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On a basic model of a two-disease epidemic
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Abstract

This paper considers a basic model for a spread of two diseases in a population. The

equilibria of the model are found, and their stability is investigated. In particular, we

prove the stability result for a disease-free and a one-disease steady-states. Bifurcation

diagrams are used to analyse the stability of possible branches of equilibria, and also

they indicate the existence of a co-infected equilibrium with both diseases present. Fi-

nally, numerical simulations of the model are performed to study the behaviour of the

solutions in different regions of the parameter space.
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1. Introduction

Since the famous Kermack–McKendrick SIR model for a spread of disease

[1], differential equations have been widely used in mathematical epidemiology.

Numerous mathematical models were developed to study a disease transmis-

sion, to evaluate the spread of epidemics, and more importantly, to understand

the mechanisms of epidemics in order to prevent them or minimise the trans-

mission of diseases via quarantine and other measures (see [2–5] and references
therein).
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In the last years, statistics on the infected individuals with AIDS, tubercu-

losis, hepatitis B and C, herpes and other diseases are growing very fast. The
understanding of the long-time behaviour of diseases will help to find whether

the epidemics will die out or stay in the population and to design strategies of

fighting them. Optimal strategies of vaccination developed on the basis of

mathematical modelling can help to eradicate some infectious diseases and

produce methods for their control [6–9].

There are many mathematical models describing behaviour of diseases,

optimisation of treatments, vaccination of the population. Some works con-

sider models with two diseases such as AIDS and tuberculosis [10,11] or de-
scribe two strains of one disease present in the population, influenza or

tuberculosis, for instance [12–14]. In particular, a realistic situation in which

the co-existence of two diseases occurs is the case of sexually transmitted dis-

eases (STD), such as AIDS and gonorrhea [15].

At the same time, it is natural to derive a basic model which can allow one

to describe general features of a two-disease epidemic and analyse its

dynamics in order to gain the understanding of qualitative behaviour in this

system. The purpose of this paper is to consider such a two-disease model.
These can be two different diseases or two strains of one and the same disease.

It is assumed that each individual can be infected with one or both diseases.

There is no immunity or cross-immunity which means that an individual

recovered from one disease can be infected with another or with the same one

again. From a natural background we consider the case when there are deaths

from both diseases. Of course, this model can also be used in the case when

diseases produce no death, and this will simplify the model. It is assumed that

there is a constant recruitment rate with which individuals become suscepti-
bles (Fig. 1).
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Fig. 1. A diagram for a two-disease epidemic. S stands for susceptibles, ID, Id and IdD denote

individuals infected with major, minor and both diseases.
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The model is represented as a system of four ODEs, and since individuals

do not have immunity after disease we reduce this model from SIR to SIS.
We give a complete analysis of this system, such as stability of a disease-free

and endemic equilibria. Basic reproductive number R0 is used to analyse the

stability of a disease-free equilibrium, and we prove that this state is stable

for R0 < 1 and unstable otherwise. Conditions for the local asymptotic

stability are also obtained for one-disease endemic equilibria. We use

bifurcation diagrams to detect the branches of equilibria for our model and

analyse the regions of parameters where these steady-states change their

stability.
The outline of the paper is as follows. In Section 2 we introduce a two-

disease model and discuss its main properties. Section 3 deals with the stability

analysis for the disease-free equilibrium, while Section 4 treats the case of a

one-disease endemic steady-state. In Section 5 we study possible bifurcation

scenarios and perform numerical simulations of the model. Section 6 contains

the summary of results and discussion.
2. The derivation of the model

The host population is N ¼ NðtÞ, and we divide it into the following

classes: susceptibles S ¼ SðtÞ, infected with major IDðtÞ and minor IdðtÞ
diseases, and co-infected (means infected with major and minor diseases
simultaneously) IdDðtÞ individuals. The total population size is N ¼
S þ ID þ Id þ IdD. In our model B denotes the constant recruitment rate, with

which individuals become susceptibles; l is a natural death rate; a and b are

the effective transmission rates with which individuals become infected with

the major and minor diseases, correspondingly. Also, probabilities to become

infected only with major, minor or both diseases after contacting co-infected

individual are að1� bÞ, bð1� aÞ, and ab. We note here that the efficiency of a

disease transmission is assumed to be the same for both susceptible and in-
fected individuals. This means that the probability for an infected individual

to become infected with the second disease is the same as the probability for a

susceptible to become infected with that disease. Furthermore, there are death

cases from both diseases, therefore, we introduce disease induced mortality

rates rD and rd for the major and minor diseases, respectively. Hence, for co-

infected individuals the disease caused mortality rate becomes ðrD þ rdÞ. The
recovery rates from the major, minor and both diseases are introduced to be

rD, rd and rdD.
Since we consider the model with no immunity, it is assumed that each

individual after recovery immediately becomes susceptible again. Therefore,

equations for the recovery class can be dropped, and we consider a SIS model

instead of an SIR.
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After all these assumptions, the model has the following form:
Table

Table

Sym

B
a, b
l
rD,

rD, r
dS
dt

¼ B� lS � að1� bÞIdD
S
N
� aID

S
N
� bð1� aÞIdD

S
N
� bId

S
N

� abIdD
S
N
þ rDID þ rdId þ rdDIdD;

dID
dt

¼ að1� bÞIdD
S
N
þ aID

S
N
� ðrD þ l þ rDÞID � bðId þ IdDÞ

ID
N

;

dId
dt

¼ bð1� aÞIdD
S
N
þ bId

S
N
� ðrd þ l þ rDÞId � aðID þ IdDÞ

Id
N
;

dIdD
dt

¼ ða þ bÞ IDId
N

þ ðaId þ bIDÞ
IdD
N

� ðrD þ rd þ l þ rdDÞIdD þ abIdD
S
N
;

NðtÞ ¼ SðtÞ þ IDðtÞ þ IdðtÞ þ IdDðtÞ:
ð1Þ
Using the next generation operator approach described in [4] and subsequently

analysed in [16], we obtain basic reproductive numbers associated with the

major, minor and both diseases as
R1 ¼
a

rD þ l þ rD
; R2 ¼

b
rd þ l þ rd

; R3 ¼
ab

rD þ rd þ l þ rdD
: ð2Þ
These numbers give the number of secondary infective cases of the diseases

produced by an individual infected with major, minor, and both diseases

during his/her effective period when introduced in a population of susceptibles

[4] (Table 1).

Consequently, the basic reproductive number associated with the model (1)

is
R0 ¼ maxfR1;R2;R3g: ð3Þ
The case R0 ¼ 1 gives a threshold condition. We shall prove that for R0 < 1

both diseases will die out and for R0 > 1 at least one disease will be present in

the population.
1

of parameters

bol Definition

Recruitment rate

Effective transmission rates for the major and minor diseases

Per-capita natural mortality rate

rd Per-capita disease induced mortality rates

d, rdD Per-capita recovery rates
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3. Disease-free equilibrium and its stability

The system (1) has several equilibria: when both diseases are absent (unin-

fected equilibrium), and when a disease (one or both simultaneously) is present.

In the latter case an equilibrium is called endemic. In this section the analysis of

the disease-free steady-state for the system (1) and its stability is performed.

Consideration of stability of a disease-free equilibrium gives certain conditions

under which diseases will die out or stay in the population.

Let Ei ¼ ðS; ID; Id; IdDÞ be the equilibria for the system (1) and E0 ¼
ðB=l; 0; 0; 0Þ be the disease-free steady state. Then the following result holds.

Theorem 1. The disease-free equilibrium E0 is locally asymptotically stable if
Rj < 1, j ¼ 1; 2; 3 and unstable if either of Rj > 1.

Proof. Linearisation of the system (1) near E0 gives
�l �a þ rD �b þ rd �a � b þ ab þ rdD
0 a � l � rD � rD 0 að1� bÞ
0 0 b � l � rd � rd bð1� aÞ
0 0 0 �l � rd � rD � rdD þ ab

0
BB@

1
CCA:

ð4Þ
If real parts of all the eigenvalues of this matrix are negative, then the disease-

free steady-state is locally asymptotically stable. The matrix (4) has four

eigenvalues which will have negative real parts if and only if
a < l þ rD þ rD; b < l þ rd þ rd; ab < l þ rd þ rD þ rdD:
Recalling the expressions for R1;R2 and R3, we obtain that E0 is locally

asymptotically stable iff R1 < 1, R2 < 1 and R3 < 1. This completes the proof
of the theorem. h
4. Endemic equilibria

In this section, we analyse endemic equilibria for the system (1). The non-

zero steady-states can be present if there is only major disease, only minor

disease or both diseases. Since the system (1) is symmetric with respect to major

and minor diseases, therefore, we shall investigate only the case when the major

disease is present in the population and the minor disease dies out. In this case

there are no co-infected individuals. When the two diseases and the co-infec-
tion are present the expression for endemic steady-state cannot be obtained

analytically. Thus, in the next section numerical simulations of this steady-state

are presented.
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Let E1 ¼ ðbS ; ÎD; 0; 0Þ, bN ¼ bS þ ÎD be the endemic equilibrium for (1), where
bN ¼ Ba
�rDl þ al þ arD � r2

D � rDrD

;

bS ¼ ðl þ rD þ rDÞB
�rDl þ al þ arD � r2

D � rDrD

;

ÎD ¼ Bða � l � rD � rDÞ
�rDl þ al þ arD � r2

D � rDrD

:

ð5Þ
From (5) it can be seen that N̂ , Ŝ and ÎD are positive if the following condition

holds:
a > l þ rD þ rD; ð6Þ
what can be recast as
R1 > 1:
Linearising system (1) near the equilibrium E1 and using the Routh–Hurwitz

criterion, we obtain the following conditions for local asymptotic stability of

this state:
f ¼ � ab
R1

þ b
1

R2

�
� 1

	
þ a 1

�
� 1

R1

	
þ ab
R3

> 0; ð7Þ
and
g ¼ � a

�
þ b
R2

	
þ 1

R1

a2



þ ab 1

�
� 1

R3

	
þ b
R2

ð1� abÞ
�

þ a
R3

a 1

�

� 1

R1

	
þ b
R2

�
> 0: ð8Þ
We can summarise these findings in the following theorem

Theorem 2. The endemic equilibrium E1 exists if R1 > 1, and it is locally
asymptotically stable if the conditions (7) and (8) hold.

Similar results about existence and stability can be obtained for another

endemic equilibrium E2 ¼ ð~S; 0;~Id; 0Þ upon the change of variables: a ! b,
rD ! rd and R1 ! R2. Both equilibria E1 and E2 are exclusive in a sense that

only one disease is present in the population, while the second eventually dies

out. Therefore, it is reasonable to generalize this situation for a co-infected

state when both diseases are present. Unfortunately, analytic expression for
this state cannot be found for general values of the parameters, and thus in the

next section we use numerics to study the existence and stability of the co-in-

fected state.
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5. Bifurcation analysis and numerical simulations

Now we discuss the appearance of different branches of equilibria and

analyse their stability as the parameters in the system are varied. In what

follows all the parameters will be considered as fixed except for a, which will be

used as a control parameter. We take b as fixed but satisfying the condition

R2 < 1, so that for small a only the disease-free equilibrium exists and is stable.

When a grows the state E0 will eventually lose its stability. This will happen

when either R1 or R3 becomes greater than 1. Using the definitions of R1 and

R3 from (3) it can be easily seen, that if
Fig. 2

values
b <
rD þ rd þ l þ rdD

rD þ l þ rD
;

than R1 > R3, and it is enough to track the dynamics of R1 only to obtain the

smallest value of a for which E0 will become unstable.

The endemic state E1 appears when R1 > 1. If R1 > R3 then the point when

E1 is born coincides with the point where E0 becomes unstable. Otherwise, E0

will be unstable for values of a such that R3 > 1 but R1 < 1, and for these

values E1 yet will not exist (this will be illustrated below). Depending on the

value of b the line of equilibria E1 can be stable for all values of a in the range

of its existence or only for some of them depending on whether the conditions

(7) and (8) are satisfied (Fig. 2).

For illustration purposes, we fix the values of the parameters l ¼ 0:01,
rD ¼ 0:04, rd ¼ 0:03, rD ¼ 0:5, rd ¼ 0:8, and B ¼ 1 and start with the case

b ¼ 0:3 as illustrated in Fig. 2. For this value of b the disease-free equilibrium
loses its stability at a ¼ 0:55, and at this point an endemic state appears. For

larger b this endemic state is originally unstable, but it becomes unstable for

large a as Fig. 3 shows. For even larger values of b the line of endemic
. (a) Bifurcation diagram for system (1) and (b) stability conditions f ðaÞ and gðaÞ. Parameter

are: l ¼ 0:01, rD ¼ 0:04, rd ¼ 0:03, rD ¼ 0:5, rd ¼ 0:8, B ¼ 1 and b ¼ 0:3.



Fig. 3. (a) Bifurcation diagram for system (1). The solid line denotes a stable solution, while the

dashed line represents an unstable solution. (b) Stability conditions f ðaÞ and gðaÞ. Parameter values

are: l ¼ 0:01, rD ¼ 0:04, rd ¼ 0:03, rD ¼ 0:5, rd ¼ 0:8, B ¼ 1 and b ¼ 0:5.

Fig. 4. (a) Bifurcation diagram for system (1). The solid line denotes a stable solution, while the

dashed line represents an unstable solution. (b) Stability conditions f ðaÞ and gðaÞ. Parameter values

are: l ¼ 0:01, rD ¼ 0:04, rd ¼ 0:03, rD ¼ 0:5, rd ¼ 0:8, B ¼ 1 and b ¼ 0:8.
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equilibria E1 is unstable for all values of a since the conditions for stability (7)

and (8) fail (see Fig. 4).

Besides the steady-states considered above there is an important issue con-

cerning the co-infected equilibrium. For small values of b this state does not

exist. If b increases, the co-infected steady-state can be found, and numerical

simulations prove its stability. It is noteworthy that in this case the co-infected

state can exist and be stable for the same values of a as the equilibrium E1 does.

This is illustrated in Fig. 5(a). For very large b (which are still taken to satisfy
the condition R2 < 1) the disease-free equilibrium loses its stability when R3

passes through 1, and at this value of a the endemic equilibrium with one

disease still does not exist. On the other hand, at this point the co-infected

steady-state appears, which is unstable, but it stabilizes for larger a. These
transitions are presented in Fig. 5(b).
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Fig. 5. Parameter values are: l ¼ 0:01, rD ¼ 0:04, rd ¼ 0:03, rD ¼ 0:5, rd ¼ 0:8, and B ¼ 1; (a)

bifurcation diagram for system (1) with b ¼ 0:5 and (b) bifurcation diagram for system (1) with

b ¼ 0:8. The solid line denotes stable solutions, while the dashed line represents unstable solutions.

Fig. 6. Population fractions S=N (solid), ID=N (dashed), Id=N (dot-dashed), IdD=N (dotted) as

functions of time. Parameter values are: l ¼ 0:01, rD ¼ 0:04, rd ¼ 0:03, rD ¼ 0:5, rd ¼ 0:8 and

B ¼ 1; (a) a ¼ 0:52 and b ¼ 0:75; (b) a ¼ 0:6 and b ¼ 0:4; (c) a ¼ 0:8 and b ¼ 0:8 and (d) a ¼ 0:9

and b ¼ 0:9.
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Next we study the system (1) numerically for some values of a and b to

understand the qualitative behaviour of solutions in different stability regions.
In Fig. 6(a) we start in the region of parameter space where only the uninfected

equilibrium exists and is stable. For larger values of a the uninfected state is

unstable, and a stable equilibrium E1 appears (see Fig. 6(b)), but still there is no

co-infected steady-state. Fig. 6(c) corresponds to the case when E1 is unstable,

and the stable co-infected equilibrium exists. Finally, Fig. 6(d) represents the

situation when both one-disease equilibria exist, as well as a co-infected steady-

state.
6. Conclusions

In this paper, we have derived and analysed a two-disease ODEs model with

cross-infectivity. First, we have found the basic reproductive numbers for each

disease and for the model in general. The local stability of the disease-free

steady-state has been proved for R0 < 1. A threshold condition is R0 ¼ 1, and
for R0 < 1 the uninfected steady-state is locally asymptotically stable and

unstable otherwise.

There are three types of endemic equilibria for the system (1): when only

major, only minor or both diseases are present. Since the system (1) is sym-

metric with respect to major and minor diseases, we have considered the case

when only major disease is present in the population. In this case the endemic

equilibrium E1 has been found analytically. The condition for this steady-state

to exist has proved to be R1 > 1. The stability result for E1 is formulated in
Theorem 2, where it is summarised in two conditions. Similar results can be

found for the equilibrium E2 when only minor disease is present.

For certain values of parameters we have found different branches of steady-

states of the system (1), which are illustrated in Figs. 2–5. In the case when two

diseases and a co-infection are present, we were unable to obtain an analytical

expression for this endemic state for general values of parameters. Numeri-

cally, we have found this steady-state and studied its stability in some regions

of the parameter space. These results are represented in Fig. 5. We have also
studied the system (1) numerically, and results for different values of param-

eters are illustrated in Fig. 6(a)–(d). The cases considered include the regions

when the uninfected equilibrium is stable and when it is unstable but there exist

other endemic equilibria including the co-infected state.

As it was noted in Section 1, the model considered in this paper is a basic

model, in which we aimed to capture main features in the dynamics of a spread

of two diseases in a host population. This model or its generalization can be

applied to the study of various two-strain diseases, such as influenza, tuber-
culosis, etc., or two different co-existing diseases with the same or different

transmission route.
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