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Abstract Effects of immune delay on symmetric dynamics are investigated within a
model of antigenic variation in malaria. Using isotypic decomposition of the phase
space, stability problem is reduced to the analysis of a cubic transcendental equa-
tion for the eigenvalues. This allows one to identify periodic solutions with different
symmetries arising at a Hopf bifurcation. In the case of small immune delay, the
boundary of the Hopf bifurcation is found in a closed form in terms of system pa-
rameters. For arbitrary values of the time delay, general expressions for the critical
time delay are found, which indicate bifurcation to an odd or even periodic solution.
Numerical simulations of the full system are performed to illustrate different types of
dynamical behaviour. The results of this analysis are quite generic and can be used to
study within-host dynamics of many infectious diseases.
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1 Introduction

Among various strategies employed by pathogens to evade the host immune system,
a prominent place is occupied by antigenic variation. Notable examples of pathogens
relying on this strategy of immune escape include African Trypanosoma, Plasmod-
ium falciparum, HIV, several members of Neisseria family, Haemophilus influenzae,
etc. (Craig and Scherf 2003). Despite the fact that some details of this mechanism
are still unclear, the main features of this method of immune evasion are quite uni-
versal. The immune system of the host detects potential infection with a pathogen
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by identifying specific chemical determinants, such as proteins and carbohydrates,
known as epitopes, on the surfaces of infected cells. This triggers the differentiation
of precursor cells into effector cells, which are then able to eliminate the infection.
Some pathogens have evolved to have a wide variety of surface markers (antigens),
and by changing the antigens the present on the cell surface, these pathogens can for
a long period of time remain unrecognised by the immune system, giving them an
opportunity to be transmitted to other hosts. This process of sequentially presenting
different antigens in order to avoid the host immune system is known as antigenic
variation.

There are several particular ways of implementing antigenic variation. In the case
of Trypanosoma brucei, the organism that causes sleeping sickness, parasite covers it-
self with a dense homogeneous coat of variant surface glycoprotein (VSG). Genome
of T. brucei has over 1,000 genes that control the expression of VSG protein, and
switching between them provides the mechanism of antigenic variation (Lythgoe
et al. 2007). What makes T. brucei unique is the fact that unlike other pathogens,
whose antigenic variation is typically mediated by DNA rearrangements or transcrip-
tional regulation, activation of VSGs requires recombination of VSG genes into an
expression site (ES), which consists of a single vsg gene flanked by an upstream ar-
ray of 70 base pair repeats and expression site associated genes (ESAGs). T. bru-
cei expresses one VSG at any given time, and the active VSG can either be se-
lected by activation of a previously silent ES (and there are up to 20 ES sites), or
by recombination of a VSG sequence into the active ES. The precise mechanism
of VSG switching has not been completely identified yet, but it has been suggested
that the ordered appearance of different VSG variants is controlled by differential
activation rates and density-dependent parasite differentiation (Lythgoe et al. 2007;
Stockdale et al. 2008).

For the malaria agent P. falciparum, the main target of immune response is
Plasmodium falciparum erythrocyte membrane protein-1 (PfEMP1), which is ex-
pressed from a diverse family of var genes, and each parasite genome contains
approximately 60 var genes encoding different PFEMP1 variants (Gardner et al.
2002). The var genes are expressed sequentially in a mutually exclusive manner,
and this switching between expression of different var gene leads to the presen-
tation of different variant surface antigens (VSA) on the surface of infected ery-
throcyte, thus providing a mechanism of antigenic variation (Borst et al. 1995;
Newbold 1999). In all cases of antigenic variation, host immune system has to go
through a large repertoire of antigenic variants, and this provides parasites with
enough time to get transmitted to another host or cause a subsequent infection with a
different antigenic variant in the same host.

Despite individual differences in the molecular implementation of antigenic varia-
tion, such as, gene conversion, site-specific DNA inversions, hyper-mutation, etc.,
there are several features common to the dynamics of antigenic variation in all
pathogens (Craig and Scherf 2003). These include ordered and often sequential ap-
pearance of parasitemia peaks corresponding to different antigenic variants, as well
as certain degree of cross-reactivity. Several mathematical models have been put for-
ward that aim to explain various aspects of antigenic variation. Agur et al. (1989) have
studied a model of antigenic variation of African trypanosomes which suggests that
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sequential appearance of different antigenic variants can be explained by fitness dif-
ferences between single- and double-expressors—antigenic variants that express one
or two VSGs. However, this idea is not supported by the experimental evidence aris-
ing from normal in vivo growth and reduced immunogenicity of artificially created
double expressors (Mufioz Jordédn et al. 1996). Frank and Barbour (2006) have sug-
gested a model that highlights the importance of cross-reactivity between antigenic
variants in facilitating optimal switching pattern that provides sequential dominance
and extended infection. Antia et al. (1996) have considered variant-transcending im-
munity as a basis for competition between variants, which can promote oscillatory
behaviour, but this failed to induce sequential expression. Many other mathematical
models of antigenic variation have been proposed and studied in the literature, but
the discussion of their individuals merits and limitations is beyond the scope of this
work.

The model considered in this paper is a modification of the model proposed by
Recker et al. (2004) (to be referred to as Recker model), which postulates that in ad-
dition to a highly variant-specific immune response, the dynamics of each variant is
also affected by cross-reactive immune responses against a set of epitopes not unique
to this variant. This assumption implies that each antigenic variant experiences two
types of immune responses: a long-lasting immune response against epitopes unique
to it, and a transient immune response against epitopes that it shares with other vari-
ants. The main impact of this model lies in its ability to explain a sequential appear-
ance of antigenic variants purely on the basis of cross-reactive inhibitory immune
responses between variants sharing some of their epitopes, without the need to resort
to variable switch rates or growth rates (see Gupta 2005 for a discussion of several
clinical studies in Ghana, Kenya, and India, which support this theory).

In the case of non-decaying long-lasting immune response, numerical simulations
in the original paper (Recker et al. 2004) showed that eventually all antigenic vari-
ants will be cleared by the immune system, with specific immune responses reaching
protective levels preventing each of the variants from showing up again. Blyuss and
Gupta (2009) have demonstrated that the sequential appearance of parasitemia peaks
during such immune clearance can be explained by the existence of a hypersurface of
equilibria in the phase space of the system, with individual trajectories approaching
this hyper-surface and then being pushed away along stable/unstable manifolds of the
saddle-centres lying on the hyper-surface. They also numerically analysed robustness
of synchronisation between individual variants. Under assumption of perfect syn-
chrony, when all variants are identical to each other, Recker and Gupta (2006) have
analysed peak dynamics and threshold of chronicity, while Mitchell and Carr (2010)
have considered the case of slowly decaying specific immune response. De Leenheer
and Pilyugin (2008) have replaced linear growth of antigenic variants in the original
model by the logistic growth, and have studied the effects of various types of cross-
reactivity on the dynamics, ranging from no cross-reactivity to partial and complete
cross-immunity.

It is known that time delay in the immune response can have a profound effect
on the dynamics of host-parasite interactions and the host ability to eliminate infec-
tion. Several models have studied mathematically the effects of time delay on the
immune dynamics and possible onset of oscillatory behaviour (Buri¢ et al. 2001;
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Marchuk 2010; Mayer et al. 1995; McKenzie and Bossert 1997). For the Recker
model, Mitchell and Carr have investigated the effect of time delay in the devel-
opment of immune response in the case of complete synchrony between antigenic
variants (Mitchell and Carr 2010), and they have also investigated the appearance of
synchronous and asynchronous oscillations (Mitchell and Carr 2012) in the case of
global coupling between variants (referred to as “perfect cross immunity” in De Leen-
heer and Pilyugin 2008).

In this paper, we use methods of equivariant bifurcation theory for delay differen-
tial equations to study the dynamics of a fully symmetric state in the Recker model.
Stability analysis of the appropriate characteristic equation will show that under cer-
tain conditions on parameters, this state can undergo Hopf bifurcation, giving rise to
different types of stable periodic solutions. The outline of this paper is as follows.
In the next section, we introduce the mathematical model of antigenic variation with
time delay in the immune response and discuss its main properties. Section 3 dis-
cusses different steady states and derives the transcendental characteristic equation,
which determines the stability of the fully symmetric state. In Sects. 4 and 5, we
analyse the case of small and arbitrary time delay, respectively, and find the boundary
of Hopf bifurcation in terms of system parameters and the immune delay. Section 6
contains numerical simulations of the model and analysis of the symmetry properties
of different periodic solutions. The paper concludes in Sect. 7 with the discussion of
results and an outlook.

2 Mathematical Model

In this section, the model of the immune response to malaria is presented together
with some facts about the dynamics of this system. Following Recker et al. (2004),
we assume that each antigenic variant i consists of a single unique major epitope, that
elicits a long-lived (specific) immune response, and also of several minor epitopes
that are not unique to the variant. Assuming that all variants have the same net growth
rate ¢, their temporal dynamics is described by the equation

dyi

o =yi(¢p —azi —a'w;), (D

where « and o’ denote the rates of variant destruction by the long-lasting immune
response z; and by the transient immune response w;, respectively, and index i spans
all possible variants.

It is known that the discovery of infection by immune receptors does not instan-
taneously lead to the development of the corresponding immune response (Marchuk
2010). To include this feature explicitly in the model, we introduce time delay 7 as the
time delay that elapses between changes in parasitemia and production of the corre-
sponding immune effectors (Mitchell and Carr 2010, 2012). For simplicity, it will be
assumed that this time delay is the same for both specific and cross-reactive immune
responses. The dynamics of the variant-specific immune response can be written in
its simplest form as

dz;

oy =Byt =) —pzi0), @)
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Fig. 1 Interaction of malaria
variants in the case of two minor

epitopes with two variants in .
each epitope

(D

where B is the proliferation rate, u is the decay rate of the immune response, and
T is the above-mentioned time delay in the immune response. Finally, the transient
(cross-reactive) immune response can be described by a minor modification of the
above equation (2):

dwi
dt

=ﬂ’Zyj(t—f)—u’wi, 3)
J

where the sum is taken over all variants sharing the epitopes with the variant y;.

We shall use the terms long-lasting and specific immune response interchangeably,

likewise for transient and cross-reactive.

The above system can be formalised with the help of an adjacency matrix 7,
whose entries T;; are equal to one if the variants i and j share some of their minor
epitopes and equal to zero otherwise. Obviously, the matrix T is always a symmetric
matrix. Prior to constructing this matrix it is important to introduce a certain order-
ing of the variants according to their epitopes. To illustrate this, suppose we have a
system of two minor epitopes with two variants in the each epitope. In this case, the
total number of variants is four, and they are enumerated as follows:

1 11
2 12
3 22 @
4 21

The diagram of interactions between these antigenic variants is shown in Fig. 1. It is
clear that for a system of m minor epitopes with n; variants in each epitope, the total
number of variants is given by

N:Hni’ (5)

After the ordering of variants has been fixed, it is straightforward to construct the
connectivity matrix 7" of variant interactions. For the particular system of variants (4),
this matrix has the form
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110 1
1110

=10 11 1 ©
101 1

For the rest of the paper, we will concentrate on the case of two minor epitopes,
but the results can be generalised to larger systems of antigenic variants. Using the
connectivity matrix, one can rewrite the system (1)—(3) in a vector form

y y(ply —az — o'w),
1% 1= F(y,z,w)={ By(t — ©) — uz, @)
w ﬂ/TY(t - T) - I’L/Wv
where y = (y1, ¥2, ..., YN), etc., 15 denotes a vector of the length N with all com-

ponents equal to one, and in the right-hand side of the first equation multiplication is
taken to be entry-wise so that the output is a vector again. The above system has to
be augmented by appropriate initial conditions, which are taken to be

y)=v(®) =0, 6e[-1,0]
z(0) > 0, w =0,

with the history function ¥ (8) € C([—1, 0], RY), where C([—1, 0], RY) denotes the
Banach space of continuous mappings from [—t, 0] into R" equipped with the supre-
mum norm || || =sup_, .y ¥ (0)| for ¥ € C([—7, 0], RM), where | - | is the usual
Euclidean norm on R" . Using the same argument as in Blyuss and Gupta (2009), it
is possible to show that with these initial conditions, the system (7) is well-posed, i.e.
its solutions remain non-negative for all ¢ > 0.

We will assume that cross-reactive immune responses develop at a slower rate than
specific immune responses, have a shorter life time, and are less efficient in destroying
the infection. This implies the following relations between the system parameters:

o <o, p=p, BB ®

In terms of symmetry in the network of interactions between different antigenic
variants, in the case of two minor epitopes with m variants in the first epitope and
n variants in the second, the system (7) is equivariant with respect to the following
symmetry group (Blyuss 2012; Blyuss and Gupta 2009):

Su xS, m#n,

- Sy xS xZpy, m=n.

&)

Here, S,;, denotes the symmetric group of all permutations in a network of n nodes
with an all-to-all coupling, and Z; is the cyclic group of order 2, which corresponds
to rotations by 7.

The above construction can be generalised in a straightforward way to a larger
number of minor epitopes. System (7) provides an interesting example of a linear
coupling, which for N > 4 does not reduce to known symmetric configurations, such
as diffusive, star or all-to-all coupling (Pecora 1998). A really important aspect is that
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two systems of antigenic variants with the same total number of variants N may have
different symmetry properties as described by the symmetry group I" depending on
m and n, such that N = mn.

3 Steady States

In the particular case of non-decaying specific immune response (« = 0) and instan-
taneous immune response (t = 0), steady states of the system (7) are not isolated but
rather form an N-dimensional hyper-surface Hy = {(y,z,w) e RV :y=w =0y} in
the phase space (Blyuss and Gupta 2009). Linearision near each equilibrium on this
hyper-surface has the eigenvalues (—u’) of multiplicity N, zero of multiplicity N,
and the rest of the spectrum is given by

¢—azy, ¢—oazz, ..., ¢—oazn.

This suggests that the hyper-surface consists of saddles and stable nodes, and besides
the original symmetry of the system it possesses an additional translational symme-
try along the z axes. Furthermore, stability of equilibria on the hyper-surface does
not depend on the time delay 7. The existence of this hyper-surface of equilibria in
the phase space leads to a particular behaviour of phase trajectories, which mimics
the occurrence of sequential parasitimea peaks in the immune dynamics of malaria
(Blyuss and Gupta 2009; Recker et al. 2004).

When p > 0, the structure of the phase space of the system (7) and its steady states
is drastically different. Now, the only symmetry present is the original symmetry I,
and the hyper-surface of equilibria Hy disintegrates into just two distinct points: the
origin O, which is always a saddle, and the fully symmetric equilibrium

E:(YIN,ZIN,WIN), where

yo_ e, B duncp
app’ +a'np'n’ app +a'np'n’ af +ancp'n’
(10

Here, n. is the total number of connections for each variant, which in the case
of two minor epitopes with m variants in the first epitope and n variants in the
second, is equal to n, = m + n — 1. It has been previously shown that in the
absence of time delay, the fully symmetric equilibrium E can undergo Hopf bi-
furcation as the system parameters are varied (Blyuss 2012; Blyuss and Gupta
2009). It is worth noting that if one assumes all variants to be exactly the same,
the system collapses onto a system with just 3 dimensions, but in this case it is
possible to show that the fully symmetric equilibrium is always stable for T = 0
(Recker and Gupta 2006) and can have a Hopf bifurcation for t > 0 (Mitchell
and Carr 2010). Besides the origin and the fully symmetric steady state, sys-
tem (7) has 2 — 1 other steady states, all of which are unstable (Blyuss 2012;
Blyuss and Gupta 2009).

In order to understand the structure of the solution that arises from the Hopf bi-
furcation of the fully symmetric steady state E, we concentrate on a specific con-
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nectivity matrix 7 (4) corresponding to a particular example of a system of two
epitopes with two variants in each epitope, as shown in Fig. 1. In this case, the
system (7) is equivariant under the action of a dihedral group D4, which is a
symmetry group of a square (Blyuss 2012). We can use the sub-spaces associ-
ated with four one-dimensional irreducible representations of this group to perform
an isotypic decomposition of the full phase space R'? as follows (Blyuss 2012;
Dellnitz and Melbourne 1994; Swift 1988):

R2={(1,1,1,1), (1, —1,1,=1), (1,0, —1,0), (0,1,0,—}". (11)

The characteristic matrix of the linearisation of system (7) near a fully symmetric
steady state E has the block form

—A14 —aly —a'ly
J )= Be 1y —(A+wly 0, ,
Be T 04 —(A+ 1)1y

where 04 and 14 are 4 x 4 zero and unit matrices, and 7 is the connectivity matrix (6).
Rather than compute stability eigenvalues directly from this 12 x 12 matrix, we use
isotypic decomposition (11) to rewrite this characteristic matrix in the block-diagonal
form (Blyuss 2012; Swift 1988)

M +2N 03 03 03
03 M—2N 03 03

AL, T) = ) , 12
(*, 1) 0, 0, M 0 (12)
03 03 0; M
where
—A —a —a’ 0 0 0
M=| Be ™ —(r+np 0 , N= 0 0 0]. (13)
/e—Ar 0 _()L + M/) /ef)\.f 0 0

Here, matrix M is associated with self-coupling, and N is associated with nearest-
neighbour coupling. From the perspective of stability analysis, eigenvalues of the
characteristic matrix A(A, t) are determined as the roots of the corresponding char-
acteristic equation

det A(x, 7) = (det[ A} (A, r)])2 -det[A2(A, 7)] - det[ A3(2, T)] =0, (14)

where
—a —a —d
Aoz, )= Be ' —(+w) 0 ,
Bj 557" 0 (A +u)

with B , ; = g',38’, —p’ for matrices M, M 42N and M — 2N, respectively. Sta-
bility is now determined by the roots of the corresponding characteristic equation
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A+ (k1) ' r+ A (af + o' B e
+ (B +o'B'p)e " =0. (15)
This equation can be rewritten in the form
234+ AAZ 4+ Bo+ Cre ™ + De T =0, (16)
where
A=u+pyn, B=uy, C=af+a'B’, D=afu +o'BL.

When the immune response is instantaneous (t = 0), the above equation simplifies
to

P+AV+(B+CO)A+D=0,

and one can use the Routh—Hurwitz criterion to deduce that in the cases B’ = 8’ and
B’ =38, the fully symmetric steady state E never loses stability, as the eigenvalues
remain in the left complex half plane for all values of the parameters. When B’ =
—p’, the steady state E can undergo Hopf bifurcation at

B+ pp (41

IB/M/
thus giving rise to an odd periodic orbit, where variants 1 and 3 are synchronised and
half a period out-of-phase with variants 2 and 4, i.e. each variant is & out of phase
with its nearest neighbours (Blyuss 2012). Another possibility is for the steady state
E to undergo a steady state bifurcation at

o)y = , (17)

s = ap u’y
B’
provided u’' < aBu/(af — 1?), but due to restrictions on parameters (8), this cannot
happen.

Cubic quasi-polynomial equations similar to (16) have been previously studied in
several applied contexts, such as, models of business cycles (Cai 2005), testosterone
secretion (Ruan and Wei 2001a, 2001b) or neural networks with bidirectional asso-
ciative memory (Song et al. 2005). In each of those cases, analyses of the appropriate
characteristic equation allowed one to find restrictions on system parameters and the
time delay, which lead to the occurrence of Hopf bifurcation.

We will use the results of equivariant bifurcation theory for delay differential equa-
tions to analyse symmetry properties of possible solutions arising at the Hopf bifur-
cation. While the effects of symmetry on the dynamics of Hopf bifurcation in sys-
tems without time delay have been known for quite a long time (Ashwin et al. 1990;
Golubitsky and Stewart 1986; Golubitsky et al. 1988; Swift 1988), it is only in the last
10-15 years that these results have been adapted to the analysis of delay and func-
tional differential equations. In a series of papers, Wu and co-workers extended the
theory of equivariant Hopf bifurcation to systems with time delays and employed
equivariant degree theory to study existence, multiplicity and global continuation
of symmetric periodic solutions (Krawcewicz et al. 1997, 1998; Krawcewicz and
Wu 1999; Wu 1988). The results of this analysis have been subsequently applied
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to the studies of Hopf bifurcation in a number of symmetric models of coupled os-
cillators with delayed coupling (Bungay and Campbell 2007; Campbell et al. 2005;
Fan and Wei 2009; Guo and Huang 2003; Yuan and Campbell 2004).

The strategy now is to consider when the eigenvalues of the characteristic equa-
tion (16) cross the imaginary axis with non-zero speed, giving rise to a Hopf bifur-
cation. One has to separately consider the cases B =38/, B' = —f/, and B' = f#/,
as these correspond to a Hopf bifurcation in the even, odd and V4 sub-spaces, re-
spectively (Swift 1988). In the case of bifurcation in the even sub-space, the periodic
solution that appearing will be an even periodic orbit, which has the full original
symmetry D4 and is characterised by all variants oscillating in perfect synchrony
with each other. An odd solution, also called anti-phase solution, corresponds to a
bifurcation in the odd sub-space, and has variants 1 and 3 oscillating synchronously
and half of a periodic out-of-phase with variants 2 and 4. Finally, when the bifur-
cation takes place in the V4 sub-space, this is known as the Hopf bifurcation with
symmetry (Swift 1988); as is clear from (14), in this case, two pairs of complex con-
jugate eigenvalues simultaneously cross the imaginary axis, and this can give rise to
a number of different periodic behaviours, including edge and vertex oscillations, as
well as discrete travelling waves (Swift 1988). By finding the minimum value of time
delay, at which Hopf bifurcation occurs for one of the three possible values of B,
one can identify the type of periodic solution that will appear at the corresponding
Hopf bifurcation.

4 Small Immune Delay

We begin our analysis of stability by considering the case when the time delay in

the development of immune response is small 0 < 7 < 1. In this case, one can write

e~*T & 1 — A1, which transforms the characteristic equation (16) into a regular cubic

equation
B H+a @A +a(t)r+a3 =0, (18)
where
a(t)=pu+u — r(oc,B +a’B’),
a(t)=ppu' +af+ao'B' —t(afu’ +o'B'1), (19)
az3=afu +ao' B u.
While finding the roots of the cubic equation (18) is still too cumbersome, one can

resort to the Routh—Hurwitz criterion to establish the conditions for stability of fully
symmetric steady state E. These conditions are as follows:

a,->0, i=1,2,3,
ajay — as > 0.

For 7 small but different from zero, we can find that the Hopf bifurcation will occur
when

ai(t) >0, ax(t)>0, a3 >0, and
1(7) 2(7) 3 20)
a1 (t)ax(t) = as,
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which gives the critical value of the time delay as

P—\/P2—40QR
20 ’

Ty = 21

with
0= (apu' +o'B'u)(ap +o’'B'),
P=(af+a'B)(ap+a'B + pup)+ (n+un)(apu +o'B'w),
R=aBu—+a'B'u +pw (1u+u).
If we define a characteristic polynomial as
g0, 1) =1+ a1’ + ax ()i + a3,

the characteristic equation (18) at T = 7y becomes

gOu i) =2 4+ a1 (tg)A* + ax (T + a1 (te)aa(ty) = 0.

The eigenvalues of (18) at T = ty can be readily found as

A1(ty) = —ai(ty) <0,

and

M3(ty) =tio, o=+a(ty),

where o is the Hopf frequency. To establish the occurrence of a Hopf bifur-
cation, we need to show that Re(dA/dt)|;=, > 0. Since dg/dt = (0g/07) +
(0g/0Ar)(dxr/dt) =0, we have

dr _ 0g 0g  —(af+ao'B)A—ai(t)ax(t)r

dr ot an 322 4+ 2a1 (DA + ar(7)

Evaluating this at T = ty gives

dr(t)
dt

__loa@) @B +a'B) —ar(ep)ar(ty)*Pill=ay (ty) — a1 (ti)Var (T
T— 2ap(ty)lar (ty) +ax(ty)] '

(22)

The real part can be found as

dRe(A (1))
ol

_ax(w)lai(tn) +ap +o'B']
ey 2lai(e) +ax(ze)]

> 0. (23)

When B’ = 8’ or B’ =38/, this is true since all parameters are positive; for B’ = —f’,

this inequality holds due to &’ < @ and 8’ < B, as required by (8). This implies that in
all three cases, the eigenvalues A, 3 cross the imaginary axis at T = Ty with a positive
velocity, which implies the existence of a Hopf bifurcation at T = tg. These finding
can be summarised in the following theorem.
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(a) (b)

0.2 .
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Fig. 2 Critical time delay Ty (21) at the Hopf bifurcation as a function of «’. Parameter values are
B=1,a=12,u=0.1,8 =0.8, (a) u =0.1, (b) u’ =0.127, (¢c) ' =0.18, (d) 1’ = 1.2. The colour
corresponds to B’ = B’ (blue), B’ =3B’ (green), and B’ = —p’ (red) (Color figure online)

Theorem 1 For sufficiently small values of the time delay 0 < t K 1, the fully sym-
metric steady state E is stable provided t < ty as defined in (21) and unstable for
T > Ty. At T = 1y, this steady state undergoes Hopf bifurcation. If the minimal value
of Ty corresponds to B’ =3/, the bifurcating solution will be an even periodic or-
bit; if it corresponds to B' = —f', the bifurcating solution will be an odd periodic
orbit; if it corresponds to B’ = B', the bifurcating periodic orbit will lie in the V,
sub-space. If oy, as defined in (17) satisfies oy, < o, then for o' = oy, the steady
state E undergoes Hopf bifurcation to an odd periodic orbit for zero time delay t.

Figure 2 illustrates how the critical time delay ty at the Hopf bifurcation varies
with the rate o’ of variant destruction by transient immune response, and also with
the decay rate of the transient immune response w’. The type of bifurcating periodic
orbit is determined by which of the matrices M, M £ N will become unstable first as
the time delay 7 increases. One can observe that when the death rate of cross-reactive
immune response u’ is sufficiently close to that of the specific immune response u,
i.e. when the cross-reactive immune response is sufficiently long-lasting, the only
possible periodic solution the steady state £ can bifurcate to is the even solution (see
Fig. 2(a)), in which all antigenic variants are behaving identically to each other. As
the lifetime of transient immune response gets shorter (i.e. the rate u’ increases),
there appears a range of o’ values shown in Figs. 2(b) and 2(c), for which the steady
state E can also bifurcate to an odd periodic orbit, in which variants 1 and 3 are
synchronised and half-a-period out of phase with variants 2 and 4. As ' increases
further, the possibility of bifurcating into an even solution completely disappears (see
Fig. 2(d)), and the only remaining possibility is a bifurcation to an odd solution for
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all admissible values of «’. It is worth noting that for higher values of 1/, the range of
possible values of &’ for which Hopf bifurcation can occur, is bounded by o}, given
in (17), for which the steady state E bifurcates to an odd periodic orbit for t = 0.

5 The Case of General Delay

In the situation when the immune delay t is not small, the approximation used in the
previous section is not valid, and one has to consider the full equation (16). Before
proceeding to the analysis of the full characteristic equation, it is worth mentioning a
general result of Hale (1985), which guarantees absolute stability of a delay system—
this is a case when the real parts of all eigenvalues remain negative for all values
of time delay, i.e. effectively independent of the delay. This is achieved when the
corresponding ODE system is asymptotically stable, and the characteristic equation
has no purely imaginary roots.

Now we consider the characteristic equation (16) and analyse its roots in order
to identify possible parameter regimes when the fully symmetric steady state E can
lose its stability. First of all, due to biological restrictions on system parameters, the
coefficient D in (16) is always positive, and this implies that A = 0 is a not a root of
the equation. Therefore, the only way how the steady state E can lose its stability is
through a Hopf bifurcation at some T = tp, when a pair of eigenvalues of (16) crosses
the imaginary axis. Let us assume that when t = 0, the steady state E is stable, which
is always the case for B’ = 8’ and B’ =38/, and is also true for B’ = — B’ provided
o' < oy, where o, is given in (17). In order to find out when the Hopf bifurcation
can occur as the time delay 7 increases from zero, we look for solutions of (16) in
the form A =iw (@ > 0). Such a solution would be a root of (16) if and only if w
satisfies

—iw® — Aw® +iBw+ (Ciw+ D)(coswt —isinwt) =0.
Separating the real and imaginary parts, we have

(24)

Aw? = Dcoswt 4+ Cwsinwr,
@ (B — w?) = Dsinwt — Cwcoswr.

Squaring and adding these two equations yields a single polynomial equation for the
Hopf frequency w:

o® + (A* = 2B)o"* + (B* — C*)o® — D* =0. (25)
Let x = w?, and also
ci=A>-2B, ¢ =B>-C? «c3=-D" (26)
Now, introducing function f(x) as
fx) =x+ex’ +ex +e3, 27
we can rewrite (25) as
f(x) =x> —i—clxz +cox +c3=0. (28)

@ Springer



Symmetry Breaking in a Model of Antigenic Variation with Immune Delay 2501

Since f(0) =c3 = —D? <0, and limy_, 400 f(x) = 400, we conclude that equation
h(z) always has at least one real positive root. Without loss of generality, suppose
(28) has three distinct positive roots, denoted y x1, x2, and x3, respectively. Then,
correspondingly, (25) also has three positive roots

w1 = /X1, W) = /X2, W3 =./X3.
From (24), one can find

?(AD — CB + Cw})
D2 4+ C2w?

COSW;T = , k=1,2,3.

If we denote

1 w?(AD — CB + Cw?
rk(”)z—{arccos[ i€ 5 k)]+2nn},
Wk D? + C?wy;,

k=1,2,3, n=0,1,2,..., (29)

then +iwy is a pair of purely imaginary roots of (16) with 7 = tk("). Since

)

lim,—, 00 7, =00, k =1, 2, 3, we can define

0) : 0)
=71, = min |t , W) = Wk 30
0= T, ke{1,2,3}{ ) 0 ko (30)

Using the results of Ruan and Wei (2001b), we can conclude that all roots of the char-
acteristic equation (16) have negative real parts when 7 € [0, 79). By construction, it
follows that f ’(a)(z)) > 0, and this implies that at T = 7, one has Fiwg as a pair of
simple purely imaginary roots of (16), see Ruan and Wei (2001a) for details of the
proof. The next step is that show that, in fact,

|:dRe()»(r))i|
dt

> 0.

T=1)

To do this, we differentiate both sides of (16) with respect to 7, which yields
dn(r) (CA% 4+ DAye™*
dt 3X242Ar+B+(C—Cth—1tD)e '

Evaluating the real part of this expression at T = 7y and substituting A = iwg gives

[dRe(k(t))}

_ wjl3w§ 4+ 205(A* —2B) + B> — C?]
= " ,

e 31

=10

where
A= (—Sw(z) + B — npAw} + Ccosa)oto)2
+ (2Awo + Towo (B — a)(z)) — Csin a)oro)z.
Using the definition of function f from (27) with the coefficients given in (26), we
can alternatively write
_ wpf (@)

A (32)

dRe(\(7))
drt

T=10
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(a) (b)
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Fig. 3 Critical time delay () (30) at the Hopf bifurcation as a function of «’. Parameter values are 8 = 0.2,
a=03,u=0.1,5 =08, @ n =0.1, (b) &’ =0.24, (¢) &’ =0.255, (d) u’ = 0.7. The colour corre-
sponds to B’ = B’ (blue), B’ =3B’ (green), and B’ = —B’ (red) (Color figure online)

Since f(0) <0 and wy is the smallest positive root of (25), it follows that

f'(@) =0,

unless wq is a double root, in which case we take wq as the next root. Therefore, one
concludes that

_ oS @)

dRe(\(7))
Rl B

drt

=10

which, in the light of Hopf theorem, implies that at T = 7, the fully symmetric steady
state undergoes a Hopf bifurcation. We summarise these results as follows.

Theorem 2 The fully symmetric steady state E is stable for t < 1o, where 1y is
defined in (30), unstable for T > vy, and undergoes a Hopf bifurcation at v = 1¢. If
the minimal value of ty corresponds to B' = 38’, the bifurcating solution will be an
even periodic orbit; if it corresponds to B’ = — ', the bifurcating solution will be an
odd periodic orbit; if it corresponds to B’ = 8/, the bifurcating periodic orbit will lie
in the V4 sub-space.

Figure 3 illustrates how the time delay affects possible types of bifurcating solu-
tions. Similar to the case of small time delay, the steady state E bifurcates primarily
into an even periodic orbit for smaller values of ' and into an odd periodic orbit for
higher values of p'. The main difference from the case of small time delay is that
now the range of admissible values o is bounded by « rather than the value of «}; at
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the Hopf bifurcation for t = 0. There are two main conclusions to be drawn from this
figure. The first one is that the computations of 7y suggest that the state E can only
bifurcate to either even or odd periodic orbit, and the bifurcation into a sub-space Vi
corresponding to two pairs of complex conjugate eigenvalues crossing the imaginary
axis simultaneously does not happen, thus excluding the occurrence of vertex or edge
oscillations, as well as discrete travelling waves (Swift 1988). This, however, does
not preclude them from appearing in the dynamics altogether, as they can arise as
solutions bifurcating from the even/odd periodic orbits, as will be shown in the next
section. The second conclusion which follows from Fig. 3 is that as the efficiency
of cross-reactive immune response o’ increases, this leads to a decrease in 7, thus
leading to the onset of sustained oscillations for faster immune responses.

6 Numerical Simulations

In the previous sections, we established that the fully symmetric steady state £ can
undergo Hopf bifurcation, giving rise to two different types of solutions: a symmetric
solution, in which all variants are oscillating identically, and an odd periodic orbit
having variants 1 and 3 oscillating synchronously and half a period out-of-phase with
variants 2 and 4. To understand evolution of these solutions as the time delay in-
creases, we have performed a number of numerical simulations of system (7), which
are shown in Fig. 4. One can observe that for sufficiently small immune delay, the
fully symmetric steady state E is stable; see Fig. 4(a). As the time delay t exceeds
its critical value (30) at the Hopf boundary, this state becomes unstable and gives rise
to a stable fully symmetric periodic orbit, as demonstrated in Fig. 4(b). As the time
delay increases, this solution acquires sub-harmonics, as shown in Fig. 4(c), and it
eventually becomes chaotic; see Fig. 4(d). For other values of parameters, the fully
symmetric steady state E bifurcates into an odd periodic solution (see Fig. 4(e)),
which for higher values of t transforms into a discrete travelling wave, where each of
the variants is quarter of period out-of-phase with its neighbours on the diagram (1).
In fact, as the time delay is varied, it is possible to observe other stable periodic
solutions with different phase shifts between antigenic variants.

The important difference from the model without time delay is that the only pos-
sibility for = 0 is a bifurcation into an odd periodic orbit (Blyuss 2012), while for
T > 0 there is also a possibility of the steady state E bifurcating to a stable fully sym-
metric periodic orbit. In this case, Hopf bifurcation does not lead to the breakdown
of the original D4 symmetry. Also, we note an important difference from the globally
coupled system with delayed immune response. When considering a network of anti-
genic variants with an all-to-all coupling, Carr and Mitchell (2012) have shown that
for the majority of parameter values, anti-phase Hopf bifurcation eventually leads to
the behaviour that appears chaotic, while the simulations shown in Fig. 4 suggest that
when not all antigenic variants are related to each other, the system is able to support
a number of different out-of-phase solutions without going into chaotic regime.

To better understand the structure of different types of periodic behaviour in the
model, one can use the so-called H/K theorem, which takes into account individ-
ual spatial and spatio-temporal symmetries of the solutions (Buono and Golubitsky
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Fig. 4 Numerical solution of the system (7) with a connectivity matrix (6). Parameter values are ¢ =1,
B=0.2,0 =0.3, u=0.1, 8’ =0.8. Different colours correspond to different antigenic variants. (a) Stable
steady state E (1’ = 0.26, o’ = 0.1, T = 1). (b) Even periodic orbit (1’ = 0.26, &’ = 0.1, T = 1.26).
(¢) Quasi-periodic even orbit (1’ = 0.26, &’ = 0.1, T = 1.27). (d) Chaotic solution (' = 0.26, &’ = 0.1,
7 = 1.5). (e) Odd periodic orbit (1’ = 0.4, o’ = 0.2, T = 1.2). (F) Discrete travelling wave (1’ = 0.7,
a’ =0.2, T = 1.8) (Color figure online)

2001; Golubitsky and Stewart 2002). To use this method, we note that due to I"-
equivariance of the system (7) and uniqueness of its solutions, it follows that for any
T -periodic solutions x (¢) and any element y € I" of the group, one can write

yx(1) = x(z —0),

for some phase shift & € S! = R/Z = [0, T'). The pair (y,60) is called a spatio-
temporal symmetry of the solution x(¢), and the collection of all spatio-temporal
symmetries of x(¢) forms a sub-group A C I" x S!. One can identify A with a pair
of sub-groups, H and K, such that K C H C I". We also define

H= {y el : y{x(t)} = {x(t)}} spatio-temporal symmetries,

K = {y el :yx()=x(t) Vt} spatial symmetries.
Here, K consists of the symmetries that fix x(¢) at each point in time, while H con-
sists of the symmetries that fix the entire trajectory. Under some generic assumptions
on H and K, the H/K theorem states that periodic states have spatio-temporal sym-
metry group pairs (H, K) only if H/K is cyclic, and K is an isotropy sub-group

(Buono and Golubitsky 2001; Golubitsky and Stewart 2002). The H/K theorem was
originally derived in the context of equivariant dynamical systems by Buono and

@ Springer



Symmetry Breaking in a Model of Antigenic Variation with Immune Delay 2505

Golubitsky (2001), and it has subsequently been used to classify various types of pe-
riodic behaviours in systems with symmetry that arise in a number of contexts, from
speciation (Stewart 2003) to animal gaits (Pinto and Golubitsky 2006) and vestibular
system of vertebrates (Golubitsky et al. 2007).

In the case of D4 symmetry group acting on four elements, there are eleven pairs
of sub-groups H and K satisfying the above requirements (Golubitsky and Stewart
2002). While periodic solutions corresponding to each such pair can exist in a general
setup, the above theorem does not guarantee their existence or stability in a particular
system; see discussion in Golubitsky and Stewart (2002). Therefore, we use numer-
ical simulations shown in Fig. 4 to identify specific types of periodic solutions and
their spatio-temporal symmetries that can be found in the system (7). Solutions shown
in Figs. 4(b) and 4(c) have the full original symmetry of the system and, therefore, are
characterised by a pair (H, K) = (D4, D4). The solution shown in Fig. 4(d) is chaotic
and does not have any of the symmetries of the original system. Figure 4(e) illus-
trates an odd periodic orbit with a symmetry (H, K) = (Dg4, Dg ), where K = Dg is
an isotropy sub-group associated with reflections along the diagonals of the square.
Finally, the solution shown in Fig. 4(f) is a discrete travelling wave with the sym-
metry (H, K) = (Z4, 1), also known as a “splay state” (Strogatz and Mirollo 1993),
“periodic travelling (or rotating) wave” (Ashwin et al. 1990), or “ponies on a merry-
go-round” or POMs (Aronson et al. 1991) in the studies of systems of coupled os-
cillators. In this dynamical regime, all variants appear sequentially one after another
along the diagram in Fig. 1 with quarter of a period difference between two neigh-
bouring variants. From the perspective of equivariant bifurcation theory, this solution
is generic since the group Z, is always one of the sub-groups of the D, group for
the ring coupling, or the S, group for an all-to-all coupling, and its existence has
already been extensively studied (Aronson et al. 1991; Golubitsky and Stewart 1986;
Golubitsky et al. 1988). From the immunological point of view, this is an ex-
tremely important observation that effectively such solution, which immunologi-
cally represents sequential appearance of parasitemia peaks corresponding to dif-
ferent antigenic variants, owes its existence not to the individual dynamics of anti-
genic variants, but rather to the particular symmetric nature of cross-reactive inter-
actions between them. This immunological genericity ensures that the same con-
clusions hold for a wide variety of immune interactions between human host and
parasites, which use antigenic variation as a mechanism of immune escape, as illus-
trated, for instance, by malaria, African Trypanosomes, several members of Neisse-
ria family (N. meningitidis and N. gonorrhoeae), Borrelia hermsii, etc. (Gupta 2005;
Turner 2002).

7 Discussion

In this paper, we have used methods of equivariant bifurcation theory to understand
the effects of immune delay on the dynamics in a model of antigenic variation in
malaria. In the simplest case of two epitopes with two variants in each epitope, the
system is equivariant with respect to a D4 symmetry group of the square. Using iso-
typic decomposition of the phase space based on the irreducible representations of
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this symmetry group has allowed us to find critical value of the time delay at the
boundary of Hopf bifurcation of the fully symmetric steady state in terms of system
parameters. We have identified even and odd periodic solutions that can arise at Hopf
bifurcation, and also performed numerical simulations of the full system to illustrate
other types of dynamical behaviours that can be exhibited by the model. These have
been classified in terms of their spatial and spatio-temporal symmetries using the
H/K theorem. Our analysis suggests that as the efficiency of the cross-reactive im-
mune response increases, the critical value of the time delay at the Hopf bifurcation
decreases, which is similar to earlier studied cases of complete synchrony (Recker
and Gupta 2006; Mitchell and Carr 2010) or global coupling between antigenic vari-
ants (Mitchell and Carr 2012). At the same time, unlike these, the out system is able to
support a range of stable phase shift solutions without developing chaotic dynamics.

When applying the results of our analysis to the studies of realistic models of
antigenic variation, one of the important considerations that have to be taken into
account is the fact that in reality systems of antigenic variants do not always fully
preserve the symmetry assumed in the mathematical models. In the context of mod-
elling immune interactions between distinct antigenic variants, this means that not all
variants cross-react with each other in exactly the same quantitative manner. Despite
this limitation, due to the normal hyperbolicity, which is a generic property in such
models, main phenomena associated with the symmetric model survive under pertur-
bations, including symmetry-breaking perturbations. The discussion of this issue in
the context of modelling sympatric speciation using a symmetric model can be found
in Golubitsky and Stewart (2002).

The results presented in this paper are quite generic, and the conclusions we ob-
tained are valid for a wide range of mathematical models of antigenic variation. In
fact, they are applicable to the analysis of within-host dynamics of any parasite, which
exhibits similar qualitative features of immune interactions based on the degree of re-
latedness between its antigenic variants. The significance of this lies in the possibility
to classify expected dynamical regimes of behaviour using very generic assumption
regarding immune interactions, and they will still hold true, provided the actual sys-
tem preserves the underlying symmetries.

There are several ways in which the analysis in this paper can be further improved
to achieve an even more realistic representation of the dynamics of antigenic vari-
ation. One of the assumptions in our analysis is that the degree of cross-reactivity
between antigenic variants does not vary with the number of epitopes they share.
It is straightforward, however, to introduce antigenic distance between antigenic
variants in a manner similar to the Hamming distance (Adams and Sasaki 2009;
Recker and Gupta 2005). Such a modification would not alter the topology of the
network of immune interactions, but rather it would assign different weights to con-
nections between different antigenic variants in such a network. Another modelling
issue concerns the way how the time delay in the immune response can be represented
mathematically in the most realistic manner. It would be beneficial to investigate the
dynamics of antigenic variation under the influence of a more general distributed time
delay, which is known to cause both destabilisation of steady states, and also suppres-
sion of oscillations (Arino and van den Driessche 2006; Blyuss and Kyrychko 2010;
Kyrychko et al. 2011; Lloyd 2001). This would provide better insights into how the
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efficiency of developing and maintaining immune response affects the within-host
dynamics of parasites with antigenic variation. Alternatively, one can introduce dif-
ferent time delays for the development of specific and long-lasting immune responses
and analyse how the difference in these timescales affects the overall stability and dy-
namics. Systematic analysis of the effects of the introduction of antigenic distances
and different/distributed delays in the immune response on the dynamics of antigenic
variation is the subject of further study.
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