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Real-time dynamic substructuring is a powerful testing method, which brings together
analytical, numerical and experimental tools for the study of complex structures. It
consists of replacing one part of the structure with a numerical model, which is connected
to the remainder of the physical structure (the substructure) by a transfer system. In
order to provide reliable results, this hybrid system must remain stable during the whole
test. A primary mechanism for destabilization of these type of systems is the delays
which are naturally present in the transfer system. In this paper, we apply the dynamic
substructuring technique to a nonlinear system consisting of a pendulum attached to a
mechanical oscillator. The oscillator is modelled numerically and the transfer system is
an actuator. The system dynamics is governed by two coupled second-order neutral
delay differential equations. We carry out local and global stability analyses of the
system and identify the delay dependent stability boundaries for this type of system. We
then perform a series of hybrid experimental tests for a pendulum–oscillator system. The
results give excellent qualitative and quantitative agreement when compared to the
analytical stability results.

Keywords: stability analysis; real-time testing; neutral delay equation;
Hopf bifurcation; hybrid simulation
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1. Introduction

There are several methods for predicting the dynamic response of structures to
external forces. For simple linear systems, analytical methods can usually be
applied. More often, for large, complex and/or nonlinear systems some type of
numerical method will be required. In both cases, the approach is one where a
mathematical model is used to approximate the behaviour of a physical system.
For complex systems, mathematical models may contain significant uncertainty
and it may be more appropriate to build prototype systems and to perform tests
in the laboratory (Williams & Blakeborough 2001). In cases when the complex
system is very large—many civil and aerospace engineering structures fall into
this category—such an approach may be impractical and quite often
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prohibitively expensive. In these cases, it is desirable to use testing techniques
which can include the benefits of both theoretical and experimental methods.

One such approach is real-time dynamic substructuring (for recent literature
see, for instance, Blakeborough et al. 2001; Horiuchi & Konno 2001; Nakashima
2001; Bonelli & Bursi 2004; Pinto et al. 2004; Wallace et al. 2005a). This method
consists of combining numerical and physical substructures using a set of transfer
systems—usually a set of actuators. Delay naturally arises in this type of test
system because of the non-instantaneous nature of the transfer system. In fact,
there can be a number of different delays from several different sources, such as
data acquisition, computation, digital signal processing and the actuator itself,
which all contribute to produce an overall delay. Despite this seeming
complexity, modelling the overall delay as a single fixed quantity, t, has been
shown to give very good agreement when compared to hybrid test results
(Horiuchi et al. 1999; Darby et al. 2001, 2002; Wallace et al. 2005a). This is due
to the fact that the overall delay is nearly always dominated by the actuator
delay component, which for a small range of frequencies remains at a similar
value. When significant variations in frequency exist, adaptive techniques can be
used to maintain system stability (e.g. Wallace et al. 2005b).

The assumption of a fixed delay allows the system to be modelled using delay
differential equations (DDEs). These could be partial or ordinary, depending on
the complexity of the system. DDEs depend not only on the current state of the
system, but also on the history of the system over some previous time interval
(the delay). Hence, the initial state space and the solution space of the delayed
dynamical system are infinite dimensional. The theory of these type of equations
lies in the area of functional differential equations (a detailed discussed is given
by Wu (1996)). Some methods and results with applications to engineering
problems can be found in Xu & Chung (2003) (see also Stépan (1989); Kuang
(1993); Diekmann et al. (1995), and references therein).

The application of DDE modelling techniques to substructuring has been
considered by Wallace et al. (2005a,b), who considered modelling linear mass–
spring–damper (MSD) systems. For these system, the authors demonstrated the
dependence of the stability of the system on delay and linked their work with
previous energy analysis approaches to this problem (e.g. Horiuchi et al. 1999).

In this paper, we consider an example of a system which consists of a
pendulum coupled to a mechanical oscillator or MSD. The MSD is linear, and
therefore taken to be the numerical model while the pendulum, the physical
substructure, was constructed in the laboratory. This oscillator–pendulum
system has been studied by Gonzalez-Buelga et al. (submitted), who showed that
the autoparametric resonance behaviour, known to occur in this type of system,
can be modelled using a hybrid numerical–experimental simulation. The
equations of motion governing the motion of the oscillator–pendulum system
have the added complexity that they are neutral DDEs, unlike those studied by
Wallace et al. (2005a,b).

The specific focus of this paper is to provide a rigorous mathematical
treatment of linear stability of the pendulum–oscillator system, when modelled
as a hybrid system with a fixed delay. In particular, we are interested in the
stability boundaries at which a hybrid test loses stability via a Hopf bifurcation.
We obtain the analytical expressions for stability boundary as a function of
parameters of the system. These analytical expressions are then verified by
Proc. R. Soc. A (2006)



1273Coupled oscillator–pendulum system
comparison with a series of hybrid experimental tests, where the delay is
artificially increased until the stability boundary is located. The results show
excellent qualitative and quantitative agreement between analytical predictions
and experimental data.

Further to this, using the results from the stability analysis, we demonstrate
how for a particular value of mass ratio, critical delay values and instability
frequencies can be predicted using the DDE model. The ability to predict these
quantities for a particular hybrid testing configuration is significant from a
practical point of view. The critical delay values give information on when a test
will be destabilized and can be used to design an appropriate delay compensation
scheme (e.g. Wallace et al. 2005a). More fundamentally, for systems of limited
actuator capacity, critical delay values can be used to determine the viability of a
hybrid test. Some of the possible applications which are directly relevant to the
coupled pendulum–MSD systems include the modelling of human leg motion
(e.g. Lafortune & Lake 1995; Coveney et al. 2001) and cable-stay bridge
vibration Gatulli et al. (2005).

The paper is organized as follows: in §2, we introduce a system of DDEs
describing the coupled pendulum–MSD system. Section 3 is devoted to the
stability analysis of the neutral DDE. In §4, stability of periodic solutions is
investigated by means of multiple scale analysis for the case of near resonant soft
excitation. Section 5 contains numerical simulations, which confirm our
analytical findings. The linearized stability analysis of the coupled nonlinear
system of DDEs is presented in §6. Section 7 contains a comparison between
experimental and analytical results. In §8, the effects of viscous damping are
studied. The paper concludes with a summary of results in §9.
2. The equations of motion

We consider a mechanical system which consists of a mass Mmounted on a linear
spring, to which a pendulum of mass m is attached via a hinged massless rod of
length [. The angular deflection of the pendulum from the downward position is
denoted by q. We assume linear viscous damping C acting on the mass M. The
system is shown schematically in figure 1a. The equations of motion for this
system are

M €yðtÞCC _yðtÞCKyðtÞZFextKm€yKm[ ½€q sin qC _q
2
cos q�;

m[ 2€qðtÞCk _qðtÞCmg[ sin qðtÞCm[ €y sin qðtÞZ 0;

)
ð2:1Þ

where
Fext Z k cosðUtÞ

is the external excitation force applied in the y-direction, C and K are the
damping and stiffness coefficients, respectively, and a dot indicates the derivative
with respect to time t. We will refer to y(t), _yðtÞ and €yðtÞ as the position, velocity
and acceleration of the MSD at time t. There are three important frequencies
associated with this system: the natural frequency of the pendulum u0,
where u2

0Zg=[ , the natural frequency of the mass–spring–damper u1, where
u2
1ZK=ðMCmÞ and the frequency U of the external excitation force. The

situation where the natural frequencies of the MSD and the pendulum are in 2 : 1
Proc. R. Soc. A (2006)
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Figure 1. (a) Full coupled pendulum–MSD system. (b) Real-time dynamic substructuring system
showing numerical model, transfer system and physical substructure.
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resonance has been widely studied in the literature (see Tondl et al. (2000) and
references therein).

Since the transfer system produces an unavoidable delay in the system, the
feedback force will be delayed. The time delay is denoted by t and it is assumed
to be constant and non-negative. To account for the delay in the displacement
signal, the force in the system (2.1) has to be described by the delayed state of
the numerical model of the MSD. Therefore, in the right-hand side of the first
equation in (2.1) we replace y(t) and q(t) by their delayed counterparts: y(tKt)
and q(tKt), respectively. The same has to be done for all terms in the second
equation of the system (2.1). By inserting these expressions in system (2.1), we
obtain the following:

M €yðtÞCC _yðtÞCKyðtÞCm€yðtKtÞ

Cm[ ½€qðtKtÞsin qðtKtÞC _q
2ðtKtÞcos qðtKtÞ�Z k cosðUtÞ;

m[ 2€qðtKtÞCk _qðtKtÞCmg[ sin qðtKtÞCm[ €yðtKtÞsin qðtKtÞZ 0:

9>>>=
>>>;
ð2:2Þ

A key objective of hybrid testing is to get (2.2), the equations of the hybrid
system, to replicate the dynamics of (2.1) as closely as possible. This gives rise to
two interlinked issues: stability and accuracy. The issue of accuracy is still an
open problem. For recent discussions and attempts to quantify accuracy see
Mosqueda (2003) and Wallace et al. (2005b) (and references therein). In this
paper, we will concentrate our attention on the stability of equation (2.2). In
particular, we will be looking at the stability of the so-called trivial solution in
which the MSD moves (so y(t)s0 in general) but the pendulum does not oscillate
(so q(t)Z0 in general).
3. Stability analysis of the neutral DDE

First, we consider the case when the angle q is small (q/1). In this case, the
system (2.2) decouples and we concentrate on the first equation, which describes
Proc. R. Soc. A (2006)



1275Coupled oscillator–pendulum system
the vertical motion of the pendulum–MSD system. In the absence of external
forcing (kZ0), linearization of this equation around the trivial solution leads to
the equation

M €yðtÞCC _yðtÞCKyðtÞCm€yðtKtÞZ 0: ð3:1Þ
Since the delayed system depends on the acceleration of the state variable,
equation (3.1) is of a neutral type. We introduce the following non-dimensional
variables:

t̂ Zu2t; t̂Zu2t; u2 Z

ffiffiffiffiffiffi
K

M

r
; pZ

m

M
; zZ

C

2
ffiffiffiffiffiffiffiffiffi
MK

p :

Under this rescaling and dropping the hats, equation (3.1) becomes

€z C2z _zCzCp€zðtKtÞZ 0; ð3:2Þ

where dot means differentiation with respect to t. This equation has one trivial
steady state zZ _zZ0. The corresponding characteristic equation is

l2 C2zlC1Cpl2 eKlt Z 0: ð3:3Þ

When tZ0, one obtains lZðKzG
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2K1Kp

p
Þ=ð1CpÞ, so the steady state zZ0

is locally asymptotically stable. In the case jpjO1, this steady state is always
unstable for any positive delay t. (This already provides us with an important
consideration when constructing the hybrid system, namely that for stability we
must always have MOm.) Therefore, we assume jpj!1 in all our further analysis.
The purely imaginary eigenvalues occur when lZGi6 for 6s0, so from (3.3),

K62 C2iz6C1Kp62 eKi6t Z 0:

Separating into the real and imaginary parts, we arrive at the following:

K62 C1Kp62 cosð6tÞZ 0; 2z6Cp62 sinð6tÞZ 0: ð3:4Þ

Upon squaring and adding these equations, we obtain

ð1Kp2Þ64 Cð4z2K2Þ62C1Z 0:

Solving for 6 gives

6 2
GZ

1

ð1Kp2Þ ð1K2z2ÞG
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1K2z2Þ2Kð1Kp2Þ

q� �
: ð3:5Þ

We observe that there can be either zero, one (repeated) or two real positive
roots, depending on the values of p and z. This relation provides us with the
explicit expressions for the stability boundaries, i.e. a family of solutions for the
delay time t has the form

tZ
1

6G

Arctan
2z6G

62
GK1

Gpn

" #
; ð3:6Þ

where nZ0, 1, 2,. and Arctan corresponds to the principal value of arctan.

Lemma 3.1. The solution zZ _zZ0 of the system (3.2) is locally asymptotically
stable for zO1=

ffiffiffi
2

p
and jpj!1 independent of the delay time tO0.
Proc. R. Soc. A (2006)
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The proof of this lemma immediately follows from the expression (3.5) for 6G.
In terms of the original parameters, the conditions of lemma 3.1 state that
C 2O2MK, MOm. Therefore, if the damping coefficient, C, is high enough,
unconditional stability is guaranteed.

Next, consider the case z!1=
ffiffiffi
2

p
, which is depicted in figure 2. The shaded

area shows the stability region. There is a value of p, defined below, for which the
system is stable for all t. However, above this p-value, the stability of the trivial
steady state strongly depends on the value of the delay t. As t increases from
zero, the steady state undergoes a Hopf bifurcation, as a pair of complex
conjugate roots of the characteristic equation crosses the imaginary axis. Under
certain non-degeneracy conditions, this implies the birth of periodic solutions.
We summarize our findings in lemma 3.2.

Lemma 3.2. Assume z!1=
ffiffiffi
2

p
. The trivial solution of system (3.2) is locally

asymptotically stable in the region

p!2z
ffiffiffiffiffiffiffiffiffiffiffiffi
1Kz2

p
; ð3:7Þ

for all positive delay times t. In the region

2z
ffiffiffiffiffiffiffiffiffiffiffiffi
1Kz2

p
%p!1;

the trivial solution is locally asymptotically stable for values of delay satisfying

0!t!
1

6C

2pKArccos
1K62

C

p62
C

" #
;

1

6K

2pnKArccos
1K62

K

p62
K

" #
!t!

1

6C

ð2nC2ÞpKArccos
1K62

C

p62
C

" #
;

where nZ1, 2,..
Proc. R. Soc. A (2006)



1277Coupled oscillator–pendulum system
Proof. First, we note that when the condition (3.7) holds, the square rootffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1K2z2Þ2Kð1Kp2Þ

q
;

in the definition of 62
G (3.5) is purely imaginary. Thus, the eigenvalues of the

linearization matrix never cross the imaginary axis, and consequently, the trivial
steady state is stable for all delay times tR0 in this region.

Next, we consider the situation when 2z
ffiffiffiffiffiffiffiffiffiffiffiffi
1Kz2

p
%p!1. In this case, the

characteristic polynomial (3.3) has two imaginary solutions lGZi6G with
6CO6KO0 defined in (3.5). In order to determine stability as t varies, we need
to find the sign of the derivative of Re(l) at the points where l(t) is purely
imaginary. The technique we shall use has been widely applied to various
characteristic equations (e.g. Kuang 1993). Considering the function lZl(t) in
equation (3.3) and differentiating this equation with respect to t, one obtains

½2lC2zCplð2KltÞeKlt� dl
dt

Z pl3 eKlt:

From the last expression it follows that

dl

dt

� �K1

Z 2
ðlCzÞeKltCpl

pl3
K

t

l
;

and from (3.3) we have

elt ZK
pl2

l2C2zlC1
:

Hence,

sgn
dðRe lÞ

dt

� �
lZi6

Z sgn Re
dl

dt

� �K1� �
lZi6

Z sgnf2z2K1C62ð1Kp2Þg:

Substituting 62
G into the last expression, it is clear that the sign is positive for 62

C

and negative for 62
K. This means that as t increases and takes a value

corresponding to 6C, l crosses from the left to the right-hand half of the complex
plane. This implies the loss of stability of the trivial solution. Similarly, for t
corresponding to 6K, the crossing is from right to left, and stability is regained.
The whole process is graphically illustrated in figure 2. The proof of lemma is
complete. &

From lemma 3.2, it follows that as t increases, the trivial equilibrium
undergoes successive changes in its stability. However, it is worth noting that for
fixed parameter values there are only a finite number of stability switches, and
eventually this equilibrium becomes unstable. We can now find the number of
these stability switches and the maximal delay beyond which the stability will
never be recovered. The problem of constructing sequences of stability switches
was addressed for first-order neutral equations by Wei & Ruan (2002).

Let us introduce a sequence

fpj : pjOpjC1; p0 Z 1; j Z 1;.g;

where pn, nZ1,., solve the equation

tKðnÞZ tCðnC1Þ: ð3:8Þ
Proc. R. Soc. A (2006)
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Here, we have used the notation

tCðnÞZ
1

6C

2pnKArccos
2z6C

62
CK1

� �
; tKðnÞZ

1

6K

2pnKArccos
2z6K

62
KK1

� �
:

Theorem 3.3. If p1%p!1, there is one stability switch at tC(0). The trivial
equilibrium is stable for 0%t%(0) and unstable for tOtC(0). If pkC1%p!pk for
kZ1,., then there are exactly (2kC1) stability switches, and the trivial
equilibrium is stable for

ð0; tCð0ÞÞgðtKð1Þ; tCð1ÞÞg/gðtKðkÞ; tCðkÞÞ

and unstable for

ðtCð0Þ; tKð1ÞÞgðtCð1Þ; tKð2ÞÞg/gðtCðkÞ;NÞ:

For a given value of p, theorem 3.3 gives the regions of linear stability in
terms of delay time t. Unless p is smaller than the lower stability boundary

pcZ2z
ffiffiffiffiffiffiffiffiffiffiffiffi
1Kz2

p
, there always exists a sufficiently large delay t after which the

system will be unstable. The stable boundaries of the origin can be located by the
branches tC and tK which satisfy tC(n)OtK(n) for nZ1, 2,.. For example,
when t crosses tK(1), the unstable origin becomes stable. When t is increased
further to cross tC(1), the stability is lost again as a pair of eigenvalues cross the
imaginary axis into the right half plane. Similarly, other stability regions can be
found for tK(n)!t!tC(n). Each time we cross the stability boundary into an
unstable region, the delayed action of the pendulum on the MSD leads to a
destabilization of numerical model.

In the points (p, t)Z(pn, tn), the system undergoes a codimension-two Hopf
bifurcation. There is a pair of complex conjugate eigenvalues crossing the
imaginary axis from left to right, and there is another pair crossing from right
to left. Therefore, at the above points, the system has two frequencies simul-
taneously present. The first three (pn, tn) points are indicated in figure 2. Possible
resonances in this case were studied by Campbell (1997).
4. Hopf bifurcation

In this section, the Hopf bifurcation will be investigated. Linearizing equation

(2.2) with ks0, and rescaling using k̂Zk=K and ÛZU=u2, we obtain, after
dropping the hats:

€z C2z _zCzCp€zðtKtÞZ k cos Ut; ð4:1Þ

which is simply equation (3.2) with the forcing included. In order to study the
criticality of the bifurcation, we will use a multiple scales method. Taking a delay
time tZtcC3t1, where tc is the critical delay time, we let TZ3t be the new time
scale and rescale equation (4.1) with z/

ffiffi
3

p
z, k/33=2k. Physically this implies

that the excitation is soft and a resonant case will be considered. In particular,
we set UZ6GC3s, where sZOð1Þ is a detuning parameter. Before embarking
on series expansion analysis, it is worth noting that since we are crossing the
Proc. R. Soc. A (2006)
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stability boundary, the following relation holds:

pZ
1

62
G

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð62

GK1Þ2C4z262
G

q
:

Looking for solutions of equation (4.1) in the form

zðtÞZ z0ðt;TÞC3z1ðt;TÞC/;

we obtain at order Oð1Þ;
v2

vt2
z0 C2z

v

vt
z0 Cz0 CpU

v2

vt2
z0ðtKtc;TÞZ 0;

where pUZ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðU2K1Þ2C4z2U2

q
=U2. The solution of this equation is

z0ðt;TÞZAðTÞeiUt CA�ðTÞeKiUt; ð4:2Þ
where A(T ) is an as yet undetermined amplitude of oscillation. At order Oð31Þ
we have

v2

vt2
z1C2z

v

vt
z1Cz1 CpU

v2

vt2
z1ðtKtc;TÞ

ZK2
v

vt

v

vT
z0K2z

v

vT
z0K2pU

v

vt

v

vT
z0ðtKtc;TÞ

KpUt1
v3

vt3
z0ðtKtc;TÞCsp̂U

v2

vt2
z0ðtKtc;TÞCk cos Ut; ð4:3Þ

with p̂UZ2ðU2K1K4z2Þ=ðU3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðU2K1Þ2C4z2

q
Þ. Substituting z0 from (4.2) in the

last expression and using complex notation, gives

v2

vt2
z1 C2z

v

vt
z1 Cz1CpU

v2

vt2
z1ðtKtc;TÞ

Z K2iUATK2zATK2ipUU eKiUtcATC it1pUU
3AKsp̂UU

2AC
k

2

� �
eiUt Cc:c;

where ATZvA=vT and c.c. denotes the complex conjugate. To avoid secular
terms, we set the bracket on the right-hand side equal to zero. This gives us an
equation for the amplitude A in the form

K2ATðiUCzC ipUU eKiUtcÞZ ðsp̂UK ipUt1UÞU2AK
k

2
: ð4:4Þ

This equation can be transformed into

AT Z
1

2

t1pUU
2Csp̂UU

2z

z2 C1=U2
C i

sp̂UUKpUt1zU
3

z2C1=U2

� �
AK

k

4

zC i=U

z2 C1=U2
:

Writing AZuCiv and separating real and imaginary parts, we obtain the
following linear system of differential equations:

uT ZauKbvCc1;

vT ZbuCavCc2;

)
ð4:5Þ
Proc. R. Soc. A (2006)
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where we have introduced the notation

aZ
1

2
U2 t1pUCsp̂Uz

z2 C1=U2
; bZ

1

2
U
sp̂UKpUt1zU

2

z2 C1=U2
;

c1 ZK
k

4

z

z2 C1=U2
; c2 ZK

k

4

1

Uðz2 C1=U2Þ
:

System (4.5) can be solved to yield

uðTÞZ 1

2

sp̂Uk

U2 s2p̂2UCp2UU
2t21

� 	CC1 e
aT cos bT CC2 e

aT sin bT ;

vðTÞZ 1

2

pUkt1
U s2p̂2UCp2UU

2t21
� 	KC2 e

aT cos bT CC1 e
aT sin bT :

ð4:6Þ

Thus, one can observe that the amplitude AT of the bifurcating periodic solution
is proportional to the amplitude k of the forcing, and is also modulated on a
longer time scale as shown by the above expressions. If kZ0 (and consequently
sZ0), then depending on the sign of t1, the u(T ) and v(T ) exponentially tend to
either 0 or GN, thus indicating that the periodic solution is unstable. However,
if ks0, then there is a periodic solution

zðtÞZ sp̂Uk

U2ðs2p̂2UCp2UU
2t21Þ

cosðUtCq0ÞCOð3Þ;

which is stable if

t1pUCsp̂Uz!0 ð4:7Þ
and unstable otherwise.
5. Numerical simulations

In this section, we perform a numerical simulation of the system (4.1). The
equation was discretized using an explicit finite difference scheme. The damping
term was approximated by central differences to improve numerical stability.

For all simulations, we set pZ0.2. In terms of the original parameters of the
system this means that the mass of the pendulum is five times smaller than the
mass of the MSD. At the same time, the scaled damping coefficient z is taken to

be zZ0.05. It readily follows that pO2z
ffiffiffiffiffiffiffiffiffiffiffiffi
1Kz2

p
, and one can expect a succession

of stability switches for increasing values of t.
The numerical timestep for the simulations is kept at DtZ0.01. To illustrate

the behaviour of solutions in stable and unstable regions, as discussed in §3, we
will move along the t-axis and observe changes which occur as the stability
boundaries are crossed.

We begin our numerical analysis by considering first the case when there is no
external force, i.e. kZ0 in equation (4.1). In this situation, results from §3
indicate that the trivial steady state undergoes stability switches. Figure 3 shows
temporal dynamics of the non-dimensionalized displacement z(t) governed by
equation (3.2) for several values of time delay t. As t is increased from zero
Proc. R. Soc. A (2006)
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Figure 3. Temporal dynamics of z(t) of system (3.2) for (a) tZ1, (b) tZ5, (c) tZ7.5 and (d ) tZ11.
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(tZ1), the solution remains asymptotically stable and quickly decays to the
trivial steady state (figure 3a). Since oscillatory decay is observed, this indicates
that the eigenvalues of characteristic equation have non-zero imaginary part.
Figure 3b shows the situation when the first switch from stability to instability
has occurred (tZ5). The characteristic eigenvalues have crossed the imaginary
axis, and hence the trivial state has become unstable. Stability is regained in
figure 3c for tZ7.5. It can be observed in this picture that there exist different
frequencies of oscillations. When t is larger still, stability is lost again (figure 3d,
tZ11).

As the system recovers its stability as shown in figure 4a, one can clearly see the
appearance of beats. Even though the eigenvalues of the characteristic equation still
have negative real part (as can be seen in the way the oscillations decay), it now
takes a much longer time for the system to eventually settle onto the trivial
equilibrium. Figure 4b and figure 4c bear a close resemblance to earlier pictures
illustrating the dynamics of the substructure in the unstable regime. Figure 4c
indicates the beats increase in their amplitude while the decay slows down.

It is interesting to see the behaviour when the curves in figure 2 cross each other.
These points correspond to the case when relation (3.8) holds. For zZ0.05, the first
point p1 can be found at (p1, t1)z(0.44537, 7.1859). As expected, the system
undergoes a codimension-two Hopf bifurcation and exhibits quasi-periodic
oscillations as shown in figure 5a. Finally, figure 5b shows the dependence of the
Hopf frequency on the delay time t. At the points of discontinuity, there are two
frequencies of oscillations.
Proc. R. Soc. A (2006)
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Next, the case when the external force is present (ks0) will be studied. In
figure 6, we show the solution z(t) together with its Fourier spectrum for delay
time tZ1.55, amplitude of perturbation kZ0.01, pZ0.75166. For this value of p,
the stability switch occurs at tcz1.604 with the corresponding frequency 6CZ2.
We have taken perturbation frequency UZ2.1 to be close to this frequency in
order to study possible resonance. For the above-mentioned parameter values,
Proc. R. Soc. A (2006)
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condition (4.7) holds. One can observe that after some transient period, the
solution settles onto a stable limit cycle. The Fourier spectrum shown in figure 6
clearly possesses a sharp peak indicating periodic behaviour of the solution. The
numerical value of the corresponding oscillation frequency, as found from the
Fourier spectrum is uz2.05. This value lies within 3% of the perturbation
frequency UZ2.1.

In the previous case, the value of the time delay was chosen to lie inside the
region of asymptotic stability. In order to illustrate the unstable behaviour of the
periodic orbit, we take the delay time tZ1.608 just outside the stability
boundary. For this delay time, condition (4.7) is violated, and the periodic
solution, even though it exists, is unstable. The other parameter values are as
in figure 6. The temporal dynamics of the solution z(t) is plotted in figure 7
together with the Fourier spectrum. From both pictures one can observe that the
periodic solution is modulated on a longer time scale. The Fourier spectrum now
contains both the oscillation frequency and a much smaller frequency of the
modulation.
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6. Stability analysis of the full system

Now, we return to system (2.2), and rewrite it (without loss of generality) by
omitting the delay in the second equation and setting FextZ0 to obtain

M €yðtÞCC _yðtÞCKyðtÞCm€yðtKtÞ

Cm[ ½€qðtKtÞsin qðtKtÞC _q
2ðtKtÞcos qðtKtÞ�Z 0;

m[ 2€qðtÞCk _qðtÞCmg[ sin qðtÞCm[ €yðtÞsin qðtÞZ 0:

ð6:1Þ

It is more convenient to rewrite these equations as a first-order system. In order
to do so, we introduce the new variables

x Z ðx1; x2; x3; x4ÞT Z ðy; q; _y; _qÞT:
With these variables, system (6.1) becomes

_x1 Z x3;

_x2 Z x4;

_x3 ZK
1

M

�
Cx3CKx1 Cm _x3ðtKtÞCm[ ½ _x4ðtKtÞsin x2ðtKtÞ

Cx24ðtKtÞcos x2ðtKtÞ�
�
;

_x4 ZK
k

m[ 2
x4 C

1

[M
sin x2½Cx3KMgCKx1 C _x3ðtKtÞ�

C
m

M
sin x2 _x4ðtKtÞsin x2ðtKtÞCx24ðtKtÞcos x2ðtKtÞ


 �
:

9>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>;

ð6:2Þ

The equilibria for this system are xZð0; 0; 0; 0Þ and xnZð0;np; 0; 0Þ,
nZ1, 2,.. Linearization near the trivial steady state xZ0 gives

_xðtÞZAxðtÞCB _xðtKtÞ;
where matrices A and B are given by

AZ

0 0 1 0

0 0 0 1

K
K

M
0 K

C

M
0

0 K
g

[
0 K

k

m[ 2

0
BBBBBBBBB@

1
CCCCCCCCCA
; B Z

0 0 0 0

0 0 0 0

0 0 K
m

M
0

0 0 0 0

0
BBBBBB@

1
CCCCCCA
:

The characteristic polynomial becomes

l2Cl
k

m[ 2
C

g

[

� �
ðl2M ClC CK Cl2 eKltmÞZ 0: ð6:3Þ

It is clear that stability is determined by the roots of the second multiplier in
equation (6.3).
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Similarly, for the steady state xnZð0; np; 0; 0Þ the matrices A and B are
given by

AZ

0 0 1 0

0 0 0 1

K
K

M
0 K

C

M
0

0 ðK1ÞnC1 g

[
0 K

k

m[ 2

0
BBBBBBBBB@

1
CCCCCCCCCA
; B Z

0 0 0 0

0 0 0 0

0 0 K
m

M
0

0 0 0 0

0
BBBBBB@

1
CCCCCCA
:

The corresponding characteristic polynomial is now

l2Cl
k

m[ 2
CðK1Þn g

[

� �
ðl2M ClC CK Cl2 eKltmÞZ 0: ð6:4Þ

One can now observe that for n odd, which corresponds to an upright position of
the pendulum, there are always eigenvalues with positive real part. This implies
that such steady states are always unstable for any value of delay t, including
tZ0. For the case of n even, the roots are determined by the same equation as in
the case nZ0 considered above. The second bracket in equations (6.3) and (6.4)
is exactly equation (3.3) multiplied by M in its dimensional form.
7. Experimental results

In the previous sections, we studied the stability of the model using analytical
and numerical tools. In order to confirm our findings, we need to perform some
experimental tests, using the real-time dynamic substructuring technique. As
discussed in §1, the pendulum is the physical substructure, the MSD is modelled
numerically in the computer. The numerical model is used to calculate the
displacement at the interface due to some external excitation. The displacement
is applied to the substructure (pendulum) in real-time using an electro-
mechanical actuator (the transfer system). The force acting on the physical
substructure is measured via a load cell and fed back to the numerical model.
This feedback force is used to calculate the displacement at the interface for the
next time step. This process is repeated until the end of the test. To implement
real-time tasks a dSpace DS1104 RD Controller Board is used; MATLAB/
Simulink is employed to build the numerical model. The dSpace module
ControlDesk is used for online analysis and control. The transfer system is an
electrically driven ball-screw actuator with an in-line mounted synchronous
servo-motor controlled by a servo-drive which applies a displacement to the
pendulum pivot point in the vertical direction. The values of the system
parameters are given in table 1. It is worth noting that, since the MSD is
represented by a numerical model, M, K and C can be changed easily from one
test to another to observe different situations. Further details of the experimental
set up can be found in Gonzalez-Buelga et al. (submitted).

As we have used the assumption that the actuator delay, which dominates
other sources of delay, is a constant we show the transfer system response plots in
Proc. R. Soc. A (2006)



Table 1. Substructure and pendulum parameters.
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Figure 8. (a) Transfer function step response and (b) frequency sweep plot.

Y. N. Kyrychko and others1286
figure 8a, the step response and experimental frequency sweep test in figure 8b.
From figure 8a, the approximate transfer function (written via Laplace transform)
is found to be Y ðsÞZ56:02=ðsC55:55Þ or a fixed delay of approximately 0.018 s.

During the experiment, the instability due to delay appears as a new frequency
in the numerical model displacement. We start with a delay of 0.018 s (the
natural delay time of the transfer system) and the delay will be artificially
increased by 0.001 s increments until the system becomes unstable, and the new
instability frequency appears. The delay time is deliberately increased by holding
the signals going to the actuator so that the stability boundary can be found and
a comparison made with the analytical results.

Figure 9a shows the theoretical stability boundary in the original non-rescaled
system (3.1) with the parameters from table 1. It also shows the values of the
stability switches. Figure 9b illustrates theway inwhichwewill explore the stability
switches experimentally. In particular, we fix the value of pZ0.225 as determined
by the parameters, and start simulations in the stable region for a very small delay
time t. Then, we follow path 1 (figure 9b) until the stability boundary is reached.
Once the boundary is crossed, the response of the system grows exponentially
making it impossible to continue experimental testing (the actuator cannot achieve
the required displacements). Consequently, it is impossible to increase the delay
further in the experimental system, in order to reach the next stability area which
starts at t2. In order to find the stability boundaries, we start with the value of delay
time t inside the next stability region, i.e. t2!t!t3. We then decrease or increase
the delay time accordingly, so that either path 2 or path 3 in figure 9b are followed
until the instability frequency appears. In this way, the experimental values of
stability switches t2 and t3 will be found.

Figure 10 shows experimental records while following path 1. In figure 10a, the
measured solution x is plotted against its analytical counterpart y� as determined
Proc. R. Soc. A (2006)
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by the solution of equation (3.1)—note that in this section we denote analytically
computed values with a ( )�. The results show that the numerical model is stable
until the delay t reaches the value of 0.093 s, figure 10c. At this point an
instability frequency of uZ6.3 Hz appears, as shown in figure 10d. The
experimental eigentriple at the first stability boundary is, therefore, ðp; t;uÞZ
ð0:225; 0:093; 6:3Þ as compared with analytical values of ð0:225; 0:0957; 6:231Þ.

Figure 11 illustrates the recorded signals when following path 2, when the
delay is decreasing. The numerical model is stable until the delay t
reaches 0.162 s, figure 11c. The corresponding value of the instability frequency
is uZ5.2 Hz, as shown in figure 11d. Hence, the experimental eigentriple for this
crossing of stability boundary is ðp; t;uÞZð0:225; 0:162; 5:2Þ as compared with
analytical values of ð0:225; 0:169; 5:2139Þ. The experimental results when
following path 3 are depicted in figure 12. Now the numerical model remains
stable until the delay time t reaches 0.255 s, and the solution becomes unstable,
figure 12c. In this case, the instability frequency is uZ6.25 Hz, as can be found
from the Fourier transform of the solution at this point, as shown in figure 12d.
Therefore, this last boundary point in our analysis is characterized by the
experimental eigentriple ðp; t;uÞZð0:225; 0:255; 6:25Þ as compared with analyti-
cal values of ð0:225; 0:2562; 6:231Þ.

Figure 13 shows an excellent agreement between theoretical model and
experimental results for stability boundaries. The experimental points follow the
stability curve and thereby confirm the existence of stability/instability
transitions in the hybrid system. When the stability boundary is crossed, the
solution very quickly becomes unstable and develops higher amplitude
oscillations and irregular motions. This makes finding experimental values for
the stability boundary an extremely sensitive problem and explains the slight
deviation of experimental values from the analytical prediction as illustrated in
figure 13a. In figure 13b, we show experimental stability border points
corresponding to different values of p.

We summarize analytical and experimental values of the instability
frequency in table 2.
Proc. R. Soc. A (2006)
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8. Viscous damping

In this section, we consider the effect of including viscous damping in the
pendulum model. This can have a significant influence on the velocity feedback of
the pendulum–MSD system (see Gonzalez-Buelga et al. (submitted) for a
detailed discussion). When including viscous damping, the vertical equation of
motion for the numerical model in the absence of forcing takes the form

M €yðtÞCC1 _yðtÞCKyðtÞCm€yðtKtÞCC2 _yðtKtÞZ 0; ð8:1Þ

where C1 is the damping of the numerical model and C2 is the viscous damping
of the pendulum. Using the same scaling as in §3 and introducing the new
variables,

z1 Z
C1

2
ffiffiffiffiffiffiffiffiffi
MK

p ; z2 Z
C2

2
ffiffiffiffiffiffiffiffiffi
MK

p ;

equation (8.1) transforms into

€z C2z1 _zCzCp€zðtKtÞC2z2 _zðtKtÞZ 0: ð8:2Þ
Proc. R. Soc. A (2006)



(c) (d )

0.01

0.06

0.030

–0.01

di
sp

la
ce

m
en

t (
m

)

42 43 44 45 46 47
time (s)

0 2 4 6 8 10
frequency (Hz)

power spectral density

stable system frequency response

instability frequency

measured:x
target: y*

0.01(a) (b)

0

0 1 2 3 4
–0.01

di
sp

la
ce

m
en

t (
m

)

time (s)
17 18 19 20 21

time (s)

measured:x
target:y*

measured:x
target: y*
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The characteristic equation is now

l2 C2z1lC1Cpl2 eKltC2z2l e
Klt Z 0: ð8:3Þ

Transition to instability occurs when lZGi6, 6O0. Substituting this into the
characteristic equation and separating real and imaginary parts gives the
following system:

K62 C1Kp62 cos 6tC2z26 sin 6tZ 0;

2z1 Cp6 sin 6tC2z2 cos 6tZ 0:
ð8:4Þ

Squaring and adding these two equations, we obtain an equation for 6, which can
be solved to give

62
GZ

1

ð1Kp2Þ ð1C2z22K2z21ÞG
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1C2z22K2z21ÞKð1Kp2Þ

q� �
: ð8:5Þ

Employing the same methods as the ones used in §3, one can prove the following
theorem concerning the stability of the trivial solution.

Lemma 8.1. Let 1C2z22K2z21!0. Then for jpj!1, the trivial solution is
asymptotically stable for any delay time tO0. If, however, 1C2z22K2z21O0, then
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the trivial solution of system (3.2) is locally asymptotically stable in the region

p!2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1Kz21Kz22Þðz21Kz22Þ

q
; ð8:6Þ

for all positive delay times t. In the region

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1Kz21Kz22Þðz21Kz22Þ

q
!p!1;

the trivial solution is locally asymptotically stable for values of delay satisfying

0!t!
1

6C

2pKArccos
pð1K62

CÞK4z1z2
p262

CC4z22

" #
;

1

6K

2pnKArccos
pð1K62

KÞK4z1z2
p262

KC4z22

" #
!t

!
1

6C

ð2nC2ÞpKArccos
pð1K62

CÞK4z1z2
p262

CC4z22

" #
;

where nZ1, 2,..
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Table 2. Theoretical versus experimental instability frequencies (Hz).

instability frequency u u u

experimental 6.3 5.2 6.25
theoretical 6.2310 5.2139 6.2310
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Figure 13. (a) Comparison of experimental results with analytical predictions. (b) Experimental
versus theoretical stability border.
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It is worth noting that in the limit z2/0 the results of this lemma coincide
with those of lemma 3.2. Furthermore, as it is clear from relation (8.6), these
stability results are only valid if one imposes an additional but experimentally
reasonable requirement z2!z1. Physically, this means that the viscous damping
C2 of the pendulum is smaller than that of the mass–spring–damper.

We illustrate in figure 14a the changes to the stability boundary as the viscous
damping is increased from 0 until it reaches the value of the damping of MSD. As
the viscosity increases, the stability area gets smaller and stability boundary
shifts to the left. Eventually, as can be seen in figure 14b, after touching zero the
stability boundary disintegrates and splits into separate stability regions. As any
vibration will eventually die down in these regions, they are called amplitude
death regions or death islands (see, for instance, Xu & Chung 2003). These
regions are experimentally important for controlling the stability of the system.
Experimental results regarding the stability of the system with viscous damping
can be found in Gonzalez-Buelga et al. (submitted). We note also that in
figure 13b, the experimental points are all to the left-hand side of the theoretically
predicted boundary. This indicates that (as one would expect) there is a small
amount of damping in the physical pendulum which is shifting these points
slightly, as explained by figure 14a.

We can explain figure 14 physically. The critical stability boundary first
touches the t axis (pZ0) when z1Zz2 and tZp. From equation (8.2), we can see
that this corresponds to the case when the contribution to the damping, through
the term 2z1 _z, is exactly balanced by an equal (z1Zz2) and opposite (out
of phase, since tZp) contribution, through the term 2z2 _zðtKtÞ. In this case,
6GZ1 and the resulting solution is neutrally stable since lZGi. As z2 then
Proc. R. Soc. A (2006)
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increases, there is a finite range of t for pZ0 when the delayed damping due to
the pendulum exceeds that due to the numerical model. In that range, the trivial
solution is then unstable.
9. Conclusions

In this paper, the stability of a real-time dynamic substructuring model of a
coupled oscillator–pendulum system has been investigated. We have modelled
the hybrid testing of this system using two-coupled second-order DDEs, with one
of them being neutral. This approach includes the assumption that the delay, t,
is a fixed value, but allows us to make significant advances in the mathematical
analysis of the complex dynamics of the hybrid system. In particular, we started
our analysis by considering the situation which occurs for small angles. This
results in a neutral DDE for the vertical component of motion. For this equation,
we identified regions of stability and instability, parameterized by the delay, t.
We established not only the points of stability switching but also showed that
there is a finite number of them for fixed system parameters and proposed a
scheme for calculating their number. After the presence of a Hopf bifurcation had
been established, conditions for the stability of the bifurcating periodic solutions
were established using the method of multiple scales. This has also provided
analytical expressions for the amplitude and frequency of the periodic orbit.

The numerical simulations in §5 confirm the theoretical findings from §§3
and 4. Several phenomena are shown such as convergence to the steady state in
the stable regions, fast unbounded growth of solutions in the unstable regions,
quasi-periodic oscillations and the existence of the beats. The Hopf frequency as a
function of the delay time shows the presence of two frequencies of oscillation at
the codimension-two Hopf bifurcation points. In the case of non-zero forcing, our
numerical results illustrate two possibilities: the solutions asymptotically
approach a stable limit cycle or they are modulated on a long time scale by a
growing harmonic.

In §6, we return to the original system and study its linearized stability. This
indicates how the linear stability analysis fits into a more general framework.
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1293Coupled oscillator–pendulum system
The practical significance of this is that for systems with many more degrees of
freedom, this type of formulation could be extended to identify critical delay and
frequency values by numerically approximating the eigenvalues.

The analytical results were then compared to results from a hybrid pendulum–
oscillator experiment. The stability boundary of the trivial solution was found to
give excellent qualitative and quantitative agreement with the analytical
prediction, as were the instability frequencies. When viscous damping is included
in the system model, the stability boundaries have been shown to distort. For
very large damping, the stability area transforms into disjoint death islands
separated by instability regions.

Overall, the study in this paper has focused on the analysis of the pendulum–
oscillator system when modelled as a hybrid system with a fixed delay. The close
agreement of these results with hybrid-experimental data demonstrate the utility
of DDE modelling in predicting the stability boundaries and instability
frequencies in hybrid testing models. This information is essential for assessing
the viability of particular substructuring test configurations, and in designing
suitable delay compensators. Future plans to extend this work include the
modelling of large-scale engineering structures, with many degrees of freedom
and multiple transfer systems. Practical applications which this will be applied to
include cable–deck interaction of cable-stay bridges, and lag damper units for
helicopter rotors.
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