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Abstract An epidemic model with distributed time delay is derived to describe the dy-
namics of infectious diseases with varying immunity. It is shown that solutions are al-
ways positive, and the model has at most two steady states: disease-free and endemic.
It is proved that the disease-free equilibrium is locally and globally asymptotically sta-
ble. When an endemic equilibrium exists, it is possible to analytically prove its local
and global stability using Lyapunov functionals. Bifurcation analysis is performed using
DDE-BIFTOOL and traceDDE to investigate different dynamical regimes in the model
using numerical continuation for different values of system parameters and different inte-
gral kernels.
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1. Introduction

Recent years have witnessed a rapid increase in the use of mathematical models for better
understanding of epidemics and disease dynamics. Mathematical models take into account
main factors that govern development of a disease, such as transmission and recovery
rates, and predict how the disease will spread over a period of time. Traditional epidemio-
logical models divide the whole population into three classes of susceptible, infected, and
recovered individuals, and the spread of an epidemic is governed by the principle of mass
action (Anderson and May, 1991). For certain diseases, such as, for example, sexually
transmitted infections, it is important to account for the individuals who have been ex-
posed to the infection but have not yet become infected, thus the whole population is split
into four groups, including a separate group of exposed. The incidence rate with which
individuals become infected is normally taken to be bi-linear with respect to the suscep-
tible and infected populations. However, there is some evidence that a bi-linear incidence
rate might not be an effective assumption for highly contagious diseases, where a high per-
centage of the whole population is infected, and the transition from susceptible to infected

∗Corresponding author.
E-mail addresses: k.blyuss@bristol.ac.uk (Konstantin B. Blyuss), y.kyrychko@bristol.ac.uk
(Yuliya N. Kyrychko).

mailto:k.blyuss@bristol.ac.uk
mailto:y.kyrychko@bristol.ac.uk


Stability and Bifurcations in an Epidemic Model 491

has to be represented by a non-linear function (Derrick and van den Driessche, 1993;
Hethcote and van den Driessche, 1991; Korobeinikov and Maini, 2005).

It is well known that the spread of many infectious diseases can be prevented by vac-
cination of the susceptible population. Furthermore, some infections provide recovered
individuals with a short or long immunity against re-infection. This means that it is nat-
ural to include the effects of immunity into the mathematical models in order to better
represent the actual dynamics of epidemic spread and predict future outbreaks. Immu-
nity can be attained through targeted immunization; it can be naturally acquired after an
individual has successfully recovered from an infection, and in some cases maternal anti-
bodies can be transmitted to a newborn providing a certain level of immunity. In each case,
the immunity period will vary, as some diseases provide almost life-long immunity while
others give only a very short-lived non-susceptibility. Quite often, the vaccine-induced
immunity requires boosting after some period of time, as the vaccine effectiveness wanes
due to absence of exposure to the disease. In the case of measles, for example, vaccinated
individuals are less immune than those with naturally acquired immunity (Mossonga and
Muller, 2003; Leuridan and Van Damme, 2007). Hepatitis B vaccination gives only 10
to 15 year immunity and after that the boost is required in order for immunity to re-
main effective (Lu et al., 2004). In the case of serogroup C meningococcal disease, the
immunity wanes with time and its efficacy strongly depends on the immunization pro-
grammes available (De Wals et al., 2006). Recent outbreaks of mumps epidemic even
amongst vaccinated population suggest that antimumps virus antibodies wane either due
to a wild-type virus or because the population does not have sufficient exposures to the
disease (Jokinen et al., 2007; Dayan et al., 2008). Other diseases with waning immunity
include varicella virus (although the cause of it is still being debated in the literature, some
studies suggest that there is a need for a secondary vaccination dose, Bayer et al., 2007;
Arvin, 2005), pertussis, for which immunity declines 6–12 years after the last episode of
illness or booster dose (Galanis et al., 2006), and influenza which has a very short lived
and strain-dependent immunity (Mathews et al., 2007).

Delay differential equations have been successfully used to model varying infec-
tious period in a range of SIR (susceptible-infected-recovered), SIS (susceptible-infected-
susceptible), and SIRS (susceptible-infected-recovered-susceptible) epidemic models.
Hethcote and van den Driessche have considered an SIS epidemic model with variable
population size and constant time delay, which accounts for duration of infectiousness
(Hethcote and van den Driessche, 1995). They found that an endemic equilibrium, when
it exists, may undergo Hopf bifurcation and give rise to sustained periodic oscillations for
certain parameter values. Beretta et al. (2001) have studied global stability in an SIR epi-
demic model with distributed delay that describes the time it takes for an individual to lose
infectiousness. They have used Lyapunov functionals to prove global stability of disease-
free and endemic equilibria, provided the effective time delay is sufficiently small. Gao et
al. (2007) have investigated the effects of pulse vaccination in an SIR model with distrib-
uted delay. They have shown that for sufficiently high vaccination rate, the disease-free
periodic solution is globally attractive, which implies it is possible to completely eradicate
the disease from the population. Another interesting integro-differential model was stud-
ied by Arino et al. (2004), where the authors considered a vaccine, whose effectiveness
wanes with time according to a general function. They have shown that the system can
exhibit backward bifurcation and multi-stability for a range of parameter values, which
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has important implication for a design of optimal vaccination policies. A general discus-
sion of time delay models in the context of epidemics can be found, for example, in Arino
and van den Driessche (2006, and references therein).

Some time ago, we put forward a mathematical model of a disease with temporary
immunity based on a system of delay differential equations (Kyrychko and Blyuss, 2005).
Under quite general assumptions on transmission incidence, we found conditions for local
and global stability of a disease-free and an endemic equilibrium when it exists. Several
authors have since considered this model with particular choices of linear/non-linear in-
cidence rate (Wena and Yang, 2008; Jianga and Wei, 2008), and most recently, Brauer et
al. have used it to study the spread of infection on a two-patch environment (Brauer et al.,
2008). The main assumption was that there is a fixed duration of temporary immunity, af-
ter which recovered individuals return to the class of susceptibles. In this paper, we relax
this assumption by considering a more realistic situation, in which immunity wanes with
time. To model this, we introduce a delay differential equation model with distributed
delay which takes into account varying immunity period. This means that after recovery
an individual becomes susceptible again only after spending some time having acquired
immunity from a disease. As it is important to predict the dynamics of an epidemic, we
will prove local and global stability of the disease-free equilibrium. Biologically, this
stability implies that although the disease may initially be present in the population, as
time progresses it will eventually die out. Moreover, for some values of parameters, it
is possible to show that when an endemic equilibrium is feasible, it may be globally as-
ymptotically stable. To get a better understanding of model dynamics, we will perform
numerical bifurcation analysis with a Dirac δ-function kernel using a DDE-BIFTOOL
package (Engelborghs et al., 2001). DDE-BIFTOOL is a numerical continuation tool that
detects bifurcations and allows one to follow steady states and periodic solutions in the
parameter space to get a general picture of system’s behaviour depending on parameters
and, in particular, on the time delay. For non-trivial kernels, i.e. weak and strong kernels,
we will use traceDDE (Breda et al., 2006) to find the boundary of Hopf bifurcation in
terms of system parameters and an average time delay.

The paper is organised as follows. In Section 2, we introduce a model and prove that
solutions of the model with positive initial conditions will remain positive for all time.
Section 3 is devoted to the local and global stability analyses of disease-free and en-
demic equilibria. Numerical bifurcation analysis of the model is performed in Section 4
for several different choices of delay kernels. The paper concludes with summary and
discussions.

2. Derivation of the model and positivity of solutions

In this section, we will derive a delayed epidemic model with distributed delay. Recently,
Kyrychko and Blyuss have introduced and studied a mathematical model for diseases
with a constant immunity time and a non-linear incidence rate in the form (Kyrychko and
Blyuss, 2005):

dS(t)

dt
= μ − φf

(
I (t)

)
S(t) − μS(t) + γ I (t − τ)e−μτ ,

dI (t)

dt
= φf

(
I (t)

)
S(t) − (μ + γ )I (t), (1)
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dR(t)

dt
= γ I (t) − γ I (t − τ)e−μτ − μR(t),

where the total population is divided into three sub-groups, S(t), I (t), and R(t) to denote
susceptible, infected, and recovered individuals, respectively. The parameters are as fol-
lows, μ is a natural mortality rate, φ is a disease transmission rate, and γ is a recovery
rate. Non-linear incidence rate is represented by the function f (I), and τ is a temporary
immunity period, after which recovered individuals return into the class of susceptible. In
this model, the immunity period is assumed to be constant and the same for all individu-
als. It is noteworthy that in the above model S(t) + I (t) + R(t) = N(t), and N(t) → 1 as
t → ∞.

As it was described in the Introduction, the duration of immunity for different diseases
may vary from a very short-lived to life-long immunity, and waning rates depend on the
amount of exposure, boosting times, age, etc. To account for this in our model, we assume
that immunity period τ for different individuals varies from 0 to ∞. We denote by g(ξ)

the probability density of taking time ξ to lose acquired immunity, so that g(ξ)dξ is the
probability of losing immunity somewhere between ξ and ξ +dξ after acquiring it. If one
normalizes g(ξ) as follows,

∫ ∞

0
g(s) ds = 1, and g ≥ 0, (2)

then the probability of having lost acquired immunity s time units after acquiring it is∫ s

0 g(ξ)dξ , and the probability of still having immunity s time units after acquiring it
is 1 − ∫ s

0 g(ξ) dξ = ∫ ∞
s

g(ξ) dξ . The rate of recruitment into the recovered class R at a
time t − s is γ I (t − s). The probability of these individuals still being alive at time t is
e−μs , and the probability of them still being immune is

∫ ∞
s

g(ξ) dξ . Integrating over all
previous times leads one to the expression

R(t) = γ

∫ ∞

0
I (t − s)e−μs

∫ ∞

s

g(ξ) dξ ds

= γ

∫ t

−∞
I (s)e−μ(t−s)

∫ ∞

t−s

g(ξ) dξ ds. (3)

Differentiating this expression gives the following integro-differential equation for num-
ber of recovered individuals R(t):

dR

dt
= γ I (t) − γ

∫ ∞

0
I (t − s)g(s)e−μs ds − μR(t).

With this derivation, the model to be investigated in this paper takes the form of a system
of delay differential equations with distributed delay:

dS(t)

dt
= μ − φf

(
I (t)

)
S(t) − μS(t) + γ

∫ ∞

0
I (t − s)g(s)e−μs ds,

dI (t)

dt
= φf

(
I (t)

)
S(t) − (μ + γ )I (t), (4)

dR(t)

dt
= γ I (t) − γ

∫ ∞

0
I (t − s)g(s)e−μs ds − μR(t),
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where, as before, μ is a natural mortality rate, φ is a disease transmission rate, and γ is a
recovery rate.

It is easy to see that when g(s) = δ(s − τ), where δ is the Dirac delta function, the
integral in (4) becomes time-delayed term in (1):

∫ ∞

0
I (t − s)δ(s − τ)e−μs ds = e−μτ I (t − τ).

In order to simplify system (4), we assume that transmission of the disease can be ade-
quately described as bi-linear, and consequently, the term f (I (t))S(t) becomes I (t)S(t).
With this assumption, we arrive at the system

dS(t)

dt
= μ − φI (t)S(t) − μS(t) + γ

∫ ∞

0
I (t − s)g(s)e−μs ds,

dI (t)

dt
= φI (t)S(t) − (μ + γ )I (t), (5)

dR(t)

dt
= γ I (t) − γ

∫ ∞

0
I (t − s)g(s)e−μs ds − μR(t),

where the last equation may be omitted due to the fact that the first two equations do not
depend on R(t).

Since the model (5) describes temporal dynamics of human population, it is important
to show that the solutions of this system do not become negative. We need to show that
S(t) > 0, I (t) > 0, R(t) > 0, i.e. the solutions of system (5) are positive for all t ∈ (0;∞).
It is more convenient to start by proving that I (t) > 0 for all t > 0. Let I0(s) ≥ 0, s ∈
(−∞;0), and I0(0) > 0 be the initial data for I (t). We shall prove the positivity of I (t)

by contradiction. Let t1 > 0 be the first time when I (t)S(t) = 0. Assuming that I (t1) = 0
implies that S(t) ≥ 0, for all t ∈ [0; t1]. Let

A = min
0≤t≤t1

{
φS(t) − μ − γ

}
,

then for t ∈ [0; t1], dI/dt ≥ AI (t). Therefore, I (t1) ≥ I (0)eAt1 > 0. This is a contradic-
tion, and hence I (t) > 0 for all t > 0. Next, let S0 denote the initial data for S(t), so
that S(t) = S0(t) for all t ∈ (−∞;0). Let S0 be continuous and satisfy S0(t) ≥ 0 for all
t ∈ (−∞;0), and S0(0) > 0. By contradiction, we prove that S(t) > 0 for all t > 0. As-
sume that there exists a first time t0 > 0 such that S(t0) = 0. This indicates that S(t) > 0
for t ∈ [0; t0) and

dS(t0)

dt
= μ + γ

∫ ∞

0
I (t0 − s)︸ ︷︷ ︸

>0,∀t0∈[0;∞)

g(s)e−μs ds > 0.

Therefore, dS(t0)

dt
> 0. This is a contradiction to our assumption, since it implies S(t) must

be negative for t just before t0, which contradicts the choice of t0. The positivity of R(t)

for t ≥ 0 follows from the integral representation (3) and positivity of I (t). Therefore,
we have proved that the solutions of system (5) with positive initial conditions remain
positive for all times.



Stability and Bifurcations in an Epidemic Model 495

3. Equilibria and their stability

3.1. Local stability of the disease-free and endemic steady states

Omitting the last equation in system (5), equilibria (S̄, Ī ) are determined by setting Ṡ(t) =
İ (t) = 0. There are two steady states, namely, a disease-free steady state E0 = (1;0) and
an endemic steady state Ẽ = (S̃, Ĩ ), where

S̃ = γ + μ

φ
and Ĩ = μ(γ + μ) − μφ

φ(−γ − μ + γ
∫ ∞

0 g(s)e−μs ds)
.

Using the properties of function g(s) from (2), one concludes that while the equilibrium
Ẽ exists for arbitrary values of parameters, it is biologically relevant if and only if

γ + μ < φ.

It is important to analyse the stability of these equilibria, as it will indicate whether
the disease will die out eventually, or it will persist for all time. The linearisation of the
system (5) without the last equation near the steady state E0 = (1,0) gives

dŜ(t)

dt
= φÎ − μŜ(t) + γ

∫ ∞

0
Î (t − s)g(s)e−μs ds,

(6)
dÎ (t)

dt
= φÎ (t) − (μ + γ )Î (t).

The characteristic equation for (6) has the form

(λ + μ)(λ − φ + μ + γ ) = 0,

with the corresponding eigenvalues

λ1 = −μ; λ2 = φ − μ − γ. (7)

We define the basic reproduction number as

R0 = φ

μ + γ
.

The basic reproduction number identifies the number of secondary infections from the
infected source and plays a crucial role in understanding the development of epidemics.
From (7), it follows that when R0 < 1, the disease-free equilibrium E0 = (1,0) is the only
steady state of the model, and it is locally asymptotically stable.

When R0 > 1, there exists a non-trivial equilibrium Ẽ = (S̃, Ĩ ). In order to analyse
the stability of this equilibrium, we use a Lyapunov functional technique. Linearising
the system (5) without the last equation about Ẽ by setting S(t) = S̃ + p(t) and I (t) =
Ĩ + q(t) gives

dp(t)

dt
= (−φĨ − μ)p(t) − φS̃q(t) + γ

∫ ∞

0
q(t − s)g(s)e−μs ds,

(8)
dq(t)

dt
= φĨp(t),
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where S̃ = γ+μ

φ
. Introduce the following functional:

V = 1

2
q2(t) + w

2

(
p(t) + q(t)

)2 + wγ

∫ ∞

0
g(s)e−2μs

∫ t

t−s

q2(ν) dν ds,

where w is a real positive constant, and V (t) ≥ 0. Differentiating V along the solution of
system (8) and substituting q̇ and ṗ we arrive at

V̇ = φĨpq − wμp2 − w(μ + γ )pq + wγp

∫ ∞

0
q(t − s)g(s)e−μs ds

− wμpq − w(μ + γ )q2 + wqγ

∫ ∞

0
q(t − s)g(s)e−μs ds

+ wγq2
∫ ∞

0
g(s)e−2μs ds − wγ

∫ ∞

0
g(s)e−2μsq2(t − s) ds. (9)

Estimating the fourth and seventh terms using Cauchy–Schwarz and then Hölder inequal-
ities, one can rewrite (9) as

V̇ ≤ pq
[
φĨ − wμ − w(μ + γ )

] − wμp2 − w(γ + μ)q2 + wγ

2
q2 + wγ

2
p2

+ wγq2
∫ ∞

0
g(s)e−2μs ds

︸ ︷︷ ︸
≤1

.

Since Ĩ > 0, we can choose a positive constant w as w = φĨ/(2μ + γ ). Therefore, the
above inequality simplifies to

V̇ ≤ −
[
μ − γ

2

]
w

(
p2 + q2

)
.

As the expression in the right-hand side is negative-definite, provided μ > γ/2, we have
proved the following theorem.

Theorem 1. Whenever φ > μ + γ , the endemic equilibrium Ẽ = (S̃, Ĩ ) is feasible, and
provided μ > γ/2, it is locally asymptotically stable.

3.2. Global stability of the disease-free steady state

It has already been shown that when φ < μ + γ , the trivial equilibrium E0 of the system
(5) is locally stable. In fact, in this case, we have the following result.

Theorem 2. If φ < μ + γ , the disease-free equilibrium E0 = (1,0) is globally asymptot-
ically stable.

Proof: To prove global stability of the disease-free steady state, we first define N(t) =
S(t) + I (t) + R(t). Adding all three equations in (5) gives

dN

dt
= μ − μN(t),
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which implies limt→∞ N(t) = 1. Under the assumption φ < μ+ γ , we may choose ε > 0
sufficiently small, such that φ(1+ ε) < μ+γ . Since N(t) → 1 as t → ∞, for sufficiently
large t, we have S(t) + I (t) + R(t) = N(t) ≤ 1 + ε. Then the equation for I (t) becomes

dI

dt
≤ φI (t)

[
1 + ε − I (t) − R(t)

] − (μ + γ )I (t)

≤ φI (t)
[
1 + ε − I (t)

] − (μ + γ )I (t)

= I (t)
[
φ(1 + ε) − φI (t) − (μ + γ )

]
.

From a simple comparison argument and using the fact that φ(1 + ε) < μ + γ , it follows
that I (t) → 0 as t → ∞. From Eq. (3) for R(t), it follows that R(t) → 0 as t → ∞. Since
N(t) → 1, it follows that S(t) → 1 as t → ∞, which implies global asymptotic stability
of the trivial steady state. �

3.3. Global stability of endemic steady state

As we have already established, when φ > μ+ γ the disease-free steady state is unstable,
and there is a feasible endemic equilibrium Ẽ = (S̃, Ĩ , R̃), which according to Theorem 1
is locally asymptotically stable. To prove global stability of this steady state, we will
employ Lyapunov functional approach. Let us introduce new variables u1(t) = S(t) − S̃,
u2(t) = I (t) − Ĩ , u3(t) = R(t) − R̃. With this change of variables, system (5) can be
written in the form

du1

dt
= −μu1 − φSu2 − φu1Ĩ + γ

∫ ∞

0
u2(t − s)g(s)e−μs ds,

du2

dt
= φSu2 + φu1Ĩ − (μ + γ )u2, (10)

du3

dt
= γ u2 − γ

∫ ∞

0
u2(t − s)g(s)e−μs ds − μu3.

Global stability of the trivial equilibrium of system (10) implies global stability of an
endemic equilibrium Ẽ of the original system (5). Introduce the following functional:

V (u) = 1

2
w(u1 + u2)

2 + 1

2

(
u2

2 + u2
3

)
, (11)

where w is a positive constant to be determined later in the calculations. Differentiating
V (u) and using (10) gives

V̇ (u) = −μwu2
1 − (w + 1)(μ + γ )u2

2 − μu2
3 + φSu2

2

+ u1u2

[−(μ + γ )w − μw + φĨ
] + wu1γ

∫ ∞

0
u2(t − s)g(s)e−μs ds

+ wγu2

∫ ∞

0
u2(t − s)g(s)e−μs ds + γ u2u3

− γ u3

∫ ∞

0
u2(t − s)g(s)e−μs ds.



498 Blyuss and Kyrychko

It can be easily shown that for non-negative initial conditions S(0) = S0 > 0, I (s) =
I0(s) ≥ 0 for all s ∈ (−∞,0) with I (0) = I0 > 0 and R(0) = R0 > 0, one has S(t) ≤
max{1, S0 + I0 + R0} = M for all t > 0 (Kyrychko and Blyuss, 2005). Choosing w =
φĨ/(2μ + γ ) in the above equation leads to

V̇ ≤ −μwu2
1 − [

(w + 1)(μ + γ ) − φM
]
u2

2 − μu2
3

+ wu1γ

∫ ∞

0
u2(t − s)g(s)e−μs ds

+ wγu2

∫ ∞

0
u2(t − s)g(s)e−μs ds + γ u2u3

− γ u3

∫ ∞

0
u2(t − s)g(s)e−μs ds. (12)

The fourth term can be estimated with the help of Cauchy–Schwartz and Hölder inequal-
ities as follows:

wu1γ

∫ ∞

0
u2(t − s)g(s)e−μs ds ≤ wγ

2
u2

1 + wγ

2

∫ ∞

0
u2

2(t − s)g(s)e−2μs ds,

and similar estimates can be made for other uiuj , i 	= j terms in (12). This finally gives

V̇ (u) ≤ −w

(
μ − γ

2

)
u2

1 −
[(

μ + γ

2

)
(w + 1) − φM

]
u2

2

− (μ − γ )u2
3 + γ

(
w + 1

2

)∫ ∞

0
u2

2(t − s)g(s)e−2μs ds. (13)

Let now the Lyapunov functional for the system (10) be

U(u) = V (u) + γ

(
w + 1

2

)∫ ∞

0
g(s)e−2μs

∫ t

t−s

u2
2(ν) dν ds.

Differentiating U and using (13), we obtain

U̇ (u) = V̇ (u) + γ

(
w + 1

2

)
u2

2(t)

∫ ∞

0
g(s)e−2μs ds

− γ

(
w + 1

2

)∫ ∞

0
u2

2(t − s)g(s)e−2μs ds

≤ −w

(
μ − γ

2

)
u2

1 −
[(

μ + γ

2

)
(w + 1) − φM

]
u2

2 − (μ − γ )u2
3

+ γ

(
w + 1

2

)
u2

2(t)

∫ ∞

0
g(s)e−2μs ds

︸ ︷︷ ︸
≤1

.
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Finally, the Lyapunov functional can be estimated as follows:

U̇ (u) ≤ −w

(
μ − γ

2

)
u2

1 −
[
μ(w + 1) − wγ

2
− φM

]
u2

2 − (μ − γ )u2
3,

which is negative-definite if μ > γ and μ(w + 1) − wγ/2 − φM > 0. From the
Lyapunov–LaSalle type theorem (Theorem 2.5.3 of Kuang, 1993), it then follows that
limt→∞ uk(t)) = 0, k = 1,2,3. Thus, we have proved the following result.

Theorem 3. Let the initial conditions for system (5) be S(0) = S0 > 0, I (s) = I0(s) ≥ 0
for all s ∈ (−∞,0) with I (0) = I0 > 0 and R(0) = R0 > 0. If

μ > γ, φ > μ + γ, μ(w + 1) − wγ/2 − φM > 0,

where w = φĨ/(2μ + γ ) and M = max{1, S0 + I0 + R0}, then the endemic steady state
Ẽ of system (5) is globally asymptotically stable.

Since biologically reasonable initial conditions for the system (5) satisfy S0 + I0 +
R0 = 1, the conditions of Theorem 3 depend only on system parameters, and the Theo-
rem 3 then holds for all initial conditions.

4. Bifurcations and continuation

In this section, we perform numerical bifurcation analysis of an epidemic model (5). The
main purpose is to get an insight into how the dynamics of the system changes depending
on the system parameters, and in particular, on the length of the immunity period. We shall
proceed by finding bifurcation points of the endemic steady state in terms of time delay τ ,
and then continue the bifurcating solutions by changing either the transmission rate φ, the
death rate μ, or the recovery rate γ . Continuation analysis is an important part in the study
of epidemic models, where parameter values carry a lot of uncertainty due the fact that
some of them are difficult to obtain from experimental data, and some of them vary signif-
icantly in the population. Compared to straightforward numerical simulations, bifurcation
analysis provides a much more complete picture of the underlying dynamical behaviour
for a whole range of parameter values. A powerful continuation tool for delay differential
equations is a MATLAB based tool called DDE-BIFTOOL (Engelborghs et al., 2001).
It has been successfully used for detecting and analysing bifurcations in models of laser
dynamics (Krauskopf, 2005), car-following models (Orosz et al., 2005), neural networks
of coupled cells (Bungay and Campbell, 2007), and many other applications. Currently,
DDE-BIFTOOL does not have capabilities for studying systems with distributed delay, so
we will use traceDDE package (Breda et al., 2006) instead.

4.1. Fixed immunity period

First of all, we consider the case when the integral kernel is the Dirac δ-function
g(s) = δ(s − τ), which corresponds to a fixed period of temporary immunity τ . Two
particular choices of the transmission function f (I) have been analysed, a linear trans-
mission rate f (I) = I and a saturated transmission rate in the form f (I) = I/(1 + I ).
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Fig. 1 (a) Boundary of Hopf bifurcation of the endemic steady state in terms of τ , γ and μ.
(b) Two-parameter continuation of Hopf boundary for different values of natural death rate μ. In both
pictures, φ = 10.

The results of numerical bifurcation analysis are qualitatively similar for both of these
functions, hence we only present here the computations for f (I) = I to complement the
analytical results from earlier sections. In all computations, the time delay τ plays a role
of the main bifurcation parameter. After finding an endemic steady state, we then detect
its bifurcations depending on the values of τ and other system parameters.

Figure 1 shows the boundary of Hopf bifurcation of the endemic steady state Ẽ in
the space of parameters. To find this Hopf boundary, we fix the natural death rate μ and
perform a two-parameter continuation in terms of a temporary immunity time delay τ and
a recovery rate γ . It is noteworthy that the smaller the death rate μ, the larger is the region
covered by Hopf boundary in γ –τ plane. Furthermore, for each fixed γ , the periodic orbit
corresponding to the smaller value of τ is stable, while its counterpart for the larger value
of τ is unstable. Below the Hopf boundary, the endemic steady state Ẽ is stable.

Next, we take as a starting point a periodic orbit of very small amplitude close to the
Hopf boundary, and continue this orbit in time delay τ . The results of this continuation are
shown in Fig. 2(a). They indicate that for sufficiently small τ , the corresponding periodic
orbit is stable (solid lines), but then it goes through a fold, and for sufficiently high values
of the time delay τ there is narrow region of a co-existence of stable and unstable peri-
odic orbits (dashed lines). The corresponding plot of the periods of those periodic orbits
depending on the time delay is shown in Fig. 2(b). This figure indicates that the period
increases with the time delay, and decreases with the increase of transmission rate φ. One
can explain this observation by the fact that for a higher transmission rate φ, it takes a
shorter period of time for individuals to go through a disease cycle and return to the class
of susceptibles, hence reducing the duration of a periodic cycle.

The temporary profiles of periodic solutions for different time delays are shown in
Fig. 3, where all three cases represent stable periodic orbits. For τ just above the boundary
of Hopf bifurcation, the solution shows little variation in either of the variables, but it
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Fig. 2 (a) Amplitude of periodic solutions as a function of time delay τ . Solid lines denote stable periodic
orbits, dashed lines denote unstable periodic orbits. (b) Period T of the periodic orbits depending on time
delay. Parameter values are μ = 0.15 and γ = 5.

becomes more pronounced for higher τ . As is natural to expect, the peak of infectives
slightly lags behind the peak of susceptibles, and one can also note a certain asymmetry
in the profile of the solutions.

4.2. Gamma distribution

A more realistic representation of temporary immunity is achieved when the integral
kernel is given by some non-trivial function g(s). One possible choice is the so-called
Gamma distribution delay kernel (Ruan, 2006)

g(s) = αnsn−1e−αs

(n − 1)! , n = 1,2, . . . ,

where α > 0 is a constant. In this case, one can introduce an average delay as

τ̄ =
∫ ∞

0
sg(s) ds = n/α.

For simulations, we concentrate on two particular cases: n = 1 and n = 2, which cor-
respond to a weak delay kernel and a strong delay kernel, respectively. In the case of
weak kernel gw(s) = αe−αs , the maximum influx of recovered individuals into the class
of susceptibles comes from individuals who are currently recovering, while past recover-
ies have exponentially decreasing contributions. On the other hand, for the strong kernel
gs(s) = α2se−αs , the maximum influx of recovered into susceptibles at any time t comes
from those who recovered at t − τ̄ , where τ̄ is the average immunity period.

For numerical bifurcation analysis of system (5) with weak and strong kernels, we use
a Matlab package traceDDE, which is based on pseudo-spectral differentiation and allows
one to find characteristic roots and stability charts for linear autonomous systems of delay
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Fig. 3 Profiles of periodic solutions for μ = 0.15, γ = 5 and φ = 15. The duration of temporary immunity
period is (a) τ = 1.1739, (b) τ = 2.3431, and (c) τ = 2.9367. Solid line denotes S(t), dashed line is I (t),
and dash-dotted line is R(t).

differential equations (Breda et al., 2006). In all simulations, we replaced the upper limit
of the integral by a large positive constant L, such that e−μL 
 1.

Figure 4 depicts the boundary of Hopf bifurcation for weak kernel in the space of
average time delay τ̄ , recovery rate γ, and natural mortality μ. Endemic state is stable
below the boundary and unstable above it. While the dependence on μ is weak, there is
a noticeable variation in the critical τ̄ as a function of γ : the higher is the recovery rate
γ , the higher is the average immunity period τ̄ , at which the endemic steady state loses
stability. We note that unlike the case of a Dirac δ-function kernel, the dependence of τ̄

on γ at the Hopf boundary is monotonic.
In Fig. 5, we show Hopf boundary in the case of a strong kernel gs(s). This figure bears

some similarity to Fig. 1 due to the fact that, as we have already mentioned, the largest
contribution in the strong kernel comes from the individuals who recovered time τ̄ ago,
which is reminiscent of a δ-function kernel g(s) = δ(s − τ). The endemic steady state is
stable outside the boundary and unstable inside. It is noteworthy that as the natural mor-
tality μ increases, the instability region shrinks, and instability occurs for higher values
of recovery rate γ .

5. Conclusions

In this paper, we have derived a delay differential equations model for the dynamics of
infectious diseases with varying temporary immunity. This model allows temporary im-
munity to wane with time, and is, therefore, a more realistic analogue of previous models
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Fig. 4 (a) Boundary of the Hopf bifurcation of the endemic steady state with a weak kernel
gw(s) = αe−αs in terms of τ̄ , γ and μ. The average immunity time is τ̄ = 1/α. (b) Two-parameter con-
tinuation of Hopf boundary for different values of μ. In both pictures, φ = 10.

Fig. 5 (a) Boundary of the Hopf bifurcation of the endemic steady state with a strong kernel
gs(s) = α2se−αs in terms of τ̄ , γ and μ. The average immunity time is τ̄ = 2/α. (b) Two-parameter
continuation of Hopf boundary for different values of μ. In both pictures, φ = 10.

which assumed fixed duration of immunity period. If transmission coefficient is not too
high, the model admits a single disease-free equilibrium, which is globally asymptotically
stable. For higher values of a disease transmission coefficient, there is a feasible endemic
equilibrium, whose local and global stability has been proven for certain parameter values
using a Lyapunov functional approach.

In order to obtain a better insight into the dynamics of the system in different parameter
regimes, we have performed numerical bifurcation analysis for several particular choices
of the integral kernel, including fixed temporary immunity, weak and strong kernels. The
results of these simulations suggest that endemic equilibrium may lose its stability via a
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supercritical Hopf bifurcation, thus giving rise to stable periodic solutions. Biologically
means that when the temporary immunity period is within a certain range, there will be
periodic outbreaks of epidemic, and the disease will not be eradicated from the population.
In the case of delay kernel being a Dirac δ-function, as the duration of temporary immu-
nity τ increases, these periodic solutions lose stability at a fold bifurcation. The period of
periodic orbits increases monotonically with τ and decreases with the increasing disease
transmission coefficient. For a weak kernel, the average time delay corresponding to the
Hopf boundary increases monotonically with the recovery rate γ . The case of strong ker-
nel is somewhat similar to the case of Dirac δ-function in that the endemic steady state is
unstable for a range of average immunity periods, and the parameter region of instability
shrinks with the increase of mortality rate μ.

The model developed in this paper relates to some earlier work on modelling diseases
with temporary immunity. For example, Cooke and van den Driessche have considered
a model with constant temporary immunity and latency (Cooke and van den Driessche,
1996). They have shown that similarly to our model, it is possible to have periodic solu-
tions for some parameter ranges. It is noteworthy that these periodic solution occur due
to the time delay representing temporary immunity, but there is no such effect achieved
by considering time delay in latency alone. In comparison, Gomes et al. have analysed
several ODE models with temporary and partial immunity, as well as vaccination, where
immunity wanes at a constant rate (Gomes et al., 2004). They have shown that when a ba-
sic reproduction number exceeds unity, the solutions either decay linearly to an endemic
steady state, or approach it in an oscillatory manner. In their findings, immunity waning
rate plays an important role in the time scale for oscillatory behaviour. While our model
also highlights the importance of temporary immunity, in contrast to the above model
it is also able to sustain periodic solutions describing regular epidemic outbreaks. The
main feature is that temporary immunity leads to a possible destabilization of endemic
steady state, and an interesting open question is what effects would vaccination have on
the dynamics of an epidemic in such situation.
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