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Abstract. In this paper, the sharpest interpolation inequalities are used to

find a set of length scales for the solutions of the following class of dissipative

partial differential equations

ut = −αk(−1)k∇2ku +

k−1∑
j=1

αj(−1)j∇2ju +∇2(um) + u(1− u2p),

with periodic boundary conditions on a one-dimensional spatial domain. The

equation generalises nonlinear diffusion model for the case when higher-order
differential operators are present. Furthermore, we establish the asymptotic

positivity as well as the positivity of solutions for all times under certain re-

strictions on the initial data. The above class of equations reduces for some
particular values of the parameters to classical models such as the KPP-Fisher

equation which appear in various contexts in population dynamics.

1. Introduction. The problems addressed in this paper concern the analysis of
the length scales and the positivity of solutions for a class of nonlinear dissipative
partial differential equations (PDEs).

We consider the class of PDEs

ut = −αk(−1)k∇2ku +
k−1∑
j=1

αj(−1)j∇2ju +∇2(um) + u(1− u2p), (1.1)

in one spatial dimension, where αk > 0, αj > 0, k, m, p positive integers, k > 1,
m ≥ 1, p ≥ 1 and u = u(x, t), t ≥ 0, x ∈ Ω = [0, L] with periodic boundary
conditions. A particular case of this equation with k = 2,m = 0, p = 1 is known in
physical literature as the Swift-Hohenberg equation [18], which is used to describe
the Rayleigh-Bénard convection. A similar equation has been used by Pomeau and
Manneville [16] in the study of cellular flows just past the onset of instability. For
the same values of parameters and positive second term, this is the Extended Fisher-
Kolmogorov equation used as a model of phase transitions, onset of spatio-temporal
chaos and other phenomena in bistable physical systems [15].
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First we will obtain a set of dissipative length scales directly involving the solu-
tions of the PDEs. The length scales provide better understanding of the spatio-
temporal dynamics of the solutions of dissipative PDEs, and their importance con-
sists in giving accurate information about the smallest features of the flow. Among
the first length scales to be used is the famous dissipation length scale obtained
by Kolmogorov using the scaling argument for the incompressible fluid flow of the
Navier-Stokes equations under a few heuristic assumptions [13]. This length scale
is defined as the scale below which the dynamics is completely dominated by dissi-
pation.

We then prove that the solutions of the class of PDEs under investigation preserve
positivity. The positivity of solutions must be a fundamental feature for every
PDE whose solutions represent some physical or biological quantity that cannot be
negative, as, for example, in population dynamics. Here it is important to stress
that in many of the models used in population dynamics the highest order spatial
derivative term is the Laplacian. In this case, the positivity preservation result
can be established by using the maximum principle [17]. However, the maximum
principle does not apply in the study of dissipative partial differential equations
which contain differential operators of higher order than that of the Laplacian. A
number of important contributions to the study of positivity of solutions in higher-
order equations can be found in the literature (see, for example, [5, 6, 9, 7], and
references therein). In this paper we investigate a particular class of dissipative
partial differential equations which possess a uniform steady state solution. For
this class, we shall prove that under certain restrictions on initial data solutions are
asymptotically stable, as well as stable for all times. These results naturally extend
our previous study on positivity of solutions for some particular cases of equation
(1.1) (see [3, 4]).

The class of PDEs under consideration represents a generalised diffusion model
of population dynamics [1, 4]. In such a model, the smallest length scale is a
measure of the smallest scale in which spatial fluctuations of a population occur.
Our length scales are defined in a way similar to Bartuccelli et al. [2] and Doering
and Gibbon [10]. The use of recently obtained sharp inequalities [12] allows us to
improve the estimates for the bottom rung of the ladder and the length scales.

In the context of population dynamics, an illustrative example with k = 2,m = 3
has been considered by Cohen and Murray [8]. They showed that the balance
between the stabilizing −αkuxxxx term and a destabilizing −αjuxx term leads to
the existence of stationary spatially periodic solutions for αj sufficiently positive.

We note that the first term in (1.1) always has a stabilizing effect, while the
second term can be stabilizing or destabilizing. In order to have spatially structured
solutions, for which the introduction of the length scales makes sense, we choose αj

to be positive. The balance between k and m (which is the order of nonlinearity in
the equation) produces the necessary “slaving” of the dynamics by the dissipation.
In what follows we use this model as a representative example of a dissipative
nonlinear PDE incorporating the features of a certain class of systems.

The outline of the paper is as follows: Section 2 contains the derivation of the
ladder theorem for our class of PDEs. Section 3 deals with the estimates for the
bottom rung of the ladder. In Section 4 temporal averages are used to derive the
length scales. Section 5 is devoted to the proof of the asymptotic positivity of solu-
tions, and Section 6 accomplishes the analysis by proving the positivity of solutions
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for all times under certain restrictions on the initial data and the parameters in the
equation. Concluding remarks are presented in Section 7.

2. Ladder Estimates. In this section we derive the set of ladder inequalities for
(1.1) and use them to find the absorbing balls needed for the estimates of the length
scales. Below we shall use the following notation: for 1 ≤ s < ∞ we define Ls-norm
as

‖u‖s =
(∫

Ω

|u|sdx

)1/s

.

This is the space of equivalence classes of functions that are s-integrable over the
bounded domain Ω. Also for s = ∞ we define

‖u(·, t)‖∞ = sup
x∈Ω

|u(x, t)| < ∞.

We shall especially make frequent use of the following set of quantities in one spatial
dimension:

L2 − norm of the N-th derivative: JN =
∥∥∥∥∂Nu

∂xN

∥∥∥∥2

2

=
∫ (

∂Nu

∂xN

)2

dx, (2.1)

length scales : L−1 ≤ ‖u‖2
∞

J0
≤
(

JN

J0

)1/2N

≡ `−1
N . (2.2)

These time-dependent quantities contain the most important information for any
dissipative partial differential equation [4, 10]. In particular, having control (bound-
edness) of all JN gives a smooth attractor for the solutions of our equation. There-
fore, the general strategy employed here consists in using interpolation inequalities
to find the upper bounds for the long-time asymptotics and time averages of JN .
We also define the time-asymptotic upper bound of the function f(x, t) as

f = sup
x∈Ω

lim
t→∞

sup f(x, t), (2.3)

and the time average as

〈f〉 = lim
t→∞

sup
x∈Ω

1
t

∫ t

0

f(x, τ)dτ. (2.4)

We use the following properties of time average:

〈f〉 ≤ f,

〈fg〉 ≤ 〈fp〉
1
p 〈gq〉

1
q if

1
p

+
1
q

= 1. (2.5)

We shall start with the ladder inequality defining the temporal dynamics of JN .
Differentiating the JN with respect to time and inserting the time derivative from
equation (1.1) one obtains:

1
2
J̇N = −αk(−1)k

∫
∇Nu∇N+2kudx +

k−1∑
j=1

αj(−1)j

∫
∇Nu∇N+2judx

+
∫
∇Nu∇N+2(um)dx +

∫
(∇Nu)2dx−

∫
∇Nu∇N (u2p+1)dx. (2.6)

Integrating by parts k-times the first term in (2.6) gives:

−αk(−1)k

∫
∇Nu∇N+2kudx = −αk

∫
(∇N+ku)2dx = −αkJN+k.
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In a similar manner the second term in (2.6) can be transformed into
k−1∑
j=1

αj(−1)j

∫
∇Nu∇N+2judx =

k−1∑
j=1

αjJN+j .

In order to estimate the third term in (2.6) we first integrate it by parts obtaining∫
(∇Nu)(∇N+2um)dx = −

∫
∇N+1u∇N+1(um)dx. (2.7)

Performing a Leibnitz-expansion on ∇N+1(um) we obtain:

∇N+1(um) =
∑

θ∈Nm

|θ|=N+1

(N + 1)!∏m
l=1(θl)!

m∏
l=1

(∇θlu).

Therefore,

|∇N+1(um)| ≤
∑

θ∈Nm

|θ|=N+1

(N + 1)!∏m
l=1(θl)!

m∏
l=1

|∇θlu|.

Substituting this into (2.7), applying the Cauchy-Schwarz inequality, an m-fold
Hölder inequality and then the Gagliardo-Nirenberg inequality [11, 14, 19] on each
term of the sum above, one obtains:∫

(∇Nu)(∇N+2um)dx ≤ d
∑

θ∈Nm

|θ|=N+1

J
1
2
N+1

(
m∏

l=1

‖∇θlu‖2m

)

≤ dJ
1
2
N+1‖∇

N+1u‖
∑m

l=1 bl

2 · ‖u‖
∑m

l=1(1−bl)
∞ = dJ

1
2
N+1J

γ
N+1‖u‖

δ
∞, (2.8)

where d is a constant arising from the Leibnitz expansion and the Gagliardo-
Nirenberg inequality, and γ and δ can be found as

γ =
1
2

and δ = m− 1.

Therefore, ∫
∇Nu∇N+2(um)dx ≤ dJN+1‖u‖m−1

∞ . (2.9)

Using the interpolation inequality (see [10])

JN ≤ J
r

r+s

N−sJ
s

r+s

N+r (2.10)

with s = 1 and r = k − 1 and then applying the Hölder inequality we obtain

dJN+1‖u‖m−1
∞ ≤ dJ

k−1
k

N J
1
k

N+k‖u‖
m−1
∞ ≤ αk

2
JN+k + d1JN‖u‖

k(m−1)
k−1

∞ , (2.11)

where

d1 =
(

2
αk

) 1
k−1

(
d

k

) k
k−1

(
k

k − 1

)
.

In [12] the following sharp interpolation inequality was proved

‖u‖∞ ≤ c(l)J
2l−1
4l

0 J
1
4l

l , l >
1
2
, with c(l) =

(
1

(2l − 1)(2l−1)/2l sin π
2l

) 1
2

(2.12)

Applying this inequality with l = N to the last term in (2.11) we have

dJN+1‖u‖m−1
∞ ≤ αk

2
JN+k + d1c(N)m−1J

1+ m−1
4N

N J
(2N−1)(m−1)

4N
0 .
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Similar argument applied to the last term in (2.6) gives:

−
∫
∇Nu∇N (u2p+1)dx ≤ cJ

1+ p
2N

N J
2N−1
2N p

0 . (2.13)

Summarising these calculations we have:

1
2
J̇N ≤ −αk

2
JN+k +

k−1∑
j=1

αjJN+j + JN + cJ
1+ p

2N

N J
2N−1
2N p

0

+d1c(N)m−1J
1+ m−1

4N

N J
(2N−1)(m−1)

4N
0 . (2.14)

With the help of the inequality (2.10) and the Hölder inequality one obtains

1
2
J̇N ≤ −αk

4
JN+k +

1 +
k−1∑
j=1

φj

 JN + cJ
1+ p

2N

N J
2N−1
2N p

0

+d1c(N)m−1J
1+ m−1

4N

N J
(2N−1)(m−1)

4N
0 , (2.15)

where the constants φj are defined as

φj =
k − j

j
α

k
k−j

j

(
4j(k − 1)

kαk

) j
k−j

.

By using inequality (2.10) with r = k and s = N the ladder transforms into:

1
2
J̇N ≤ −αk

4
J

1+k/N
N

J
k/N
0

+

1 +
k−1∑
j=1

φj

 JN + cJ
1+ p

2N

N J
2N−1
2N p

0

+d1c(N)m−1J
1+ m−1

4N

N J
(2N−1)(m−1)

4N
0 . (2.16)

Since we are looking for the length scales, we need to have control over the terms
giving the largest contribution to the value of the length scales. This means that
without loss of generality we can neglect the second term in the above expression.
Comparing the last two terms in the ladder (2.16), we distinguish between the
following possibilities:
Case A. This is defined by the inequality m > 2p + 1. In this case the last term in
(2.16) gives the largest contribution, and therefore all the smaller order terms can
be neglected. Therefore, the ladder becomes

1
2
J̇N ≤ −αk

4
J

1+k/N
N

J
k/N
0

+ d1c(N)m−1J
1+ m−1

4N

N J
(2N−1)(m−1)

4N
0 . (2.17)

One can easily see that an absorbing ball can be found only for m < 4k + 1 as

JN ≤
(

4d1c(N)m−1

αk

) 4N
4k−m+1

J
4k+(2N−1)(m−1)

4k−m+1
0 , 2p + 1 < m < 4k + 1. (2.18)

Case B. This is the situation when m < 2p + 1, and therefore the fourth term in
(2.16) dominates. The ladder then takes the form:

1
2
J̇N ≤ −αk

4
J

1+k/N
N

J
k/N
0

+ cJ
1+ p

2N

N J
2N−1
2N p

0 . (2.19)



30 M.V. BARTUCCELLI, K.B. BLYUSS AND Y.N. KYRYCHKO

Now, an absorbing ball can be found as

JN ≤
(

4c

αk

) 2N
2k−p

J
2(N−1)p−2k

2k−p

0 , m < 2p + 1, p < 2k. (2.20)

Case C. When m = 2p + 1 the last two terms in (2.16) give contributions of the
same order, and therefore they can be combined. The absorbing ball in this case
has the form

JN ≤

(
4
[
d1c(N)m−1 + c

]
αk

) 2N
2k−p

J
2(N−1)p−2k

2k−p

0 , m = 2p + 1, p < 2k. (2.21)

In order to have the regularity of solutions, we need to have a control over ‖u‖2
∞,

which can be estimated by using the inequality (2.12) with l = N . Thus, one can
see that this control is obtained by some form of dynamical control of JN . The
bounds for this quantity are given by the expressions of the absorbing ball in the
cases considered above. The estimate of J0 is performed in the next section.

3. Estimates for the Bottom Rung. We have just obtained the absorbing balls
through the time-asymptotic bound for the bottom rung J0. In order to find this
quantity we differentiate it with respect to time and insert for ut the right-hand
side of (1.1)

1
2
J̇0 = −αk(−1)k

∫
u∇2kudx +

k−1∑
j=1

αj(−1)j

∫
u∇2judx

+
∫

u∇2(um)dx +
∫

u2dx−
∫

u2p+2dx. (3.1)

Now, integrating by parts the first and the second terms in (3.1) k and j-times
respectively, estimating the third term as∫

u∇2(um)dx = { integrating by parts } = −m

∫
u2

xum−1dx ≤ mJ1‖u‖m−1
∞ ,

and the last term as
−
∫

u2p+2dx ≤ −L−pJp+1
0 , (3.2)

we finally obtain

1
2
J̇0 ≤ −αkJk +

k−1∑
j=1

αjJj + J0 + mJ1‖u‖m−1
∞ − L−pJp+1

0 . (3.3)

Substituting inequality (2.10) with s = N = 1 and r = k − 1 in (3.3) yields

1
2
J̇0 ≤ −αkJk +

k−1∑
j=1

αjJj + J0 − L−pJp+1
0 + mJ

1/k
k J

(k−1)/k
0 ‖u‖m−1

∞ . (3.4)

Applying to the last term the Hölder and then Young’s inequalities we can see that

1
2
J̇0 ≤ −αk

2
Jk +

k−1∑
j=1

αjJj + J0 − L−pJp+1
0 + aJ0‖u‖m−1

∞ , (3.5)

where

a =
k − 1

k
m

k
k−1

(
2

kαk

) 1
k−1

.
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Estimating ‖u‖∞ from (2.12) with l = k one obtains

1
2
J̇0 ≤ −αk

2
Jk +

k−1∑
j=1

αjJj + J0 − L−pJp+1
0 + ac(k)m−1J

4k+(2k−1)(m−1)
4k

0 J
m−1
4k

k . (3.6)

For m < 4k + 1 we can apply Young’s inequality to the last term in (3.6):

1
2
J̇0 ≤ −αk

4
Jk +

k−1∑
j=1

αjJj + J0 − L−pJp+1
0 + σJ

4k+(2k−1)(m−1)
4k−m+1

0 , (3.7)

where

σ =
4k −m + 1

4k

(
ac(k)m−1

) 4k
4k−m+1

(
m− 1
kαk

) m−1
4k−m+1

.

Substituting (2.10) with s = N = j and r = k − j in the second term in (3.7) and
applying Young’s inequality to every term in the sum, one obtains

1
2
J̇0 ≤ −αk

8
Jk +

k−1∑
j=1

κjJ0 + J0 − L−pJp+1
0 + σJ

4k+(2k−1)(m−1)
4k−m+1

0 , (3.8)

with

κj =
k − j

k
α

k
k−j

j

(
8j(k − 1)

kαk

) j
k−j

.

Neglecting the first term in (3.8), which is negative definite, we obtain

1
2
J̇0 ≤

k−1∑
j=1

κjJ0 + J0 − L−pJp+1
0 + σJ

4k+(2k−1)(m−1)
4k−m+1

0 := f(J0). (3.9)

In order to control the time average of J0 we have to choose the power of J0 in the
last term less than (p+1), and therefore we require m < 1 + 4kp

2k+p . Since 4kp
2k+p < 2p,

then m < 2p + 1, and we have the Case B from the previous section. Therefore, in
subsequent calculations we will appeal to the formula (2.20) for the absorbing ball
(under the condition p < 2k).

By the standard theory the solutions of the above inequality are bounded above
by the solutions of the one-dimensional ordinary differential equation J̇0 = 2f(J0).
Provided m < 1 + 4kp

2k+p the function f is positive for J0 small and negative for J0

large. Hence, it has a positive root. Thus, we can write that

J0 ≤ J∗, (3.10)

where J∗ is the smallest positive root of

f(J0) =
k−1∑
j=1

κjJ0 + J0 − L−pJp+1
0 + σJ

4k+(2k−1)(m−1)
4k−m+1

0 = 0. (3.11)

Substitution of the bound for J0 in the absorbing ball (2.20) gives

JN ≤
(

4c

αk

) 2N
2k−p

(J∗)
2(N−1)p−2k

2k−p , m < 1 +
4kp

2k + p
, p < 2k. (3.12)
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4. Length Scales. In this section we investigate the length scales appearing in
our flow. As it was mentioned in the introduction, information on the length scales
is crucial in obtaining the picture of the dynamics involved in the solutions of any
dissipative flow. A set of length scales is usually obtained through a set of ”relevant
modes” defined through the Fourier expansion of the solutions of the equation [4, 10].

We now have to study the dynamics content of the length scales. First we note
that

`−1
N =

(
JN

J0

)1/2N

(4.1)

is a function of time; thus it is natural to say that it defines a dynamic length
scale. Since its dynamic evolution cannot be easily obtained in general, it is useful
to define a time-independent length scale. This is normally achieved by taking time
averages or time asymptotic bounds.

We start with the time average estimates of our length scales. To do it we use
the ladder (2.19):

1
2
J̇N ≤ −αk

4
J

1+k/N
N

J
k/N
0

+ cJ
1+ p

2N

N J
2N−1
2N p

0 . (4.2)

Dividing this inequality through by JN and taking time average, as 〈J̇N/JN 〉 van-
ishes, one obtains〈(

JN

J0

)1/2N
〉
≤
(

4c

αk

)1/2k 〈
J

p
4kN

N J
(2N−1)p

4kN
0

〉
. (4.3)

Now applying the Hölder inequality for p < 2k to the time-averaged term on the
right-hand side of (4.3) we finally obtain the estimate for the time-averaged length
scales

〈`−1〉 ≤
(

4c

αk

) 1
2k−p

(J∗)
1

2k−p , m < 1 +
4kp

2k + p
, p < 2k. (4.4)

5. Asymptotic Positivity of Solutions. In order to study the positivity we
center the equation (1.1) on the uniform steady state solution u = 1 and then
show that under certain assumptions concerning the initial data, solutions of the
transformed equation are bounded (by absolute value) by 1. Therefore, we introduce
v(x, t) defined by

u(x, t) = 1 + v(x, t) (5.1)

where u satisfies (1.1). If the function v(x, t) satisfies

‖v(·, t)‖∞ ≤ 1

then clearly u(·, t) is non-negative function for all t. Moreover, if we can show
that ‖v(·, t)‖∞ → 0 as t → ∞ then we have a uniform convergence (meaning the
asymptotic positivity).

We introduce the following time-dependent quantities:

HN :=
∥∥∥∥∂Nv

∂xN

∥∥∥∥2

2

=
∫ (

∂Nv

∂xN

)2

dx, (5.2)
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where the integration is over the spatial domain Ω := [0, L]. Substituting (5.1) into
(1.1) we obtain for v the equation

vt = −αk(−1)k∇2kv +
k−1∑
j=1

αj(−1)j∇2jv +
m∑

s=0

(
m

s

)
∇2(vs)

−
2p−1∑
l=0

(
2p

l

)
[v2p−l + v2p−l+1]. (5.3)

We start our analysis by investigating the evolution of the L2-norm of the solution
v of (5.3), namely H0. Differentiating H0 with respect to time, and inserting the
right hand side of (5.3), we obtain

1
2
Ḣ0 = −αkHk +

k−1∑
j=1

αjHj +
m∑

s=0

(
m

s

)∫
v∇2(vs)dx

−
2p−1∑
l=0

(
2p

l

)[∫
v2p−l+1dx +

∫
v2p−l+2dx

]
. (5.4)

Let us consider the second term in the last expression. Substituting (2.10) with
s = N = j and r = k − j in the second term in (5.4) and applying Young’s
inequality to every term in the sum, one obtains

1
2
Ḣ0 ≤ −αk

2
Hk +

k−1∑
j=1

κjH0 +
m∑

s=0

(
m

s

)∫
v∇2(vs)dx

−
2p−1∑
l=0

(
2p

l

)[∫
v2p−l+1dx +

∫
v2p−l+2dx

]
, (5.5)

where

βj =
k − j

k

(
2j(k − 1)

kαk

) j
k−j

α
k

k−j

j (5.6)

Next, we consider the third term in (5.4):
m∑

s=0

(
m

s

)∫
v∇2(vs)dx ≤

m∑
s=1

(
m

s

)
sH1‖v‖s−1

∞ . (5.7)

In [3] the following version of the inequality (2.12) was proved (the constants c(k)
are the same as in (2.12))

‖v‖∞ ≤ c(k)H
1
4k

k H
2k−1
4k

0 + L−
1
2 H

1
2
0 . (5.8)

Substituting this estimate in (5.7) and using the binomial expansion we can rewrite
it as

−
m∑

s=1

(
m

s

)
sH1

s−1∑
n=0

(
s− 1

n

)
c(k)nH

(2k−1)n+2k(s−1−n)
4k

0 H
n
4k

k L−
s−1−n

2 . (5.9)

By introducing the variable W (s, n) as

W (s, n) =
(

m

s

)(
s− 1

n

)
c(k)ns,
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and expressing H1 via H0 and Hk from (2.10), we obtain:
m∑

s=0

(
m

s

)∫
v∇2(vs)dx ≤

m∑
s=1

s−1∑
n=0

W (s, n)H
4+n
4k

k H
2ks+2k−4−n

4k
0 L−

s−1−n
2

≤ αk

4
Hk +

m∑
s=1

s−1∑
n=0

σ(s, n)H
2ks+2k−4−n

4k−4−n

0 , (5.10)

where in the last step we have used the Hölder inequality for m < 4k − 3 and

σ(s, n) =
4k − 4 + n

4k

[
m(m + 1)(4 + n)

2kαk

] 4+n
4k−4−n

W (s, n)
4k

4k−4−n L
2k(1+n−s)
4k−4−n .

Now, we estimate the last two terms in the (5.4) as

−
2p−1∑
l=0

(
2p

l

)∫
[v2p−l+1 + v2p−l+2]dx

= −2pH0 − L−pHp+1
0 +

2p−2∑
l=0

(
2p

l

)
‖v‖2p−l+1

∞ +
2p−1∑
l=1

(
2p

l

)
‖v‖2p−l+2

∞ . (5.11)

Applying the inequality (5.8) and then the binomial expansion to the last two terms
in (5.11) one finally obtains

−
2p−1∑
l=0

(
2p

l

)∫
[v2p−l+1 + v2p−l+2]dx = −2pH0 − L−pHp+1

0

+
2p−2∑
l=0

2p−l+1∑
s=0

ξ1(l, s)H
4kp−2kl+2k−s

4k−s

0 +
2p−1∑
l=1

2p−l+2∑
s=0

ξ2(l, s)H
4kp−2kl+4k−s

4k−s

0 ,

where

ξ1(l, s) = 4k−s
4k

((
2p
l

)(
2p−l+1

s

)) 4k
4k−s

[
c(k)4k 4s(2p−1)(p+3)

kαk

] s
4k−s

L−
2k(2p−l+1−s)

4k−s ,

ξ2(l, s) = 4k−s
4k

((
2p
l

)(
2p−l+2

s

)) 4k
4k−s

[
c(k)4k 4sp(2p+7)

kαk

] s
4k−s

L−
2k(2p−l+2−s)

4k−s .

(5.12)
By virtue of all the above calculations we can rewrite (5.5) in the following form

1
2
Ḣ0 ≤ −αk

4
Hk −

2p−
k−1∑
j=1

βj − σ(1, 0)

H0 +
m∑

s=2

s−1∑
n=0

σ(s, n)H
1+ 2ks−2k

4k−4−n

0

+
2p−2∑
l=0

2p−l+1∑
s=0

ξ1(l, s)H
4kp−2kl+2k−s

4k−s

0 +
2p−1∑
l=1

2p−l+2∑
s=0

ξ2(l, s)H
4kp−2kl+4k−s

4k−s

0 − L−pHp+1
0

≤ −

2p−
k−1∑
j=1

κj − σ(1, 0)

H0 − L−pHp+1
0 +

m∑
s=2

s−1∑
n=0

σ(s, n)H
1+ 2ks−2k

4k−4−n

0

+
2p−2∑
l=0

2p−l+1∑
s=0

ξ1(l, s)H
4kp−2kl+2k−s

4k−s

0 +
2p−1∑
l=1

2p−l+2∑
s=0

ξ2(l, s)H
4kp−2kl+4k−s

4k−s

0 := f(H0).

(5.13)



CLASS OF REACTION-DIFFUSION EQUATIONS 35

Solutions of this differential inequality are bounded from above by the solutions
of the autonomous ODE Ḣ0 = 2f(H0). Provided 2p >

∑k−1
j=1 βj + σ(1, 0), function

f(H0) is negative for H0 small, and for H0 large, and positive for some intermediate
values. We note here that the absorbing ball for H0 should exist, what gives a
restriction on possible values of k, m and p. As it can be easily shown, this condition
has the form

m < 1 +
4p(k − 1)
2k + p

. (5.14)

If this condition holds, it guarantees that f(H0) will be negative for large values of
H0. If also p < 2k then the above inequality ensures the possibility of application
of Hölder inequality in (5.10). Therefore, we can state that if (5.14) holds and
H0(t = 0) < H∗, where H∗ is the smallest positive root of the equation f(H) = 0,
then H0 → 0 as t →∞.

We have to estimate ‖v‖∞, and afterwards show that it tends to zero under
some assumptions on the initial condition. In order to estimate ‖v‖∞, we start
with considering the dynamics of H1:

1
2
Ḣ1 = −αkHk+1 +

k−1∑
j=1

αjHj+1 +
m∑

s=0

Cs
m

∫
vx∇3vsdx

−
2p−1∑
l=0

(
2p− 1

l

)∫
v2

x

[
(2p− l)v2p−l−1 + (2p− l + 1)v2p−l

]
dx. (5.15)

Calculation of the second term similar to the one in (5.4) allows to rewrite the above
equation as

1
2
Ḣ1 = −αk

2
Hk+1 +

k−1∑
j=1

µjH0 +
m∑

s=0

(
m

s

)∫
vx∇3vsdx

−
2p−1∑
l=0

(
2p− 1

l

)∫
v2

x

[
(2p− l)v2p−l−1 + (2p− l + 1)v2p−l

]
dx, (5.16)

with

µj =
k − j

k + 1

(
2(k − 1)(j + 1)

αk(k + 1)

) j+1
k−j

α
k+1
k−j

j .

The third term can be estimated as above
m∑

s=0

(
m

s

)∫
vx∇3vsdx ≤

m∑
s=0

(
m

s

)
sH2‖v‖s−1

≤ αk

4
Hk+1 +

m∑
s=1

s−1∑
n=0

τ(s, n)H
2ks+2s+2k−n−6

4k−4−n

0 , (5.17)

where

τ(s, n) =
4k − 4− n

4(k + 1)

[
m(m + 1)(n + 8)

2αk(k + 1)

] n+8
4k−4−n

[(
m

s

)(
s− 1

n

)
c(k + 1)nsL

1+n−s
2

] 4(k+1)
4k−4−n

.
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Substituting this in (5.15) one obtains

1
2
Ḣ1 ≤ −αk

4
Hk+1 +

k−1∑
j=1

µjH0 +
m∑

s=1

s−1∑
n=0

τ(s, n)H
2ks+2s+2k−n−6

4k−4−n

0

−
2p−1∑
l=0

(
2p− 1

l

)∫
v2

x

[
(2p− l)v2p−l−1 + (2p− l + 1)v2p−l

]
dx. (5.18)

The last two terms in (5.15) can also be estimated in a similar manner

−
2p−1∑
l=0

(
2p− 1

l

)∫
v2

x

[
(2p− l)v2p−l−1 + (2p− l + 1)v2p−l

]
dx

≤
2p−1∑
l=0

(
2p− 1

l

)
H1

[
(2p− l)‖v‖2p−l−1

∞ + (2p− l + 1)‖v‖2p−l
∞

]
≤ αk

8
Hk+1 +

2p−1∑
s=0

2p−s−1∑
n=0

ρ1(s, n)H
2k−n+4kp−2ks+4p−2s−2

4(k+1)
0

+
2p−1∑
s=0

2p−s∑
n=0

ρ2(s, n)H
4k−n+4kp−2ks+4p−2s

4(k+1)
0 , (5.19)

where we first used the interpolation inequality (5.8), then the Hölder inequality for
p < 2k, and ρ1(s, n), ρ2(s, n) are given by

ρ1(s, n) =
4k − n

4(k + 1)

[
4p(n + 4)(2p + 1)

αk

] n+4
4k−n

q1L
− 2(2p−s−1−n)(k+1)

4k−n ,

ρ2(s, n) =
4k − n

4(k + 1)

[
4p(n + 4)(2p + 3)

αk

] n+4
4k−n

q2L
− 2(2p−s−n)(k+1)

4k−n ,

q1 =
[(

2p− 1
s

)(
2p− s− 1

n

)
(2p− s)c(k + 1)n

] 4(k+1)
4k−n

,

q2 =
[(

2p− 1
s

)(
2p− s

n

)
(2p− s + 1)c(k + 1)n

] 4(k+1)
4k−n

. (5.20)

Substituting this in (5.18) and using the interpolation inequality (2.10) with s =
N = 1, r = k, we obtain

1
2
Ḣ1 ≤ −αk

8
Hk+1

1

Hk
0

+
k−1∑
j=1

µjH0 +
m∑

s=1

s−1∑
n=0

τ(s, n)H
2ks+2s+2k−n−6

4k−4−n

0

+
2p−1∑
s=0

2p−s−1∑
n=0

ρ1(s, n)H
2k−n+4kp−2ks+4p−2s−2

4(k+1)
0

+
2p−1∑
s=0

2p−s∑
n=0

ρ2(s, n)H
4k−n+4kp−2ks+4p−2s

4(k+1)
0 . (5.21)

Taking into account that, under the previously stated conditions, H0 → 0 as t →∞,
we find from (5.21) that

H1(t) ≤ const, ∀t ≥ 0. (5.22)
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Now we can appeal to the inequality (5.8) with k = 1 to obtain

‖v‖∞ ≤ H
1
4
1 H

1
4
0 + L−

1
2 H

1
2
0 → 0 as t →∞, (5.23)

and therefore from (5.1) limt→∞ u(x, t) = 1, uniformly in x.
Now we can summarise our finding in the following theorem, that gives a condi-

tion on the initial conditions which is sufficient for convergence. The existence of
J∗ is guaranteed by earlier remarks.

Theorem 5.1. If p < 2k, m < 1 + 4p(k − 1)/(2k + p), 2p−
∑k−1

j=1 βj − σ(1, 0) > 0,

where σ(1, 0) = k−1
k

[
2m2(m+1)

kαk

]k/(k−1)

and βj are defined in (5.6), and the initial
data satisfies ∫ L

0

(u(x, 0)− 1)2dx < H∗, (5.24)

where H∗ is the smallest positive root of f(H) = 0 with f(H) defined in (5.13),
then the solution u(x, t) of (1.1) satisfies

lim
t→∞

u(x, t) = 1

uniformly for x ∈ [0, L].

6. Positivity of Solutions. We have shown that under certain restrictions on the
L2-norm of the initial data, the solution of (1.1) converges uniformly to 1. The fact
that the convergence is uniform allows to deduce that the solution must be positive
for all t sufficiently large, but not necessarily for all t. In this section we want to
show that under certain restrictions on the initial data, one can establish that, for
all values of t (not only t →∞)

‖u(·, t)− 1‖∞ ≤ 1.

This inequality ensures that u(x, t) ≥ 0 for all x and t, and therefore it provides the
preservation of positivity.

We suppose that the hypotheses of the Theorem 5.1 hold. This means, in par-
ticular, that 2p−

∑k−1
j=1 κj − σ(1, 0) > 0 and that

H0(t = 0) =
∫ L

0

(v(x))2dx ≤ H∗,

where H∗ is defined above. Under this assumption, we have that

H0(t) ≤ H∗, ∀t ≥ 0. (6.1)

With this estimate (5.21) reduces to

1
2
Ḣ1 ≤ −αk

8
Hk+1

1

(H∗)k
+

k−1∑
j=1

µjH
∗ +

m∑
s=1

s−1∑
n=0

τ(s, n)(H∗)
2ks+2s+2k−n−6

4k−4−n

+
2p−1∑
s=0

2p−s−1∑
n=0

ρ1(s, n)(H∗)
2k−n+4kp−2ks+4p−2s−2

4(k+1)

+
2p−1∑
s=0

2p−s∑
n=0

ρ2(s, n)(H∗)
4k−n+4kp−2ks+4p−2s

4(k+1) , (6.2)
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which is an autonomous differential inequality, whose solutions are bounded from
above by solutions of the corresponding differential equation. In particular, it is
easy to see that if

H1(t = 0) ≤
[
8G

αk
(H∗)k

] 1
k+1

,

then

H1(t) ≤
[
8G

αk
(H∗)k

] 1
k+1

, ∀t ≥ 0, (6.3)

where by G we denoted the right-hand side of (6.2) except for the first term.
Recall that u− 1 = v, and that we have the interpolation inequality

‖v(·, t)‖∞ ≤ H
1
4
1 H

1
4
0 + L−

1
2 H

1
2
0 , (6.4)

and therefore it is sufficient to show that the right-hand side of (6.4) is bounded
above by 1 for all t ≥ 0. In view of the bounds for H0 and H1 given by (6.1)
and (6.3) respectively, positivity of the solutions will be established provided the
following inequality holds

(H∗)
1
4

[
8G

αk
(H∗)k

] 1
4(k+1)

+ L−
1
2 (H∗)

1
2 ≤ 1. (6.5)

Previously H∗ was defined as the smallest positive root of f(H) = 0 with the
function f(H) defined in the statement of the Theorem 5.1. Since the inequality
(6.5) does not necessarily hold for any combination of parameters, therefore exactly
these parameters will determine whether the initially positive solution will remain
positive for all times. Our findings are summarised in the following theorem.

Theorem 6.1. Let p < 2k, m < 1 + 2p(k − 1)/k, 2p−
∑k−1

j=1 βj − σ(1, 0) > 0, where

σ(1, 0) = k−1
k

[
2m2(m+1)

kαk

]k/(k−1)

and βj are defined in (5.6), and let the initial data
satisfies ∫ L

0

(u(x, 0)− 1)2dx < H∗,

where H∗ is the smallest positive root of f(H) = 0, where f(H) is as in the state-
ment of the Theorem 5.1. Assume that the initial data also satisfies∫ L

0

(
∂u

∂x
(x, 0)

)2

dx ≤
[
8G

αk
(H∗)k

] 1
k+1

,

and that the parameters α1, ..., αk, L are such that the following inequality holds

(H∗)
1
4

[
8G

αk
(H∗)k

] 1
4(k+1)

+ L−
1
2 (H∗)

1
2 ≤ 1,

where G is the right-hand side of (6.2) except for the first term. Then the solution
u(x, t) of (1.1) satisfies u(x, t) ≥ 0 for all t ≥ 0 and all x ∈ [0, L].
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7. Concluding Remarks. In this paper the problem of estimating the length
scales and proving the positivity of solutions of a higher-order dissipative partial
differential equation has been addressed. We have obtained a set of ladder inequal-
ities for our equation, and used them to make the estimates for the length scales.
The relation between k, m and p is found, which provides the existence of the at-
tracting set, and thus the subsequent smoothing of the dynamics by dissipation.
Recently found sharp interpolation inequalities with explicit constants, allowed us
to improve some of the estimates, and thereby the length scales.

It has also been shown that under certain restrictions on the parameters in the
equation and the initial data, solutions which are initially positive, will remain
positive for all times. Asymptotic positivity of solutions is also established for some
initial data. The obtained results can be applied to a wide range of dissipative
PDEs arising in many fields of applied mathematics, such as mathematical biology
and particle dynamics. Specifically we would like to stress that fixing particular
values for the parameters k, m and p one can obtain explicit estimates for various
classical reaction-diffusion type equations.
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