with different weights, e.g. k1 and k2 links with weights w1 and w2, respectively, the
second closure (6) offers the more natural/intuitive avenue toward closing the system
and obtaining good agreement with network simulation.

3 Results

In this section, we present analytical and numerical results for weighted networks
and pairwise representations of SIS and SIR models in the case of two different link-
weight types (i.e. w1 and w2).

3.1 Threshold Dynamics for the SIR Model—the Network Perspective

The basic reproductive ratio, R0 (the average number of secondary cases pro-
duced by a typical index case in an otherwise susceptible population), is one
of the most fundamental quantities in epidemiology (Anderson and May 1992;
Diekmann et al. 1990). Besides informing us on whether a particular disease will
spread in a population, as well as quantifying the severity of an epidemic outbreak, it
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can be also used to calculate a number of other important quantities that have good
intuitive interpretation. In what follows, we will compute R0 and R0-like quantities
and will discuss their relation to each other, and also issues around these being model-
dependent. First, we compute R0 from an individual-based or network perspective by
employing the next generation matrix approach as used in the context of models with
multiple transmission routes, such as household models (Ball and Neal 2008).

Random Weight Distribution First, we derive an expression for R0 when the under-
lying network is homogeneous, and the weights of the links are assigned at random
according to a prescribed weight distribution. In the spirit of the proposed approach,
the next generation matrix can be easily computed to yield

NGM = (aij )i,j=1,2 =
∣∣∣∣ (k − 1)p1r1 (k − 1)p1r1
(k − 1)p2r2 (k − 1)p2r2

∣∣∣∣ ,
where

r1 = τw1

τw1 + γ
, r2 = τw2

τw2 + γ

represent the probability of transmission from an infected to a susceptible across a
link of weight w1 and w2, respectively. Here, the entry aij stands for the average
number of infections produced via links of type i (i.e. with weight wi ) by a typ-
ical infectious node who itself has been infected across a link of type j (i.e. with
weight wj ). Using the fact that p2 = 1 − p1, the basic reproductive ratio can be
found from the leading eigenvalue of the NGM matrix as follows:

R1
0 = (k − 1)

(
p1r1 + (1 − p1)r2

)
. (7)

In fact, the expression for R0 can be generalised to more than two weights to give
R0 = (k − 1)

∑M
i=1 piri , where wm has frequency given by pm with the constraint

that
∑M

i=1 pi = 1. It is straightforward to show that upon assuming uniform weight
distribution wi = W for i = 1,2, . . . ,M , the basic reproduction number on a homo-
geneous graph reduces to R0 = (k − 1)r as expected, where r = τW/(τW + γ ).

Deterministic Weight Distribution The case when the number of links with given
weights for each node is fixed can be captured with the same approach, and the next
generation matrix can be constructed as follows:

NGM =
∣∣∣∣ (k1 − 1)r1 k1r1

k2r2 (k2 − 1)r2

∣∣∣∣ .
As before, the leading eigenvalue of the NGM matrix yields the basic reproductive
ratio:

R2
0 = (k1 − 1)r1 + (k2 − 1)r2 + √[(k1 − 1)r1 − (k2 − 1)r2]2 + 4k1k2r1r2

2
. (8)

It is worth noting that the calculations above are a direct result of a branching process
approximation of the pure transmission process which differentiates between individ-
uals depending on whether they were infected via a link of weight w1 or w2, with an
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obvious generalisation to more than two weights. This separation used in the branch-
ing process leads to the offspring or next generation matrix of the branching process
(Ball and Neal 2008). Using the two expressions for the basic reproductive ratio, it is
possible to prove the following result.

Theorem 1 Given the setup for the fixed weight distribution and using p1 = k1/k,
p2 = k2/k and k1 + k2 = k, if 1 ≤ k1 ≤ k − 1 (which implies that 1 ≤ k2 ≤ k − 1),
then R2

0 ≤ R1
0 .

The proof of this result is sketched out in Appendix B. This theorem effectively
states that provided each node has at least one link of type 1 and one link of type 2,
then independently of disease parameters, it follows that the basic reproductive ratio
as computed from Eq. (7) always exceeds or is equal to an equivalent R0 computed
from Eq. (8).

It is worth noting that both R0 values reduce to

R1
0 = R2

0 = R0 = (k − 1)r = (k − 1)τW

τW + γ
, (9)

if one assumes that weights are equal, i.e. w1 = w2 = W . As one would expect, the
first good indicator of the impact of weights on the epidemic dynamics will be the
average weight. Hence, it is worth considering the problem of maximising the values
R0 under assumption of a fixed average weight:

p1w1 + p2w2 = W. (10)

Under this constraint, the following statement holds.

Theorem 2 For weights constrained by p1w1 + p2w2 = W (or (k1/k)w1 +
(k2/k)w2 = W for a fixed weights distribution), R1

0 and R2
0 attain their maxima

when w1 = w2 = W , and the maximum value for both is R0 = (k − 1)r = (k−1)τW
τW+γ

.

The proof of this result is presented in Appendix C.
The above results suggest that for the same average link weight and when the

one-to-one correspondence between p1 and k1/k, and p2 and k2/k holds, the ba-
sic reproductive ratio is higher on networks with random weight distribution than on
networks with a fixed weight distribution. This, however, does not preclude the pos-
sibility of having a network with random weight distribution with smaller average
weight exhibiting an R0 value that it is bigger than the R0 value corresponding to a
network where weights are fixed and the average weight is higher. The direct impli-
cation is that it is not sufficient to know just the average link weight in order to draw
conclusions about possible epidemic outbreaks on weighted networks; rather one has
to know the precise weight distribution that provides a given average weight.

Figure 1 shows how the basic reproductive ratio changes with the transmission
rate τ for different weight distributions. When links on a homogeneous network are
distributed at random (upper panel), the increase in the magnitude of one specific
link weight (e.g. w1) accompanied by a decrease in its frequency leads to smaller R0
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Fig. 1 Basic reproductive ratio R0 for random (upper) and deterministic (lower) weight distributions
with different weight and weight frequency combinations, but with p1w1 + p2w2 = 1. Upper panel: the
case of homogenous networks with weights assigned at random considers the situation where the contri-
bution of the two different weight types is equal (p1w1 = p2w2 = 0.5) but with weight w1 increasing
and its frequency decreasing (top to bottom with (p1,w1) = {(0.5,1), (0.2,25), (0.05,10)}). Increasing
the magnitude of weights, but reducing their frequency leads to smaller R0 values. Lower panel: the
case of homogeneous networks with fixed number of links of type w1 and w2 illustrates the situation
where w1 increases while p1 = k1/k = 1/3 and p2 = (k − k1)/k = 2/3 remain fixed (bottom to top with
w1 = {0.1,0.5,1.4}). Here the opposite tendency is observed with increasing weights leading to higher
R0 values. Finally, for the randomly distributed weights case, setting p1 = 1/3, w1 = 1.4 and observing
p1w1 + p2w2 = 1, we obtain R0 (�) values which compare almost directly to the fixed-weights case (top
continuous line). Other parameters are set to k = 6, k1 = 2, and γ = 1

values. This is to be expected since the contribution of the different link types in this
case is kept constant (p1w1 = p2w2 = 0.5) and this implies that the overall weight
of the network links accumulates in a small number of highly weighted links with
most links displaying small weights and thus making transmission less likely. The
statement above is more rigorously underpinned by the results of Theorems 1 and 2,
which clearly show that equal or more homogeneous weights lead to higher values of
the basic reproductive ratio. For the case of fixed weight distribution (lower panel),
the changes in the value of R0 are investigated in terms of varying the weights, so
that the overall weight in the network remains constant. This is constrained by fixing
values of p1 and p2 and, in this case, the highest values are obtained for higher values
of w1. The flexibility here is reduced due to p1 and p2 being fixed, and a different
link breakdown may lead to different outcomes. The top continuous line in Fig. 1
(upper panel) corresponds to the maximum R0 value achievable for both models if
the p1w1 + p2w2 = 1 constraint is fulfilled.

3.2 R0-Like Threshold for the SIR Model—a Pairwise Model Perspective

To compute the value of the R0-like quantity from the pairwise model, we use the
approach suggested by Keeling (1999), which utilises the local spatial/network struc-
ture and correctly accounts for correlations between susceptible and infectious nodes
early on in the epidemics. This can be achieved by looking at the early behaviour
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of [SI ]1/[I ] = λ1 and [SI ]2/[I ] = λ2 when considering links of only two different
weights. In line with Eames (2008), we start from the evolution equation for [I ]

[İ ] = (
τw1[SI ]1/[I ] + τw2[SI ]2/[I ] − γ

)[I ],
where from the growth rate τw1λ1 + τw2λ2 − γ it is easy to define the threshold
quantity R as follows:

R = τw1λ1 + τw2λ2

γ
. (11)

For the classic closure (5), one can compute the early quasi-equilibria for λ1 and λ2
directly from the pairwise equations as follows:

λ1 = γ (k − 1)p1R

τw1 + γR
and λ2 = γ (k − 1)(1 − p1)R

τw2 + γR
.

Substituting these into Eq. (11) and solving for R yields

R = R1 + R2 + √
(R1 + R2)2 + 4R1R2Q

2
, (12)

where

R1 = τw1[(k − 1)p1 − 1]
γ

, R2 = τw2[(k − 1)p2 − 1]
γ

,

Q = k − 2

[(k − 1)p1 − 1][(k − 1)p2 − 1] ,

with details of all calculations presented in Appendix D. We note that R > 1 will
result in an epidemic, while R < 1 will lead to the extinction of the disease. It
is straightforward to show that for equal weights, say W , the expression above re-
duces to R = τW(k − 2)/γ which is in line with R0 value in Keeling (1999) for un-
clustered, homogeneous networks. Under the assumption of a fixed total weight W ,
one can show that similarly to the network-based basic reproductive ratio, R achieves
its maximum when w1 = w2 = W .

In a similar way, for the modified closure (6), we can use the same methodology
to derive the threshold quantity as

R = R1 + R2 + √
(R1 + R2)2 + 4R1R2(Q − 1)

2
, (13)

where

R1 = τw1(k1 − 2)

γ
, R2 = τw2(k2 − 2)

γ
, Q = k1k2

(k1 − 2)(k2 − 2)
.

For this closure once again, R > 1 results in an epidemic, while for R < 1, the disease
dies out. Details of this calculations are shown in Appendix D. It is noteworthy that
one can derive expressions (12) and (13) by considering the leading eigenvalue based
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Fig. 2 The infection prevalence (I/N ) from the pairwise and simulation models for homogeneous random
networks with random weight distribution (ODE: solid line, simulation: dashed line and (◦)). All nodes
have degree k = 5 with N = 1000, I0 = 0.05N , γ = 1 and τ = 1. From top to bottom, the parameter
values are: w1 = 5, p1 = 0.2, w2 = 1.25, p2 = 0.8 (top), and w1 = 0.5, p1 = 0.5, w2 = 1.5, p2 = 0.5
(bottom). The left and right panels represent the SIS and SIR dynamics, respectively

on the linear stability analysis of the disease-free steady state of system (4) with the
corresponding pairwise closures given in Eqs. (5) and (6).

Finally, we note that this seemingly R0-lookalike, R = τW(k −2)/γ for the equal
weights case w1 = w2 = W is a multiple of (k − 2) as opposed to (k − 1) as is
the case for the R0 derived based on the individual-based perspective, where, for
equal weights, R1

0 = R2
0 = τW(k − 1)/(τW + γ ). This highlights the importance,

in models that are based on an underlying network of population interactions, of the
way in which an R0-like quantity is defined. In simple mass-action-type models the
same value is derived irrespective of whether R0 is thought of as the number of new
cases from generation-to-generation (the NGM method), or as the growth rate of the
epidemic scaled by the infectious period. In a network model, the two approaches
have the same threshold behaviour, but the clusters of infection that appear within
the network mean that they produce different values away from the threshold. It is
important therefore to be clear about what we mean by “R0” in a pairwise model.
It is also important when using empirically-derived R0 values to inform pairwise
models to be clear about how these values were estimated from epidemiological data,
and to consider which is the most appropriate way to incorporate the information into
the model.

3.3 The Performance of Pairwise Models and the Impact of Weight Distributions
on the Dynamics of Epidemics

To evaluate the accuracy of the pairwise approximation models, we will now compare
numerical solutions of models (3) and (4) (with closures given by Eq. (5) and Eq. (6)
for random and deterministic weight distributions, respectively) to results obtained
from the corresponding network simulation. The discussion around the comparison
of the two models is interlinked with the discussion of the impact of different weight
distributions/patterns on the overall epidemic dynamics. We begin our numerical in-
vestigation by considering weight distributions with moderate heterogeneity. This
is illustrated in Fig. 2, where excellent agreement between simulation and pairwise
models is obtained. The agreement remains valid for both SIS and SIR dynamics, and
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Fig. 3 The infection prevalence (I/N ) from the pairwise and simulation models for homogenous net-
works with random weight distribution (ODE: solid line, simulation: dashed line and (◦)). All numerical
tests use N = 1000, I0 = 0.05N , k = 5, γ = 1, τ = 1 and p1 = 0.05 (p2 = 1 − p1 = 0.95). From top
to bottom, w1 = 2.5,5,10, w2 = 0.875/0.95,0.75/0.95,0.5/0.95. The weight distributions are chosen
such that the average link weight, p1w1 + p2w2 = 1, remains constant. Insets of (a) and (b): the same
parameter values as for the lowest prevalence plots but, with k = 10 and τ = 0.5. The left and right panels
represent the SIS and SIR dynamics, respectively

Fig. 4 The infection prevalence (I/N ) from the pairwise and simulation model for homogenous
networks with random weight distribution (ODE: solid line, simulation: dashed line and (◦)). All
numerical tests use N = 1000, I0 = 0.05N , k = 10, γ = 1, τ = 0.5 and w1 = 10. From top to
bottom, P(w1) = 0.01,0.05,0.09, w2 = 0.9/0.99,0.5/0.95,0.1/0.91. Here, also p2 = 1 − p1 and
p1w1 + p2w2 = 1. The left and right panels represent the SIS and SIR dynamics, respectively

networks with higher average link weight lead to higher prevalence levels at equilib-
rium for SIS and higher infectiousness peaks for SIR.

Next, we explore the impact of weight distribution under the condition that the av-
erage weight remains constant (i.e. p1w1 +p2w2 = 1, where without loss of general-
ity the average weight has been chosen to be equal to 1). First, we keep the proportion
of edges of type one (i.e. with weight w1) fixed and change the weight itself by grad-
ually increasing its magnitude. Due to the constraint on the average weight and the
condition p2 = 1 − p1, the other descriptors of the weight distribution follow. Fig-
ure 3 shows that concentrating a large portion of the total weight on a few links leads
to smaller epidemics, since the majority of links are low-weight and thus have a small
potential to transmit the disease. This effect is exacerbated for the highest value of w1;
in this case, 95 % of the links are of weight w2 = (1 − p1w1)/(1 − p1) = 0.5/0.95
leading to epidemics of smallest impact (Fig. 3(a)) and smallest size of outbreak
(Fig. 3(b)).

While the previous setup kept the frequency of links constant while changing the
weights, one can also investigate the impact of keeping at least one of the weights
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Fig. 5 The infection prevalence (I/N ) based on random (model 1) and fixed (model 2) weight distribution
(ODE: black (1) and blue (2) solid line, simulation results: same as ODE but dashed lines, and (◦) and (∗)).
All numerical tests use N = 1000, I0 = 0.05N , k = 10, k1 = 2, k2 = 8, p1 = k1/k, p2 = k2/k, w1 = 10,
w2 = 1.25 and γ = 1. The rate of infection τ = 0.5 (top) and τ = 0.1 (bottom). The left and right panels
represent the SIS and SIR dynamics, respectively

constant (e.g. the larger one) and changing its frequency. To ensure a meaningful
comparison, here we also require that the average link weight over the whole network
is kept constant. When such highly weighted links are rare, the system approaches the
non-weighted network limit where the transmission rate is simply scaled by w2 (the
most abundant link type). As Fig. 4 shows, in this case, the agreement is excellent, and
as the frequency of the highly weighted edges/links increases, disease transmission
is less severe.

Regarding the comparison of the pairwise and simulation models, we note that
while the agreement is generally good for a large part of the disease and weight
parameter space, the more extreme scenarios of weight distribution result in poorer
agreement. This is illustrated in both Figs. 3 and 4 (see bottom curves), with the worst
agreement for the SIS dynamics. The insets in Fig. 3 show that increasing the average
connectivity improves the agreement. However, the cause of disagreement is due to a
more subtle effect driven also by the weight distribution. For example, in Fig. 4, the
average degree in the network is 10, higher then used previously and equal to that in
the insets from Fig. 3, but despite this, the agreement is still poor.

The two different weighted network models are compared in Fig. 5. This is done
by using the same link weights and setting p1 = k1/k and p2 = k2/k. Epidemics
on networks with random weight distributions grow faster and, given the same time
scales of the epidemic, this is in line with results derived in Theorems 1 and 2 and
findings concerning the growth rates. The difference is less marked for larger values
of τ where a significant proportion of the nodes becomes infected.

In Fig. 6, the link weight distribution is altered by decreasing the proportion of
highly-weighted links. As expected, the reduced average link weight across the net-
work leads to smaller epidemics while keeping the excellent agreement between sim-
ulation and pairwise model results.

4 Discussion

The present study has explored the impact of weight heterogeneity and highlighted
that the added heterogeneity of link weights does not manifest itself in the same
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Fig. 6 The infection prevalence (I/N ) for a fixed weight distribution (ODE: solid lines, simulation results:
dashed lines and (◦)). All numerical tests use N = 1000, I0 = 0.05N , k = 6, γ = 1, τ = 1 and w1 = 1.4,
w2 = 0.8. From top to bottom: k1 = 5,4,3,2,1 and k2 = k − k1. The left and right panels represent the
SIS and SIR dynamics, respectively

way as most other heterogeneities in epidemic models on networks. Usually, het-
erogeneities lead to an increase in R0 but potentially to a fall in the final epi-
demic size (Kiss et al. 2006). However, for weighted networks the concentration
of infectiousness on fewer target links, and thus target individuals, leads to a fall
in R0 for both homogeneous random and fixed weight distribution models. In-
creased heterogeneity in weights accentuates the locality of contact and is taking
the model further from the mass-action type models. Infection is concentrated along
a smaller number of links, which results in wasted infectivity and lower R0. This
is in line with similar results (Britton et al. 2011; Britton and Lindenstrand 2012;
Yang and Zhou 2012), where different modelling approaches have been used to cap-
ture epidemics on weighted networks.

The models proposed in this paper are simple mechanistic models with ba-
sic weight distributions, but despite their simplicity they provide a good basis for
analysing disease dynamics on weighted networks in a rigorous and systematic way.
The modified pairwise models have performed well, and provide a good approxi-
mation to direct simulation. As expected, the agreement with simulations typically
breaks down at or close to the threshold but, away from it, pairwise models provide
a good counterpart or alternative to simulation. Disagreement only appears for ex-
treme weight distributions, and we hypothesise that this is mainly due to the network
becoming more modular with islands of nodes connected by links of low weight be-
ing bridged together by highly weighted links. A good analogy to this is provided
by considering the case of a pairwise model on un-weighted networks specified in
terms of two network metrics, node number N and average number of links k. The
validity of the pairwise model relies on the network being connected up at random, or
according to the configuration model. This can be easily broken by creating two sub-
networks of equal size both exhibiting the same average connectivity. Simulations
on such type of networks will not agree with the pairwise model, highlighting that
the network generating algorithm can push the network out of the set of ‘acceptable’
networks. We expect that this or a similar argument can more precisely explain why
the agreement breaks down for significant link-weight heterogeneity.

The usefulness of pairwise models is illustrated in Fig. 7, where the I/N val-
ues are plotted for a range of τ values and for different weight distributions. Here,
the equilibrium value has been computed by finding the steady state directly from
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Fig. 7 Endemic steady state from the SIS model on networks with random weight distribution. The con-
tinuous lines correspond to the steady state computed numerically by setting all evolution equations in
the pairwise system to zero. These are complemented by finding the endemic steady state through di-
rect integration of the ODE system for a long-enough time (◦), as well as direct simulation (∗). The first
marker corresponds to τ = 0.3 followed by τ = 0.5,1.0, . . . ,3.0. All results are based on: k = 5, γ = 1
and w1 = 10, w2 = 1. From top to bottom: p1 = 0.9,0.5,0.1,0.01 and p2 = 1 − p1

the ODEs (3) by finding numerically the steady state solution of a set on non-linear
equations (i.e. ˙[A] = 0 and [ȦB] = 0). To test the validity, the long term solution
of the ODE is plotted along with results based on simulation. The agreement away
from the threshold is excellent and illustrates clearly the impact of different weight
distributions on the magnitude of the endemic state.

The models proposed here can be extended in a number of different ways. One
potential avenue for further research is the analysis of correlations between link
weight and node degree. This direction has been explored in the context of classic
compartmental mean-field models based on node degree (Joo and Lebowitz 2004;
Olinky and Stone 2004). Given that pairwise models extend to heterogeneous net-
works, such avenues can be further explored to include different types of correlations
or other network-dependent weight distributions. While this is a viable direction, it
is expected that the extra complexity will make the pairwise models more difficult
to analyse and disagreement between pairwise and simulation models more likely.
Another theoretically interesting and practically important aspect is the considera-
tion of different types of time delays, representing latency or temporary immunity
(Blyuss and Kyrychko 2010), and the analysis of their effects on the dynamics of
epidemics on weighted networks. The methodology presented in this paper can be
of wider relevance to phenomena that take place simultaneously on more than one
type of network. Examples of such systems include the co-circulation of two dif-
ferent diseases in the same population (Blyuss and Kyrychko 2005), the spread of
the same disease but via different routes (Kiss et al. 2006), or the spread of epi-
demics concurrently with information about the disease (Hatzopoulos et al. 2011;
Kiss et al. 2010). These areas offer other important avenues for further extensions.
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Appendix A: Reducing the Weighted Pairwise Models to the Un-weighted
Equivalents

We start from the system

[Ṡ] = γ [I ] − τ

M∑
n=1

wn[SI ]n,

[İ ] = τ

M∑
n=1

wn[SI ]n − γ [I ],

[ṠI ]m = γ
([II ]m − [SI ]m

) + τ

M∑
n=1

wn

([SSI ]mn − [ISI ]nm

) − τwm[SI ]m, (14)

[ ˙II ]m = −2γ [II ]m + 2τ

M∑
n=1

wn[ISI ]nm + 2τwm[SI ]m,

[ṠS]m = 2γ [SI ]m − 2τ

M∑
n=1

wn[SSI ]mn,

where m = 1,2, . . . ,M . To close this system of equations at the level of pairs, we use
the approximations

[ABC]mn = k − 1

k

[AB]m[BC]n
[B] .

To reduce these equations to the standard pairwise model for un-weighted networks,
we use the fact that

∑M
m=1 [AB]m = [AB] for A,B ∈ {S, I } and aim to derive the

evolution equation for [AB]. Assuming that all weights are equal to W , the following
relation holds:

[ṠI ] =
M∑

m=1

[ṠI ]m

=
M∑

m=1

(
γ
([II ]m − [SI ]m

) + τ

M∑
n=1

wn

([SSI ]mn − [ISI ]nm

) − τwm[SI ]m
)

= γ
([II ] − [SI ]) − τW [SI ] + τW

M∑
m=1

M∑
n=1

([SSI ]mn − [ISI ]nm

)
,

where the summations of the triples can be resolved as follows:

M∑
m=1

M∑
n=1

[SSI ]mn = k − 1

k

M∑
m=1

[SS]m
M∑

n=1

[SI ]n
[S]

= k − 1

k

[SS][SI ]
[S] = [SSI ].
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Using the same argument for all other triples, the pairwise model for weighted net-
works with all weights being equal (without loss of generality W = 1) reduces to the
classic pairwise model, that is

[Ṡ] = γ [I ] − τ [SI ],
[İ ] = τ [SI ] − γ [I ],

M∑
m=1

[ṠI ]m = [ṠI ] = γ
([II ] − [SI ]) + τ

([SSI ] − [ISI ] − [SI ]),
M∑

m=1

[ ˙II ]m = [ ˙II ] = −2γ [II ] + 2τ
([ISI ] + [SI ]),

M∑
m=1

[ṠS]m = [ṠS] = 2γ [SI ] − 2τ [SSI ].

A similar argument holds for the pairwise model on weighted networks with SIR
dynamics.

Appendix B: Proof of Theorem 1

We illustrate the main steps needed to complete the proof of Theorem 1. This revolves
around starting from the inequality itself and showing via a series of algebraic ma-
nipulations that it is equivalent to a simpler inequality that holds trivially. Upon using
that p1k = k1, p2k = k2, and p2 + p1 = 1, the original inequality can be rearranged
to give
√[

(k1 − 1)r1 − (k2 − 1)r2
]2 + 4k1k2r1r2 ≤ (k1 −1)r1 + (k2 −1)r2 +2r1p2 +2r2p1.

(15)
Based on the assumptions of the theorem, the right-hand side is positive, and thus
this inequality is equivalent to the one where both the left- and right-hand sides are
squared. Combined with the fact that p2 = 1 − p1, after a series of simplifications
and factorisations this inequality can be recast as

4p1(1−p1)
(
r2

1 +r2
2

)+8kp1(1−p1)r1r2 ≤ 4kp1(1−p1)
(
r2

1 +r2
2

)+8p1(1−p1)r1r2,

(16)
which can be further simplified to

4p1(1 − p1)(r1 − r2)
2(k − 1) ≥ 0, (17)

which holds trivially and thus completes the proof. We note that in the strictest math-
ematical sense the condition of the theorem should be (k1 − 1)r1 + (k2 − 1)r2 +
2r1p2 + 2r2p1 ≥ 0. This holds if the current assumptions are observed since these
are stronger but follow from a practical reasoning whereby for the network with fixed
weight distribution, a node should have at least one link with every possible weight
type.
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Appendix C: Proof of Theorem 2

First, we show that R1
0 is maximised when w1 = w2 = W . R1

0 can be rewritten to give

R1
0 = (k − 1)

(
p1

τw1

τw1 + γ
+ (1 − p1)

τw2

τw2 + γ

)
. (18)

Maximising this given the constraint w1p1 + w2(1 − p1) = W can be achieved by
considering R1

0 as a function of the two weights and incorporating the constraint into
it via the Lagrange multiplier method. Hence, we define a new function f (w1,w2, λ)

as follows:

f (w1,w2, λ) = (k − 1)

(
p1

τw1

τw1 + γ
+ (1 − p1)

τw2

τw2 + γ

)

+ λ
(
w1p1 + w2(1 − p1) − W

)
.

Finding the extrema of this functions leads to a system of three equations

∂f

∂w1
= (k − 1)p1τγ

(τw1 + γ )2
+ λp1 = 0,

∂f

∂w2
= (k − 1)(1 − p1)τγ

(τw2 + γ )2
+ λ(1 − p1) = 0,

w1p1 + w2(1 − p1) − W = 0.

Expressing λ from the first two equations and equating these two expressions yields

(k − 1)τγ

(τw1 + γ )2
= (k − 1)τγ

(τw2 + γ )2
. (19)

Therefore,

w1 = w2 = W, (20)

and it is straightforward to confirm that this is a maximum.
Performing the same analysis for R2

0 is possible but it is more tedious. Instead, we
propose a more elegant argument to show that R2

0 under the constraint of constant
total link weight achieves its maximum when w1 = w2 = W . The argument starts
by considering R2

0 when w1 = w2 = W . In this case, and using that r2 = r1 = r =
τW/(τW + γ ) we can write:

R2∗
0 = (k1 − 1)r1 + (k2 − 1)r2 + √[(k1 − 1)r1 − (k2 − 1)r2]2 + 4k1k2r1r2

2

= r(k1 + k2 − 2) + √
r2[(k1 − 1) − (k2 − 1)]2 + 4r2k1k2

2
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= r(k1 + k2 − 2) + r
√

(k1 + k2)2

2

= r(2k1 + 2k2 − 2)

2
= r(k1 + k2 − 1) = (k − 1)r.

However, it is known from Theorem 1 that R2
0 ≤ R1

0 , and we have previously shown
that R1

0 under the present constraint achieves its maximum when w1 = w2 = W , and
its maximum is equal to (k − 1)r . All the above can be written as

R2
0 ≤ R1

0 ≤ (k − 1)r. (21)

Now taking into consideration that R2∗
0 = (k − 1)r , the inequality above can be writ-

ten as

R2
0 ≤ R1

0 ≤ (k − 1)r = R2∗
0 , (22)

and this concludes the proof.

Appendix D: The R0-Like Threshold R

Let us start from the evolution equation for [I ](t),
[İ ] = τ

(
w1[SI ]1 + w2[SI ]2

) − γ [I ]

=
[
τw1

( [SI ]1

[I ]
)

+ τw2

( [SI ]2

[I ]
)

− γ

]
[I ]

= (τw1λ1 + τw2λ2 − γ )[I ],

where λ1 = [SI ]1[I ] and λ2 = [SI ]2[I ] , and let R be defined as

R = τw1λ1 + τw2λ2

γ
. (23)

Following the method outlined by Keeling (1999) and Eames (2008), we calculate
the early quasi-equilibrium values of λ1,2 as follows:

λ̇1 = 0 ⇔ [ṠI ]1[I ] = ˙[I ][SI ]1,

λ̇2 = 0 ⇔ [ṠI ]2[I ] = [İ ]][SI ]2.

Upon using the pairwise equations and the closure, consider [ṠI ]1[I ] = [İ ][SI ]1:

[ṠI ]1[I ] = (
τw1[SSI ]11 + τw2[SSI ]12 − τw1[ISI ]11

− τw2[ISI ]21 − τw1[SI ]1 − γ [SI ]1
)[I ]

= (
τw1[SI ]1 + τw2[SI ]2 − γ [I ])[SI ]1. (24)
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Using the classical closure

[ABC]12 = k − 1

k

[AB]1[BC]2

[B] ,

[ABC]21 = k − 1

k

[AB]2[BC]1

[B] ,

and making the substitution: [SI ]1 = λ1[I ], [SI ]2 = λ2[I ], [I ] � 1, [S] ≈ N ,
[SS]1 ≈ kNp1, [SS]2 ≈ kN(1 − p1) together with γR = τw1λ1 + τw2λ2, we have

(τw1λ1 + τw2λ2)kp1 − (τw1λ1 + τw2λ2)p1 − (τw1λ1 + τw2λ2)λ1 − τw1λ1 = 0,

which can be solved for λ1 to give

λ1 = γ (k − 1)p1R

τw1 + γR
.

Similarly, λ2 can be found as

λ2 = γ (k − 1)(1 − p1)R

τw2 + γR
. (25)

Substituting the expressions for λ1,2 into the original equation for R yields

R = A + B + √
(A + B)2 + 4τ 2w1w2(k − 2)

2γ
,

where A = τw1[(k − 1)p1 − 1] and B = τw2[(k − 1)p2 − 1]. If we define

R1 = τw1[(k − 1)p1 − 1]
γ

, and R2 = τw2[(k − 1)p2 − 1]
γ

,

the expression simplifies to

R = R1 + R2 + √
(R1 + R2)2 + 4R1R2Q

2
,

where Q = (k−2)
[(k−1)p1−1][(k−1)p2−1] .

Substituting the modified closure

[ABC]11 = k1 − 1

k1

[AB]1[BC]1

[B] ,

[ABC]12 = [AB]1[BC]2

[B] ,

[ABC]21 = [AB]2[BC]1

[B] ,

[ABC]22 = k2 − 1

k2

[AB]2[BC]2

[B] ,
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into Eq. (24) and making further substitution: [SI ]1 = λ1[I ], [SI ]2 = λ2[I ], [I ] � 1,
[S] ≈ N , [SS]1 ≈ k1N , [SS]2 ≈ k2N , we have

(τw1λ1 +τw2λ2)k1 −(τw1λ1 +τw2λ2)λ1 −2τw1λ1 = 0 =⇒ λ1 = γ k1R

2τw1 + γR
.

Similarly, the equation [ṠI ]2[I ] = [İ ][SI ]2 yields

λ2 = γ k2R

2τw2 + γR
.

Substituting these expressions for λ1,2 into Eq. (23), we have

R = τ(w1k1 + w2k2) − 2τ(w1 + w2)

2γ

+
√[2τ(w1 + w2) − τ(w1k1 + w2k2)]2 + 8τ 2w1w2(k1 + k2 − 2)

2γ
.

If we define

R1 = τw1(k1 − 2)

γ
, R2 = τw2(k2 − 2)

γ
,

the above expression for R simplifies to

R = R1 + R2 + √
(R1 + R2)2 + 4R1R2(Q − 1)

2
, (26)

where

Q = k1k2

(k1 − 2)(k2 − 2)
.
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