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Abstract

The semi-automatic extraction of a semantic hierarchy from a machine
readable dictionary is investigated. This hierarchy could potentially be used
by a word sense disambiguation technique which measures semantic related-
ness of two senses using a semantic hierarchy and evaluates potential sense
configurations according to this measure of semantic relatedness.
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1 Introduction

Arthur: “Ah. This is obviously some strange usage of the word
“safe” that I hadn’t previously come across”
- Douglas Adams, The Hitchhiker’s Guide to The Galaxy.

1.1 Aim

The aim of this project was to semi-automatically build a hierarchy of noun senses
in the machine-readable dictionary (MRD) CIDE+ (Cambridge International Dic-
tionary of English), using information provided therein. Such a hierarchy has many
potential uses, one of which is in word sense disambiguation (WSD) tasks.

1.2 Motivation

A large number of words used in English are polysemous, that is, they have more
than one sense. These senses may be closely related or completely different. In the
latter case, the senses are referred to as homographs of each other. For example,
the word “bank”, as defined in CIDE+, has three core senses (or homographs)
which are distinguished by the guidewords organisation, “raised ground” and turn.
Within a core sense there may also be a plurality of more closely related senses.
For example, the organisation homograph of “bank” includes the senses defined as,
“an organisation where people and businesses can invest or borrow money...”, “a
bank of something, such as blood or human organs for medical use, is a place which
stores these things for later use” and “in gambling, the bank is money that belongs
to the owner and can be won by players.”

In many language understanding tasks it is necessary to be able to disambiguate
between the different senses of a word. For example, a machine translation system
translating a piece of text from English to French would need to be able to trans-
late the organisation sense of bank to “la banque” and the “raised ground” sense
to “la rive”, “la berge” or “le banc” (depending on the more finely-grained sense
intended). The intended sense can usually be determined in context. For example,
if the sentence also includes the word “money” (e.g. “I withdrew some money from
the bank’.”), it is more likely, although not necessary, that the sense of bank in-
tended is that of an organisation where people and businesses can invest or borrow
money. This contextual information might be used alone or in conjunction with
other word sense cues such as part-of-speech, sense frequencies, verbs’ semantic se-
lection preferences on arguments, collocations (certain words often appear together
as a phrase and thereby disambiguate each other e.g. “film review”) and the subject
domain of the text.

Two major approaches have emerged in the attempt to solve the WSD problem.
The first of these, which will not be considered further here, is the use of large cor-
pora from which statistics are extracted. The second approach, which is considered
here, is to use MRDs.

Wilks and Stevenson (1998a) have developed a system which can be used to
perform WSD for words in context using the MRD LDOCE (Longman Dictionary
of Contemporary English). This system attempts to combine information from mul-
tiple weak knowledge sources (as defined by Newell 1973). After pre-processing the
text (which includes tokenisation, sentence splitting, part-of-speech tagging, named
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entity recognition, shallow syntactic analysis and lexical look-up), the system uses
six disambiguation modules, which each provide a certain level of disambiguation.
The idea is that by using a machine-based learning technique to integrate the in-
formation provided by the individual modules, improved overall results may be
obtained.

The first disambiguation module in the Wilks and Stevenson 1998a system is
a part-of-speech filter. This removes from consideration all senses for a particular
word which are not consistent with the part-of-speech assigned by the part-of-speech
tagger. Ideally a partial tagger, which marks each ambiguous word with the sense or
senses it considers to be correct, would be used instead of a filter as a filter may make
a mistake and remove the correct sense completely from consideration by the other
modules. However, part-of-speech taggers such as the Brill (1995) tagger tend to be
extremely accurate (accuracy up to 98%) and can considerably reduce the number
of sense configurations to be considered by other modules. For example, Slator and
Wilks (1987) cite the seemingly simple sentence, “There is a huge envelope of air
surrounding the earth.” They claim that there are 2856 possible sense configurations
when all possible senses assignable from LDOCE are considered. This drops to
990 possible sense configurations when senses incompatible with part-of-speech are
removed from consideration.

The second disambiguation module is a partial tagger which uses word definition
overlap to disambiguate between senses. This module is based on the idea that
the definition of the intended sense of a word is likely to have words in common
with definitions of other words in the sentence. A motivating example for this
approach, identified by Lesk (1986), is the phrase “pine cone”. In LDOCE, “pine”
has two major senses and “cone” has three major senses. The correct senses have
the words “evergreen” and “tree” in common in their definitions. The Wilks and
Stevenson (1998a) disambiguation module optimises the overlap of all words in a
single sentence at the same time by minimising an evaluation function. The overlap
for a given configuration of senses is defined as the total number of times each
word appears more than once in the dictionary definitions of all the senses in the
configuration. In order to reduce the amount of computation required, a simulated
annealing technique is used rather than computing all possible configurations of
senses.

The third and fourth disambiguation module are partial taggers which use
LDOCE pragmatic codes. LDOCE pragmatic codes have a two-level structure and,
when given for a word sense, indicate the subject area in which that word sense
is likely to appear. The third module optimises the number of pragmatic codes of
the same type in the sentence. The fourth module is based on the broad context
algorithm developed by Yarowsky (1992).

The fifth disambiguation module is a partial tagger which returns the set of
senses which are licensed by the selectional preference information in LDOCE. The
sixth and final disambiguation module in the Wilks and Stevenson 1998a system is
a collocation extractor.

It is thought that a system similar to the one described above could be im-
plemented which would disambiguate between CIDE+ senses rather than LDOCE
senses.

Preiss (2000) provides a disambiguation module for use in such a CIDE+ sys-
tem. This module is similar to the second disambiguation module in the Wilks and
Stevenson (1998a) system insofar as that it uses definition overlap to disambiguate
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between senses. However, Preiss (2000) attempts to overcome a problem identified
by Wilks and Stevenson (1998a) with their module. The problem being that defini-
tions using synonymous words rather than identical words are penalised. Further,
by only considering the overlap of word forms, the intuition that it is overlap in
meaning that is important is to some extent lost.

With a view to overcoming this problem, Preiss (2000) uses the idea that truly
synonymous words ought to belong to the same synset (i.e. set of synonymous
words) in a semantic hierarchy such as WordNet (Miller et al (1990), Fellbaum
(1998)). It is also the case that, in general, in a semantic hierarchy such as WordNet,
the closer two words are together in the hierarchy, the greater their similarity in
meaning. In other words, distance of separation in the hierarchy provides a measure

of semantic relatedness.

Accordingly, Preiss (2000) defines a distance function to calculate the distance
between any two word senses in the hierarchy. She then obtains the optimal sense
configuration over an entire sentence using thirteen different “experts”. Four of
these maximise the CIDE+ overlap (in the same way as Wilks and Stevenson
(1998)), four minimise distance between senses in the semantic hierarchy, and four
maximise the CIDE+ overlap of definitions where overlap of two words is a func-
tion of their separation in the semantic hierarchy. Each one of each group of four
is implemented in a different way. These different implementations are simulated
annealing, exhaustive search, best-so-far simulated annealing and use of a Viterbi-
style algorithm. The thirteenth expert simply picks the first CIDE+ sense for each
word in the sentence. The decisions made by the experts are combined to give an
overall decision.

However, any such approach relies to some extent on the semantic hierarchy
used. WordNet can be used but this suffers from the drawback that it is necessary
to map between CIDE+ senses and WordNet senses. Even presuming an accurate
mapping can be made where the same senses are defined for a word, there remains
the problem that in some cases WordNet defines two senses for a word where CIDE+
defines one and in other cases WordNet defines one sense where CIDE+ defines two.
This is particularly likely where senses are very closely related. In a case where
CIDE+ defines two senses and WordNet defines one, there is no way to disambiguate
between the CIDE+ senses using WordNet since both CIDE+ senses map to the
same WordNet sense. How much this will affect the results of the disambiguation
module depends on how often this happens. I took a random sample (using a pseudo
random number generator based on Marsaglia 2000) of 200 noun senses in CIDE+
and attempted to find the corresponding word sense in the WordNet noun hierarchy.
I was unable to find a good mapping in 68 cases, that is, only an estimated 66%
of noun senses in CIDE+ have a corresponding noun sense in WordNet. This does
not, of course, necessarily limit the performance of a disambiguation module using
WordNet to (an estimated) 66% since the word senses not contained in WordNet
may occur infrequently in dictionary definitions or in text. However, I believe that
this missing 34% must limit the performance of the module to some extent.

It follows, I believe, that optimum results for a disambiguation module such
as Preiss (2000) could only be achieved using a hierarchy which includes every
CIDE+ word sense. In accordance with this, it was my aim to go some way towards
building such a hierarchy. Due to the limited time available, the size of CIDE+
and the complex issues involved in building a semantic hierarchy, which will be
discussed later, I decided early on that my work would concentrate on building a
noun hierarchy, with the possibility of going on to other parts of speech if time
permitted.
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2 Background

2.1 Semantic Hierarchies

In its simplest form, a semantic hierarchy is a tree-like structure in which nodes
represent word senses (or meanings) and the directed links between nodes represent
relations between word senses. Semantic hierarchies tend to be constructed for an
individual part of speech since it is generally thought that the different concepts rep-
resented by nouns, adjectives, verbs, and adverbs are too dissimilar to be organised
into a single structure.

However, there are a number of different relations which may hold between
words. Considering first only nouns, the most comprehensive of relations is that
of hyponymy, or informally, the ISA relation. The hyponymy relation relates each
word sense to its hypernym (or superordinate) and its hyponyms (or subordinates).
For example, “mammal” is a hyponym of “animal” and a hypernym of “aardvark”.
In general, a sense of a noun has a single hypernym and any number (which may
be zero) of hyponyms.

According to Fellbaum (1998), this hierarchical structure, generated by the hy-
ponymy relation, is implicit in the prototypical lexicographic definition of a noun.
Information that is common to two dictionary entries, such as mammal and ani-
mal, is not stored in both entries. This information is stored solely in the entry
for animal. Types of animal, such as mammals, are then assumed to inherit this
information without it being explicitly stated.

Other common relations which may exist between nouns are synonymy (“car”
is the same as “automobile”), antonymy (“defeat” is the opposite of “victory”) and
meronymy-holonymy (a “tooth” is a part of the “mouth”). However, these relations
cannot be defined for all nouns and do not lend themselves as well to defining a
hierarchical structure for nouns, as does the hyponymy relation. Consequently, the
backbone of a noun semantic hierarchy will generally be the hyponymy relation. For
example, Fellbaum (1998) indicates that the hierarchical representation generated
by the hyponymy relation provides the central organising principle for the nouns in
WordNet.

Broadly speaking, we might imagine that a similar semantic hierarchy could be
and should be built also for adjectives, verbs and adverbs; that is, the other parts
of speech generally considered to be content words. However, the idea of a semantic
hierarchy for parts of speech other than nouns is not so intuitive. Here, I will briefly
consider how constructing hierarchies for adjectives and verbs could be approached,
and is approached in WordNet, and some of the problems associated therewith.

Adjectives are generally divided into two major classes. These are descriptive
adjectives and relational adjectives. Descriptive adjectives, e.g. “fresh” or “stale”,
assign a value of an attribute to a noun. However, descriptive adjectives do not in-
tuitively organise themselves into a tree-like structure. The intuitive way of organ-
ising descriptive adjectives is into clusters of similar words which are then opposed
to other clusters through the antonymy relation. This is the way they are organised
in WordNet. The lack of a tree-like structure is a problem for a disambiguation
module such as discussed above, since there will not be a defined distance between
all adjective pairs. It is also an issue for other systems which view lexical knowledge
as an inheritance system.
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Relational adjectives, e.g. “medical” or “lexical”, relate or associate the noun
they modify with another noun. For example, lexical knowledge is knowledge re-
lated to or pertaining to the lexicon. Accordingly, the way that WordNet organises
relational adjectives is to link them to the nouns they modify. This is intuitive
since relational adjectives play a similar role to that of a modifying noun. Further,
although this organisation is not a tree structure, it does not pose so much of a
problem as with that of descriptive adjectives since, assuming a complete noun hi-
erarchy, a path will be defined from every relational adjective to every noun and
hence to every other relational adjective. In fact, this might be an advantage for
a word sense disambiguation module since adjectives can then be used to disam-
biguate nouns and vice versa.

The relation between verbs which most resembles the hyponymy relation be-
tween nouns is that of troponymy (coined by Fellbaum and Miller (1990)). Tro-
ponymy is a type of lexical entailment in which x is said to be a troponym of y if
it can be said that to x is to y in some manner. For example, walk is a troponym
of move. However, Fellbaum (1998) has found that verbs cannot easily be arranged
into the tree-like structures into which nouns are arranged.

2.2 Building Semantic Hierarchies from Machine Readable
Dictionaries

Copestake(1990) has investigated semi-automatically building semantic hierarchies
from the MRD LDOCE. Her aim was to extract lexical semantic information from
the definitions of lexical entries and represent this information in a lexical knowledge
base (LKB) in the form of an inheritance system.

Copestake’s approach is to extract a genus term for each word sense from its
definition and then build the hierarchy recursively in a top down manner. Starting
with a given word sense at the top of the tree, all of the dictionary entries for which
this is the genus term are found, and then the program recurses on each child found
until it reaches a word sense which is never used as a genus term.

Extraction of genus terms from dictionary definitions is discussed by Vossen
and Copestake (1993). As they discuss, the traditional assumption is that the
genus term for a noun definition is the syntactic head of the defining noun phrase.
For example, if an adder is defined as a poisonous snake (taken from CIDE+!)
then the genus term of adder is snake. However, Vossen and Copestake identify a
number of different types of definition, found in LDOCE, which need to be treated
differently.

Firstly, there are definitions where the syntactic head of the defining noun phrase
is a synonym of the word being defined rather than a hypernym. This is generally
the case when the syntactic head is unmodified.

Secondly, they identify definitions with complex kernels, that is, where the genus
term is in fact a genus phrase. Vossen and Copestake have further identified four
types of complex kernels which correspond to four different relations between words.
The first of these is the type/kind relation which can be regarded as an explicit
version of the hyponymy relation. For example, bitter is defined as a type of dark,
brown beer. It’s genus term is beer.

L Although Vossen and Copestakes work is based around .LDOCE, I will take any examples from
CIDE+ in order to illustrate the validity of their points in the context of extracting a semantic
hierarchy from CIDE+ definitions.
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The second type of complex kernel corresponds to a quantity/mass relation. For
example, in CIDE+, a note is defined as a piece of paper money. This is a different
relation to the ordinary hyponymy one, since a mass noun has become a count
noun. However, Vossen and Copestake claim that, for general lexical representation
purposes, such definitions can be treated as if they were in fact of the type/kind
structure. They motivate this by saying that, in the context of dictionary definitions,
a piece of material will always be material and thus all the properties of material
should apply.

In the context of building a semantic hierarchy for word sense disambiguation
purposes, their thinking would also seem to be sound. It seems likely that the word
“money” will be much more useful than “piece” in disambiguating the word “note”.

The third type of complex kernel identified by Vossen and Copestake, corre-
sponds to a member/group relation. They also distinguish between group nouns,
such as “band,” which is defined as “a group of musicians”, and non-group nouns,
such as “dolmen” which is defined as “a group of stones”’. They claim that in the
latter case, the relator “group” is really being used to indicate a component/whole
relation (discussed below). They argue that, in the context of dictionary defini-
tions, if a group is defined in terms of its members then it can be taken to inherit
appropriate properties from them. With regard to the inverse relation (“member
of”), they argue that since the use of complex kernels of the form “an x is a member
of y” is almost entirely restricted in LDOCE to human denoting definitions, it can
normally be assumed that an x is a human.

The fourth type of complex kernel corresponds to the component/whole, or
meronymy, relation. Vossen and Copestake argue that with this relation, very
little can be predicted about the word being defined. For example, “albumen” may
be “the white part inside an egg” but it can in no way be considered to inherit the
properties of “egg”. The inverse of this relation is that something can be said to
be a whole made up of different parts. However, Vossen and Copestake argue that
it is not generally possible to predict how the semantics of the whole relate to the
semantics of the components.

Vossen and Copestake also identify that some definitions have genus terms which
are coordinated. Coordination may be via a conjunction or disjunction. They
distinguish between coordination where the coordinated elements are alternatives
between which a choice has to be made (e.g. a landmark is a building or place
which...) and coordination where the entry word is a complex WHOLE of which
the elements are components (e.g. cutlery is knives, forks and spoons used...).

Copestake 1990 also discusses sense disambiguating the selected genus term. It
is little use knowing that “b” is a letter unless it is also known which sense of
letter is meant. In order to sense-disambiguate the genus terms, Copestake exploits
two features of LDOCE. The first is that it has a limited core vocabulary, thereby
restricting the possible non-leaf nodes in the hierarchy. The second is that extra
semantic information is provided for certain entries in the form of box codes (e.g.
“human”, “animal” etc.).

2.3 CIDE+

The MRD CIDE+ is an SGML encoded database of the Cambridge University
Press’ 1995 Cambridge International Dictionary of English for advanced learners.
Since it is a learners’ dictionary, a restricted core vocabulary is used. Each entry,
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or record, in CIDE+ contains at least a unique identifier (url), a key (indicating
the sense of the word), one or more parts of speech and one or more word forms.
Other pieces of information which may be included in an entry are a definition, a
guideword (particularly if the word form has more than one sense), a code indicat-
ing whether the “word” is a single word or a multi-word unit, information about
semantic class, semantic selection preferences, subject domains, grammar codes,
usage, other morphological forms of the same word, HECTOR codes, links to other
entries and examples of how the word might be used.

The word forms grouped together in a CIDE+ definition may be variant spellings
or they may be synonyms. For example, “biscuit”, “bikkie”, “bickie” and “cookie”
are grouped together in this way. Since these word forms were already grouped
together, they remained grouped together as WordNet equivalent synsets in the
semantic hierarchy.
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3 Development

Development of the hierarchy was split into modules. The conceptual process and
flow of information is shown in Figure 1. Each module will be discussed in turn in
subsequent subsections.

CIDE*_ | pREPROCESS

| —
L+ CIDE+ SDC HIERARCHY

EXTRACT
///
OPTIONAL TOP BUILD & HYPOTHESIS
REDUCTION CONSTRUCTION= REDUCE OF TOPS
2ND PASS HIERARCHY :
= EXTRACTION POSTPROCES$S DATA &
& ADDITION INDEX
FILES

CIDE+ SDC HIERARCHY

Figure 1: Development Process

Each module was written in Prolog. Prolog was chosen as the language due to its
inbuilt abilities in handling large databases, recursion, searching, and list processing.
Efficiency of the modules was never a primary concern due to the fact that each
module should only need to be run a finite number of times during building of the
hierarchy and then never again.
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3.1 Preprocessing: Conversion of Database into Prolog

The first module converts the CIDE+ SGML database into a Prolog database. The
CIDE+ file is read in a record at a time using code adapted from Clocksin and
Mellish (1981). Each record is then converted into a set of 3-place entry clauses
of the form entry(Url, FieldName, Field Value). The procedure that does this is such
that entries for a particular field can occur any number of times and the different
fields can occur in almost any order, the only requirement on order being that the
url field occurs first. Further, certain fields, such as eg-group and link are ignored
altogether as these will not be used to build the hierarchy and ignoring them reduces
the memory requirements. Figure 2 shows an example of a CIDE+ input record
and the corresponding Prolog clauses.

<sense><headword><record><url>11717</url><key>case* 4* 0</key>
<word-group><word>case</word><pos>n</pos><grammar>C</grammar></word-group>
<link><rel>Component</rel><ref>longcaseclock* 1* 0</ref></link><inf>case</inf><inf>
cases</inf><guideword>CONTAINER</guideword><subj>1316/subj><class>Container</class>
<def>a container or box for storing things in, esp. a suitcase</def>

<eg-group><eg>Could you help me to carry my cases onto the train?</eg></eg-group>
<eg-group><eg>Antonio keeps his pet insects in a glass case.</eg></eg-group>

CONVERSION PROCESS

entryl
entryl
entryl
entryl
entryl
entryl
entryl
entry
entry
entryl

11717, key, 'case* 4* 0").
11717, word, case).

11717, pos, n).

11717, grammar, c).

11717, inf, case).

11717, inf, cases).

11717, guideword, container).
11717, subj, 1310).

11717, class, container).
11717, def, 'a container or box for storing things in, esp. a suitcase').

AR AR AR ARAARAA D

Figure 2: Conversion Process

3.2 Separation by Part of Speech

The database was separated into four smaller databases based on part of speech
for two major reasons. The first was the large number of content words in the
dictionary, the distribution of which is shown in Table 1. The second was the
fact that, initially in any case, words of one part of speech would be linked only
to other words of the same part of speech. It should be noted at this point that
CIDE+ categorises content words by more than the four conventional open class
parts of speech (noun, verb, adjective and adverb). For example, nouns which are
usually used in their plural form, such as bacteria, are given the part of speech pl
n. However, the separation process was into the four conventional open class parts
of speech and, this being the case, plural nouns were reclassified simply as nouns.

However, a problem with separating the dictionary into separate parts of speech
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Part of Speech | Number | Percentage of Total |

Noun 39024 53%
Verb 14975 21%
Adjective 13834 19%
Adverb 5366 7%
[ Total | 73199 ] |

Table 1: Distribution of Content Words Between Parts of Speech

| Part of Speech | Number of Words | Number Undefined | Percentage Undefined |

Noun 39024 6676 17%
Verb 14975 2791 19%
Adjective 13834 4222 31%
Adverb 5366 3315 62%
[Total | 73199 | 17004 | 23%

Table 2: Distribution of Word Senses Without Definition

is that a significant proportion of word senses (approximately 23%) are not actually
given a definition in CIDE+ (see Table 2).

These seemingly undefined word senses rely on the user being able to read def-
initions for previous related senses. These previous related senses may be of any
part of speech. For example, the noun “abatement”, which has CIDE+ sense key
abatex 1x 1 is not, strictly-speaking, defined. However, the previous entry is the
verb “abate”, which has CIDE+ sense key abate* 1* 0, and this is defined as
“to become less strong”. This examplifies a general case where a noun has been
morphologically derived from a verb.

In accordance with this feature of CIDE+, the separation module has to find a
definition for each morphologically derived word. If it did not, every part of speech
would have to be in memory during later stages of processing, which defeats the
purpose of separating out the database in the first place.

From studying CIDE+, it would seem that the required core definition is the
first one in the same major sense. This can be found relatively straightforwardly by
the separation module since CIDE+ sense keys have a three part structure, that is,
each key contains a word, a major sense (or homograph) number and a minor sense
number. The separation module never looks for a definition outside of the same
major sense on the basis that there will be a considerable difference in meanings
between two such senses.

Once a definition has been found, the separation module tags it with the part
of speech, the CIDE+ sense and the word that it was taken from. This is because a
word such as “abatement” does not mean the same as “abate” and an appropriate
definition or, at least, a genus term will have to be derived accordingly at a later
stage. Table 3 shows the proportions of definitions for each part of speech which
are “borrowed” from each other part of speech by the separation module. It also
shows how many words are still left undefined after the separation module has been
run.

The 0.02% remaining without definition corresponds to exactly 17 word senses
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Part of Directly | From | From | From | From No
Speech Defined | Noun | Verb | Adj Adv Def
Noun 83% 4% 8% 5% <0.5% | <0.5%(0.02%)
Verb 81% 11% 6% 2% <0.5% 0%
Adjective 69% 18% | 10% 3% | <0.5% | <0.5%(0.04%)
Adverb 38% 20% | 11% | 30% 1% <0.5%(0.03%)
[Total [ 77% | 9% [ 9% | 6% [ <0.5% | <0.5%(0.02%) |

Table 3: Derivation of Definitions for Non-Core Senses

(see Appendix A for details).

The separation module also derives guidewords for non-core senses from core
senses in the same way.

In general, the output of the separation module is a single clause for each entry
in one of the noun_entry, verb_entry, adj_entry and adv_entry predicates (see Figure
3 for illustration). Each predicate is then stored in a separate file. However, the
separation module also takes into account that some word senses are assigned more
than one part of speech. For example, a single sense of the word A-frame (CIDE+
sense ax 1 3) is assigned both noun and adjective part of speech. Although this
goes against the intuition that a different part of speech is a different sense of a
word, the separation module puts such word senses into all appropriate part of
speech predicates.

entry(77, key, 'abate* 1* 1').
entry(77, word, abatement).
entry(77, pos, n).
entry(77, grammar, u).
entry(77, inf, abatement).
entry(77, subj, 269).
entry(77, subj, 1811).
entry(77, class, process).

SEPARATION PROCESS

noun_entry(77, [abatement], 'abate* 1* 1', (no_guide,n), ('to become less strong’,abate,’abate* 1* 0',v),
([abatement],[u],",[269,1811],[process],[])).

Figure 3: Separation Process
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| Class | Size || Class | Size || Class Size |
human 4869 || activity 3751 || object 3150
communication 2600 || quality 2523 || place 2258
event 1435 || device 1339 || state 1309
measurement 1242 || substance 1158 || group 1134
belief 1119 || food 1044 || abstract 1020
animal 831 || body part 775 || time 745
sensations 675 | process 667 || clothing 614
building 603 || sound 533 || plant 488
money 465 || container 414 || vehicle 406
liquid 286 || drink 209 || inanimate 195
energy 144 || instrument 127 || gas 107
solid 84 animate 36 physical 28
text 8 abstract /inanimate 1 animate/inanimate 1
belief/knowledge 1 creature 1

no class 735

Table 4: Distribution of Nouns Between Semantic Classes

3.3 Partitioning of Nouns into Semantic Class

CIDE+ assigns the majority of nouns to one of forty-one semantic classes. These
classes have titles such as “human”, “object” and “building” etc. It should be
appreciated, however, that although most noun senses are assigned to a single se-
mantic class, there are some in CIDE+ which are assigned to two or more classes
and also some which are not assigned to any class. See Table 4 for the numbers of
noun senses assigned to each class.

The assignment of nouns to semantic classes is primarily so that selectional
restrictions or preferences can be put on verbs’ arguments. For example, a verb
such as “love” tends have a human as it’s first argument. It follows that, in general,
all of the noun senses in a semantic class should be able to be substitued for each
other in a semantically-correct, sentence.

Since it is generally possible to substitute a word with one of its hyponyms, it
seemed likely that if a word sense was in a certain semantic class then so also would
be its genus term. If a word sense was assigned to more than one semantic class
then it seemed likely that its genus term would be in one or all of the same semantic
classes. Alternatively, the fact that a word sense is assigned to two classes may, in
some cases, be an indicator that the definition in fact contains two related senses.
For example, chicken (chicken* 1* 0) is defined as “a type of bird..., or the meat
of this bird...” and is in both animal and food classes accordingly.

Further, I also noticed that these semantic class names were similar to the set
of semantic primes used to partition the nouns in WordNet (Fellbaum 1998). In
WordNet, a small number of generic concepts were chosen and each one was treated
as the unique beginner, or top, of a separate hierarchy.

Consequently I thought to partition the nouns according to their semantic class
and then, during the genus term extraction process, only consider words in the same
semantic class file as possible genus terms. Not only does this reduce the number
of words to be considered at one time but it also has the advantage that it provides
some level of genus term sense disambiguation. There may of course still be more
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than one sense of a word in the semantic class, but the range of possibilities is
reduced to ones of the same part of speech and the same semantic class. Words
in two (or more) semantic classes may be found a genus term in either or both
semantic classes.

However, on studying a selection of CIDE+ noun entries, I realised that the
allocation of semantic classes is such that there are certain common cases where
a word and its genus term are not in the same semantic class. For example, a
room(room* 1* 0) is, I think correctly, in the place class. However, various types
of room, such as cell (cell* 1x 0), are in the building class. Similarly, theatre
(theatre* 1x 0) is in the place class but cinema (cinema* 1% 0), defined as a
type of theatre, is in the building class. Another example is that various materials,
(e.g. metal) are solely in the substance class whereas things which are pieces (e.g.

ingot) or types (e.g. steel) of them, tend to be solely in the solid or object classes.

I noticed a similar problem in the animal, animate and creature classes. There
are a large number of animals in the animal class (e.g. bird (bird* 1% 0)) which
have the word creature as the genus term. However, the only two senses of the word
creature are in the animate class. The existence of a creature class, containing a
single noun the “abominable snowman”, seems only to serve to confuse the matter
further.

There is a further issue which seems mainly to affect the animate class. The
animate class contains various words which are fairly abstract in that they do
not have an obvious genus term. For example, organism and hybrid obviously
define animate concepts but, being fairly abstract, they are defined by disjunctive
example.? For example, hybridx 1x 0is defined as “a plant or animal...”. However,
a hybrid is not “a plant or animal” in the same way that a chicken is “a bird or
meat” and consequently it would be wrong to say that hybrid was a hyponym of
both plant and animal. Yet, these are the only words which are available in the
definition to be genus terms. Consequently, I decided that it would be necessary
to consider words such as hybrid with both plant and animal classes. The issue of
finding a term which encompasses both plant and animal, and is therefore truly a
hypernym of hybrid, will be discussed later.

As a consequence of all these issues, I decided to combine certain classes where
there might be a significant degree of overlap. It also seemed pointless to create
separate trees for certain very small classes, some only containing a single noun (e.g.
animate/inanimate) and these were also combined with one or more appropriate
classes. Table 5 summarises which classes were combined with which other classes.

3.4 Primary Extraction of Genus Term

The extraction module attempts to extract a genus term from each definition. The
extraction module is run once for each class file and each definition is considered
in turn. Special consideration is given to definitions which must be derived from
those for words of other parts of speech and the treatment of such definitions will
be discussed separately.

Conceptually, there are five stages in the extraction process.

2T use the term disjunctive example to describe definitions which Vossen and Copestake 1993
described as having co-ordinated elements which were alternatives between which a choice has to
be made.
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New Class | Consisting of Old Classes |

activity activity, belief, belief/knowledge
liquid liquid, drink

animal animal, creature, animate
human human, animate

plant plant, animate

object object, physical, substance, solid
time time, event

abstract abstract, abstract/inanimate
group group, animate/inanimate

Table 5: Combination of Classes

The first stage is simply that the definition is tokenised into words.

The second stage is that an occurrence of the word being defined in the def-
inition is replaced by a special character string (an asterisk). This is trivial, and
therefore also pointless, when the word being defined is a single word. However, it is
useful when the word being defined is a multi-word unit. This is because the defini-
tion is going to be considered, in future stages, a word at a time. The pre-processing
of the list of words therefore allows the word being defined to always be identified
and considered as a single unit. Replacing the word by a special character string
also means that future stages will not attempt to tag, disambiguate or consider this
word as the genus term of the definition. This disregard is justified since a word
sense cannot be its own genus term as this would immediately lead to cycles in the
“tree” structure. It is possible that the same word form as the word being defined
could be used in the definition in a different sense (and would therefore be a valid
genus term). However, this type of definition construction is very rare in CIDE+
(T have not found any examples) and is not considered.

The third stage is that each word is tagged as being a definition word, a class
word or an other word. Definition words include words like type, amount etc. and
they also include commonly occurring non-nouns such as a, which, is and for. A
definition word tag includes both the fact that a word is a definition word and its
type (e.g. “determiner”, “equals”, “component/whole”). There are three reasons
for definition word tagging. The first is that these words will not be considered as
possible genus terms. The second is that these words can be used to identify the
location of the genus term. The third is that, by tagging the definition words with
a type, it is not necessary to consider each word as a special case. For example
“which”, “who”, “that” etc. tend to play exactly the same role in a definition,
that is they tend to come after the genus term and introduce modifiers thereof.
Most definition words are defined as being such over the whole of the noun part of
speech. However, there are a few words which are treated differently in different
classes. For example, the pronoun “someone” is generally treated as a definition
word of nondescript nature. However, in the human class, it is defined as meaning
“human” and this meaning is available as a classword. This is to cater for the
extremely large number of human class definitions of the form “someone who...”.

Class words are words that are also in the semantic class file under extraction.
The two main issues in identifying classwords are morphological variants (i.e plurals
in the case of nouns) and disambiguation between senses. Since disambiguation
between senses occurs at this stage, a class word tag includes the fact that it is a
class word and the appropriate CIDE+ sense key.
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Plurals are simply dealt with using the infs field in CIDE+. The infs field
gives other forms of the same word. However, for multi-word units it also gives the
separate words of the unit and their various forms. Accordingly, it is also necessary
to check the mwu field to ensure that a word which is part of a multi-word unit
is not classified as a class word. Since the effect of a multi-word unit not being
marked as such can be quite devastating to the genus term extraction process,
I ran a small program to check and correct the mwu field of every entry before
running the extraction program. I found approximately 50 multi-word units with
an empty mwu field and was thus able to avoid the rather worrying situation where
a noticeable number of the human class was determined as having the genus term
god* 1% 4 (“those who the gods would destroy, they first make mad”). It should
also be noted that at this stage restricting class words to single word units will not
reduce coverage any further since the definition is being considered a word at a
time, and therefore, a multi-word unit cannot correctly be considered a class word.

Due to the polysemous nature of many words, even within a single semantic class,
it is often necessary to choose between a number of candidate senses for a class word.
The algorithm T use to disambiguate between senses scores each potential sense in
the context of the word being defined. It then chooses the best sense if it is better
than the next best sense by a certain threshold. If the threshold is not exceeded
then the sense which occurs first in the dictionary is selected. This is based on the
fact that, although CIDE+ makes no guarentees, the first sense is usually the most
frequent sense and the most frequent sense is usually the correct sense. The fact
that the most frequent sense is the most likely sense is especially true in a restricted
vocabulary situation and considering that senses which are not of the correct part
of speech and semantic class have already been eliminated.

Word defined = banjo dgflnltlon: " a stringed musical !nstrumen - ‘ disambiguate: instrument betweeh
with a long neck and a hollow circular bod

‘instrument* 1* 0: a musical instrumenl.’.

instrument* 2* 1: any of various device:
used to measure speed etc.

sdcs: 399 (string instrumentsi ‘ sdcs: 277 (musical instruments) ‘ sdcs: 430 (Travel and Transport)
271 (Weights and Measures)
418 (Tools)
extended weighted sdcs: extended weighted sdcs: extended weighted sdcs:
399: +16 277: +16 430: +16, 271: +16, 418: +16
277: +8 273: +8 1591:+8, 244:+8, 193: +8
273: +4 281: +4 2005: +4
281: +2 454: +2
277: +16+8
273: +8+4
281: +4+2
threshold = 1§
score: 42 score: 0
42>16+0

‘sense is instrument* 1* 0‘

Figure 4: Disambiguation of “instrument” in Definition of “banjo”

Scoring of the potential senses relies mainly on subject domain information
provided in CIDE+. However, simply matching the subject domain codes of the
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word being identified with those of the sense being scored, will not achieve very
much due to the large number of subject domain codes in CIDE+. CIDE+ subject
domain codes have a highly hierarchical nature and, consequently, all of a subject
domain code’s ancestors are also considered (in a weighted manner). Figure 4
illustrates how disambiguation might be performed for a particular example.

Disambiguation also takes into account semantic class. This is more relevant
when two or more classes have been combined but also relevant to words (or senses)
which have dual class status. However, semantic class is given a low weighting since
it is considered that most reliable information which can be derived from this has
already been derived by partitioning.

The final type of word that a word in the definition may be tagged as is an
“other” word. This simply applies to all words in the definition which are neither
definition words or class words.

The fourth stage in the extraction process is to pass the tagged definition
through a finite state transducer (FST) to extract a list of class words as genus
term.

Key to Genus Term List Operations

classword,—+ +: add current classword to list
classword,+ - remove classword from head of lis

~+: do - followed by +

[I: make list empty

,(comma)
%mma)
disj
/ classword,—+
dig] ,(comma)
classword,+
\= member-group/
component-whole
1 disj 2

type=equals,~

,(comﬁ{a)

type=conjygation,]

pe=member-group/ ,
component-whole/ /
conjugation,[]

Figure 5: Simplified Extraction Finite State Transducer

The FST, a simplified version of which is shown in Figure 5, is based on Vossen
and Copestake’s (1993) study of dictionary definitions and also my own analysis of
CIDE+ definitions. The version shown in Figure 5 covers a subset of the types of
definition actually handled by the FST, and is intended for illustration purposes
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only. For those interested, the actual Prolog implementation of the FST can be
found in Appendix B.

It should be noted that although the transducer is largely deterministic, it is
not completely so. In Figure 5, for example, there are two comma transitions out of
state 2. The first is to state 3 which is a component of the subroutine which handles
disjunctions. However, if this subroutine fails, i.e. a disjunction is not subsequently
found, the second comma transition from state 2 to state F will be taken instead.
Another example, not shown, is that the word “is” can play two different roles
in a definition (“a * is a genus_term which...” or “* is informal/br/am/slang for
genus_term”) and its role is determined by the subsequent word(s). Both of these
examples could, of course, be implemented in a completely deterministic FST, but
I chose not to implement them deterministically since Prolog back-tracking handles
non-determinism elegantly.

In general, the list returned by the FST will contain a single genus term. How-
ever, the list returned by the FST will be empty when the definition contains no
class words or is of a certain form, e.g. “a part of a....”. Further, the list may contain
more than one genus term when the definition contains a disjunction. Reduction of
multiple genus terms to a single genus term occurs later, during the tree-building
stage, when it is possible to identify a hypernym of the disjuncts.

Although stages three and four are conceptually distinct, they are in fact im-
plemented in tandem; that is a word is tagged and passed to the FST and then
another word is tagged and so on. This is because the FST may make its decision
and exit long before reaching the end of the definition. Therefore it is inefficient
to perform the relatively computationally expensive operation of tagging for every
word in the definition irrespective of whether or not it will be used.

The fifth stage of the extraction process is simply to remove any occurrence of
the word sense itself from its list of genus terms.

Figure 6 illustrates the execution of the entire extraction process for a simple
example.

When the genus term list returned is empty, I considered assigning the top of
the class as genus term, since, although the top of the class may not be the correct
direct ancestor of the word concerned, it should occur somewhere in its hypernym
chain. By assigning the top of the class as genus term, the coverage of genus term
extraction and consequently the tree would be significantly increased.

However, I decided against this for three main reasons. The first being that for
many classes it is not possible to pick a word which can be considered to be the sole
top of the class. An obvious example of such a class is the abstract class. However,
further to such obvious examples, as will be seen later, I found during the building
phase that it was necessary to use more than one top in the majority of classes.
The second reason was that for dual class words, it could not be done until after
extraction for all classes and then, if a genus term had still not been extracted, it
would be necessary to choose a top of one of the classes. The third, and possibly
most important, reason is that it is not possible to completely rely on the semantic
classes assigned by CIDE+. There are two aspects of this unreliability. The first is
that assigning words to a set of semantic classes is a somewhat subjective process
and therefore a limited amount of variation in classes assigned by different people
can only be expected. For example, is something, such as a “stone”, an object
or a solid? The second aspect is that a noticeable number of CIDE+ classes are
indisputably questionable. To give just three examples, midget, defined as “a very
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entry: url = 48, word = "aardvark”,

sense = "aardvark* 1* 0", class = animal
definition = "an african mammal with a long
nose and large ears which lives underground
and eats insects.”

definition type = dirctly defined noun

TOKENISE |+ MARKSELF

[an,african,mammal,with,a,long,nose,and,large,ears,which,lives,underground,
and,eats,insects]

TAG

[(an,gen,d),(african,n),(mammal* 1* 0,c),(with,desc,d),(a,gen,def),
(long,n),(nose,n),(and,conj,d),(large,n),(ears,n),(which,desc,def),(lives,n),
(underground,n),(and,conj,d),(eats,n),(insect* 1* 0,c)]

PASS xo FST

FST state 1, FST state 1 FST state 1
input:(_,gen,d input:(_,n) input: (mammal* 1* 0,c)
acc:[] acc:[] acc:[]

FST state F FST state 2
input: input: (_,desc,d)
acc:[m_ammal* 1* 0] acc:[mammal* 1* 0]

\

[GENUS TERM LIST = [mammal* 1* oD

REMOYE SELF

‘ GENUS TERM LIST is [mammal* 1* 0] ‘

Figure 6: Example Execution of Extraction Finite State Transducer

small person”, is classified as animal rather than human; Formula One, defined as
“a type of racing car”, is classified as measurement; and a player (such as a tape
or record player), defined as “a machine”, is classified as human. Consequently
I decided to maintain the accuracy of the process and forego the possible extra
coverage.

At this point, I should mention that alternative approaches to genus term extrac-
tion were considered. Copestake (1990) discusses using specialist parsing techniques
for dictionary definitions. In accordance with this, I considered using a combina-
tion of part of speech tagging and noun phrase chunking. However, considering
the unique lexicon and grammar of CIDE+ definitions, considerable time would
need to be spent constructing the necessary tools or interfacing with existing tools.
Further, especially considering that the accuracy of such tools is not 100 percent,
I did not think the gain achieved by doing this would be great. A word which is
ambiguous between adjective and noun may be more reliably tagged using existing
part of speech taggers than using my combination of semantic class tagging and
FST. However, the system described herein is largely accurate, see later evaluation
results and, even if using accurate part of speech tagging and NP chunking, it would
still be necessary to perform much of the same work performed by this system af-
terwards. It should be recognised that this system tags nouns using the lexicon
defined by CIDE+, tagging to the level of semantic class. It further attempts to
disambiguate between senses and it attempts to extract a genus term based on the
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structure of the definition.

Now I will turn my attention to the extraction of genus terms from defini-
tions borrowed from senses of other parts of speech. For example, the definition
of administrator (administrate* 1x 5), borrowed from that of administrate
(administatex 1% 0),is “to control the operation or arrangement of something”.
In this example, it is necessary to derive the person who controls the operation or
arrangement of something.

Accordingly, for definitions borrowed from verbs, the extraction module first
attempts to find the verb infinitive. This is generally quite straightforward as the
majority of verb definitions are of the form “to _in some manner”. It then attempts
to derive a noun from that infinitive by applying a set of morphological rules. For
example, the “+er” rule incorporates the various spelling changes to construct an
agent for a verb. The extraction module constructs a selection of such putative
nouns and then attempts to find each in the particular semantic class file under
consideration. Accordingly, in the human file, the process is more likely to find a
corresponding agent such as “controller” and in, say, the activity file, the process is
more likely to find a corresponding act (e.g. amusement from amuse).

I considered a similar approach to noun definitions borrowed from adjectives
and adverbs. However, deriving nouns from adjectives and adverbs is not quite so
straightforward. Where a noun is derived from an adjective it tends to be that
the noun is something or someone who has a certain property e.g. a conservative
is someone who is conservative. However, the definition of the property does not
necessarily lead to the hypernym of the noun since adjectives, as discussed earlier,
do not intuitively have a hierarchical structure. To deal with such nouns it would
seem necessary to either rely on the assigned semantic class, e.g. a conservative
is a human, or to conduct further analysis. Due to time constraints placed on the
project and the fact that noun definitions borrowed from adjectives make up only
a small proportion of the nouns (5%) and those from adverbs even less (<0.5%), I
decided to assign such nouns an empty genus term list for the time being.

3.5 Tree Building by Class

Once the genus terms have been extracted for a class, it is then possible to build a
tree (or a set of trees) for the word senses in that class.

Given a top node, the tree-building module recurses top-down throughout the
class in a manner after that described by Copestake (1990). All of the nodes which
have the current node in their genus term list are found and a parent-child link
asserted for each. The algorithm then recurses in a depth-first manner for each
child.

Care obviously has to be taken not to introduce cycles into the tree. Lexicog-
raphers try not to define concepts in a circular manner but this cannot always be
avoided and, especially where some word forms have more than one genus term, it
would be possible to enter into such a circle and then continue around it indefinitely.
Accordingly, before asserting a parent-child link, the tree-building module checks
that the would-be child is not an ancestor of the parent. It also checks that it is
not already asserted as a child, to stop the same part of the tree being built more
than once.
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3.6 Disjunctive Definitions and Reduction of Links to the
Lowest Common Ancestor

As T have discussed already, CIDE+ makes quite frequent use of the disjunctive
example type of definition. For example, a scavenger (scavenge* 1% 1) is given
the definition, “a scavenger is a bird or animal which feeds on....” Yet, it cannot
be really said that in one sense a scavenger is a bird and in another it is an an-
imal. A scavenger is actually a type of something which includes both birds and
animals. Since in CIDE+, both birds and animals are defined as being types of
creature (creaturex 1% 0), it would seem to make sense to say that a scavenger
is a creature.

The tree-building module initially builds the tree so that, in this example,
creaturex 1* 0 has hyponyms including animal* 1* 0 and bird* 1% 0. In turn,
both of these hyponyms of creature* 1* 0 have hyponyms including scavengex
1* 1. Once the initial build for a class has completed, the tree-building module
makes a top-down pass through the constructed tree attempting to reduce links so
that each node in the tree has only one hypernym. For each node that is found to
have more than one hypernym, the algorithm locates the lowest common ancestor
of its hypernyms. It then retracts the links to the node’s existing hypernyms and
forms a new one to this lowest common ancestor. Accordingly, in the scavenger
example, the links to animal* 1* 0 and bird* 1x O will be retracted and a link
to creature* 1* 0 asserted. This procedure is carried out top-down so that, al-
though the node under consideration may have more than one hypernym, there
should generally only be one hypernym chain for each of its hypernyms.? This is
desirable since it simplifies identification of the lowest common ancestor.

I have also already discussed that in certain cases a disjunction is used in a
definition when there really is more than one sense of the word being defined.
For example, chicken* 1% 0 is defined as being “a type of bird which... or the
meat of this bird which....” Here, it would not be strictly wrong to reduce the
parents to the lowest common ancestor of bird and meat (object* 1* 0) but a lot
of semantic information would be lost in the process. Further, it is not really the
case that “chicken” is a type of something which includes birds and flesh, “chicken”
is sometimes a “bird” and sometimes “meat”. However, such examples are fairly
rare, since one would expect two separate senses of a word to be defined separately.
Accordingly, Tignore this possibility when reducing within in a single semantic class,
assuming that the amount of semantic information lost will be minimal since both
(or all) hypernymes are in the same semantic class. However, as will be discussed
later, I take into account this possibility when potential hypernyms are found in
different semantic classes (such as in the chicken example).

3.7 Automatic Hypothesis of Top Nodes

The tree-building module assumes that the top node (or nodes) in a particular class
is known. These nodes are generally quite intuitive and I initially determined one or
several top nodes for each class simply by looking at the entries and the genus terms
extracted. For example, an obvious top node for the human class is human* 1% 9.

3There may be more than one hypernym chain from each hypernym when more than one top
node has been defined for a class. However, these hypernym chains will not have any nodes
in common, since otherwise they would have already been reduced by the top-down reduction
algorithm. Accordingly, the existence of multiple chains for each hypernym will not affect the
determination of the hypernyms’ lowest common ancestor.



3 DEVELOPMENT 26

However, in order to increase the coverage for each class (i.e. number of nodes in
tree over number of nodes with non-empty genus term list), it was necessary to find
more top nodes for each class. T did this using an automatic hypothesis module.

For a particular class, the automatic hypothesis module constructs a list of all
of the word senses which do not have a hypernym link but do have a genus term
extracted. Then, for each item in the list, it attempts to hypothesise what a good
top node would be in a bottom-up fashion. It does this by following a hypothetical
link to its genus term and then considering this entry’s genus term list and so on.
The module decides that it has reached a potential top if a word sense does not have
a genus term or if it finds a circle of definitions. Once the module has hypothesised
tops for ever item in its list, it calculates how many times each hypothesised top
occurs. The module returns the hypothesised top occurring the maximum number
of times and its number of occurrences. The person constructing the tree can then
consider this potential top node and what effect it would have on the tree.

An example of where the hypothesis module made a large impact was in the
place class. T had already built trees starting from top nodes place* 1% 0, landx
1% 0 and structurex 2x 0. However, the hypothesis module suggested adding the
top node area* 1* 0 with an expected impact of accounting for just over 700 extra
noun senses.

For implementation reasons, if a class has a particularly large number of word
senses unaccounted for in the tree, the hypothesis module curtails the list it con-
siders. It then only returns an estimate of how many nodes would be added to the
tree by introducing the top it hypothesises as being best.

The hypothesis module can be run repeatedly on a single class, assuming that
the tree for the hypothesised best node is built, so that multiple good top nodes can
be identified. Using the hypothesis module, I increased the number of top nodes
from 49 to 110. This may seem like a large number of top nodes when WordNet,
for example, has only 25 unique beginners. However, I believe, the number can be
justified when the extent to which there is inherent tree structure in CIDE+ classes
is considered.

Of course, the repeated hypothesis of tops has to stop somewhere. It has to be
accepted that not all entries, not even all of those for which a genus term has been
extracted, will be included in the tree. For example, the definition of phone* 1* 0
is “a telephone”. However, the only noun sense of telephone (telephone* 1% 0) is
defined as “(to use) a phone”.

Lastly, there is no reason why this module could not be run before any tree has
been built and, in this way, all of the top nodes could be located by the hypothesis
module. The only reason why I did not do this, was due to the amount of time
taken to run the module and that T had already determined at least one top node
for every class.

3.8 Construction of Top of the Hierarchy

Having constructed trees from all of the tops, the next stage was to organise the tops
themselves into some sort of semantic hierarchy. This is similar to the organisation
of the unique beginners in the WordNet tops file (Fellbaum 1998).

As Fellbaum (1998) discusses, the generic concepts which occur near the top of
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a single hyperthetical semantic hierarchy carry little semantic information. This
lack of semantic information is reflected in dictionary definitions for such concepts
which is why I did not attempt to automatically extract the top of the hierarchy.
Instead, the arrangement of the top semantic concepts was carried out by hand,
using the dictionary entries and my own knowledge of word meanings. After the
arrangement, there were seven concepts remaining as tops of their own individual
trees. These concepts were entity, condition, event, act, abstraction, phenomenon
and group. The other concepts, which originally topped their own trees, were now
organised beneath these seven. Occasionally, I introduced a concept, which was
previously unaccounted for in any tree, into this top level hierarchy so as to group
other concepts together. For example, I introduced the word “life form” (1ifex 1x
36) to group the concepts of plant and creature together. I also introduced the word
“abstraction” abstract* 1% 3in order to group various abstract concepts together.
Figure 7 illustrates how some semantic concepts are linked together underneath the
concept of entity.

Figure 7: Hyponymic Relations Between a Subset of Top Level Concepts

3.9 Optional Reduction of Links to Lowest Common Ances-
tor

Once the links at the top of the semantic hierarchy had been established, I compiled
the separate tree files into a single Prolog database file in which there is an entry for
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each noun sense in CIDE+. In the Prolog data file each entry carries information
about the word sense, such as the definition, a list of hypernym links and a list of
hyponym links.

Nnoun_data(1781, ’aim>* 1* 2’, [aim], [61101], [64337,91086],
(Cto point or direct (esp. a weapon) towards someone
or something that you want to hit’,aim,’aim* 1* O’,v)).

Figure 8: Sample Entry in Noun Semantic Hierarchy

Each entry in the file may represent a leaf node (i.e. it has non-empty hypernym
list but empty hyponym list), or a non-leaf node (i.e. it has non-empty hypernym
list and non-empty hyponym list) or, alternatively, it may not be contained in the
hierarchy (i.e. it has empty hypernym list and empty hyponym list). Figure 8 is an
illustration of a non-leaf node.

Ideally, in a hierarchy, each node should have only one parent node. There are
two main advantages to this. The first is that a unique distance is defined between
every node and every other node. The second is that the hierarchy can be used as
an inheritance system without the complication of multiple inheritance. Further, a
single parent node is intuitive. How can a single concept be simultaneously types of
two disjoint concepts? One answer could be that it is not actually a type of either
parent concept but a mixture of the two. Another could be that one concept is the
parent at one time or from one perspective and the other is the parent at some other
time or from some other perspective (such is the case, I believe, with the chicken
example discussed previously).

Once the semantic hierarchies were compiled into a single file, it was straightfor-
ward to identify which entries had multiple hypernyms. I implemented an optional
reduction module which found these entries, again in a top-down manner. The
user, myself, was then given three choices. I could choose to reduce the links to the
lowest common ancestor (disjunctive example definition), reduce the links to one of
the parents (different word senses had been found as genus in different classes, only
one of which could be considered correct), or leave the links as they were (sense
correctly identified as having multiple genus terms).

3.10 Second Pass Extraction to Increase Coverage of Nouns

The second pass extraction module attempts to increase the hierarchy coverage.
A slightly modified version of the original extraction module is run for each unac-
counted for noun. If a genus term is found for a noun and that genus term is within
the tree (i.e. it has a hypernym), appropriate links are added. If the found genus
term is not within the tree a trigger is set so that subsequent addition of the genus
term, triggers the addition of the appropriate links. This means that the second
pass extraction can be executed in a single, sequential pass through the data file.

Modification of the original extraction module is such that any noun sense can
be considered as a classword. However, since a potential genus term need no longer
be from the same class file, the threshold for sense disambiguation is increased and
if there is no sense which is better than other potential senses by this threshold,
the word is not added. This differs from the original extraction module in that,
in the original module, if the difference in scores between the best sense and other
potential senses was not greater than the threshold, the first (i.e. most frequent)
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sense was added. This is not done in the second pass extraction module since,
without the class match, the effect of picking a wrong sense is likely to be greater.

There are also a few minor modifications to the finite state transducer itself. For
example, in the original extraction process, anything in brackets in the definition
is ignored on the basis that it is in brackets because it is not strictly necessary to
the definition. For example, the word sense mummy* 1% 0 has the definition, “(used
by or to children) mother”. However, on the second pass, words inside brackets are
also considered as genus terms on the basis that a genus term was not found outside
the brackets on the first pass. For example, fresco* 1* 0 has the definition, “(a
picture made by) painting on wet plaster mixture of sand, lime and water on a wall
or ceiling” and is consequently, during second pass extraction, made a hyponym of
picturex 1x 0 (“a representation of someone or something produced by drawing,
painting or taking a photograph”).

After the second pass extraction was complete, I noticed that there were almost
2000 triggers remaining. In other words, approximately 6% of CIDE+ noun senses
had had a genus term extracted but were unable to be entered in the tree since
that genus term was not in the tree. Accordingly, I performed a recursive search
to find the nodes that would, by their addition to the tree, cause the most other
nodes to also be added to the tree. I then hand-analysed their definitions and had
them added to the tree in the appropriate places. Approximately 35 word senses
were hand-added in this way, triggering the addition of a further 700 nodes to the
tree.

3.11 Postprocessing: Conversion into WordNet Text Format
and Construction of Data and Index Files

The last stage of processing was to convert the Prolog data file into a text file (of
a similar format to the WordNet data.noun file) and a set of index files.

This task is a fairly trivial one except in that the unique identifiers used in
WordNet, and therefore likewise in these final files, are also byte offsets. In other
words, a synset with the identifier 03049908 occurs at offset 03049908 in the file.
The use of byte offsets allows application programs, such as Preiss 2000, to move
around easily within the data file. Figure 9 illustrates the structure of the final data
file (datamoun). It should be noted that CIDE+ word senses that are not covered
by the hierarchy are not included in the final files. It should also be noted that
the data file is not in alphabetical order since the second pass extraction dislocates
many nouns from their original positions. The index files, illustrated in Figure 10,
are, of course, ordered on the contents of their first field.

Five index files, which are required by Preiss 2000, are provided. The index file
index_count corresponds to the WordNet file index.noun. This file gives a word
form, the number of synsets the word form appears in and a list of those synsets
in order of their estimated frequency (which is taken to be the order in which they
appear in CIDE+).
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number of dummy I|nk lype part of link type
words in synset number (upwards) speech (downwards),
number o byte offset

links

dummy
(of hypernym number

byte offset
' (of hyponym

00102171 10 n 2 aubergine 0 e lant O 2
| an oval-shaped vegetgble wnf?%pshlny da purple skin, which is usually eaten cg

02351581 n 0000 ~ 00674750 n OO

Figure 9: Annotated Entry from data_noun file

indx_nn1
(byte offset —> word form)

indx_nn2
(word form —> offset)

indx_nn3
(offset —> (word form +) CIDE+ sense)

00102171 1 aubergine
00102171 1 eggplant

|

|

aubergine 1 00102171
auctioneer 1 00102337
audience 1 00102483
audience } 00102750

I

00102171 n aubergine aubergine* 1* 0|
00102171 n eggplant aubergine* 1* 0
I

index_count

(word form —> offsets (ordered by frequency))

cide_hyp
(hyp(child,parent))

auberginen12 @ ~ 1 000102171

auctioneern12 @ ~ 1 0 00102337

audiencen22 @ ~ 2 0 00102483 00102750
I

hyp(100102171,102351581).
I
hyp(100674;750,100102171).

Figure 10: IHlustration of the Five Index Files
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Class Size Genus Terms No. of No. of
File Class(N) | Extracted(G) | G/N | Tops(T) | Nodes(L) | L/(G+T) | L/N
abstract, 1020 233 23% 1 13 6% 1%
activity 4834 2634 54% 6 1545 59% 32%
animal 868 719 83% 2 709 98% 2%
body part 775 456 59% 6 177 38% 23%
clothing 614 401 65% 4 370 91% 60%
comm. 2600 1573 61% 4 729 46% 28%
container 414 307 74% 3 297 96% 72%
device 1466 962 66% 6 857 89% 58%
energy 144 85 59% 4 72 81% 50%
food 1044 743 1% 8 721 96% 69%
gas 107 84 79% 2 82 95% 7%
group 1134 818 2% 5 744 90% 66%
human 4906 3695 75% 6 3434 98% 70%
inanimate 195 10 5% 1 5 50% 1%
liquid 495 369 5% 4 359 96% 73%
meas. 1242 776 62% 2 563 2% 45%
money 465 316 68% 4 279 87% 60%
object 4414 3373 76% 4 2234 66% 51%
place 2861 2207 7% 6 1857 84% 65%
plant 524 422 81% 3 416 98% 79%
process 667 165 25% 3 91 54% 14%
quality 2523 612 24% 4 384 62% 15%
sensations 675 297 44% 4 261 86% 39%
sound 533 298 56% 4 261 86% 49%
state 1309 592 45% 4 368 62% 28%
text 8 1 13% 1 2 100% 25%
time 2180 1298 60% 5 856 66% 39%
vehicle 406 328 81% 1 305 93% 75%
noclass 735 0 0% 0 0 0% 0%
[Total | 39158 23774 | 61% | 110 17973 5% | 46%

4 Evaluation

4.1

Table 6 shows the coverage obtained by the initial extraction process and the trees
built for each class. In other words, these figures were calculated after trees had been
built for all of the top nodes hypothesised by the hypothesis module but before the
second pass extraction which increased coverage over the entire semantic hierarchy.

The total figures in Table 6 provide an estimate of the coverage over all the
nouns in CIDE+. This estimate is slightly misleading since many nouns senses
appear in more than one class. In most cases, it is only necessary for the noun
sense to appear in the tree associated with one of these classes. Consequently, the
actual coverage over all nouns may be higher these figures. However, these totals
suggest that, at this stage, approximately 46% of CIDE+ noun senses are contained

Table 6: Tree Coverage By Semantic Class File

within the tree.

Evaluation of Coverage by Class
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Class Size of Genus Terms No. of No. of
Class(N) | Extracted(G) | G/N | Tops(T) | Nodes(L) | L/(G+T) | L/N
abst.+event 10240 4789 47% 20 2806 58% 27%
act 5501 2799 51% 9 1636 58% 30%
condition 1309 592 45% 4 368 62% 28%
entity 19562 14392 74% 59 12102 84% 62%
phen. 677 383 57% 8 333 85% 49%
group 1134 818 2% 5 744 90% 66%
[Total [ 39158 | 23774 | 61% | 110 | 17973 | 75% | 46%

Table 7: Tree Coverage By Generic Concept

As previously discussed, using the hypothesis of tops module, the number of tops
was increased from 49 to 110. This increase in the number of tops resulted in in this
estimated total coverage rising by approximately 15% (i.e. from approximately 31%
to the current 46%). I believe this is a significant increase which in itself justifies
the use of multiple tops per class.

The results in Table 6 also indicate that the success of the techniques used to
extract genus terms and build the trees is highly dependent on the semantic class.
The classes for which these techniques appear to perform best are those which fall
in the generic category of “entity”. This is further apparent from Table 7, which
provides totals of the results in Table 6 for each of the seven generic categories
(abstraction and event are combined due to the fact that some trees in the time
class count under the abstraction concept and others count under the event concept).

Good results are also achieved for the group concept. However, this would
appear to be statistically less significant than in the case of the entity concept due
to the respective numbers involved.

4.2 Coverage of Entire Tree

Table 8 shows the coverage of the entire CIDE+ semantic hierarchy (CIDESH)
before the second pass extraction and in its final state. It also shows WordNet
coverage for a random sample of two hundred CIDE+ noun senses and the minimum
and maximum expected human coverage for the same sample. I have also included
an estimate of CIDESH coverage over the same sample as an indication of how
representative that sample was.

The expected human coverage statistics were calculated on the assumption that
the human only has access to the dictionary entries and a limited amount of in-
ference. Minimum human coverage is what I would expect most humans to obtain
accurately and would include examples like “a dog is an animal ...”. To obtain
maximum human coverage, a certain amount of inference would be required to deal
with various types of definitions, including those which are originally for a different
part of speech, those which contain disjunctive examples and those where the rela-
tion between the word being defined and the genus term is not straightforward. For
example, in a case such as, “cubism is a style of modern art”, there might be some
disagreement, between humans as to whether the genus term is “style” or “art”.
Examples which fall outside the range of maximum human coverage are ones which
I believe it would be very difficult to extract a genus term for without other knowl-




4 EVALUATION 33

| | Coverage |
CIDE+ Tree Coverage 56.4%

CIDE+ Tree Coverage before 50.6%
2nd pass extraction
Estimated WordNet Coverage 66%

Estimated Minimum 48.5%
Human Coverage
Estimated Maximum 78%
Human Coverage
Estimated CIDE+ 61%

Tree Coverage

Table 8: Coverage Statistics

| | Percentage |
Hypernym correct in 55.5%
word and sense
No hypernym given 39.25%
Hypernym correct in 1.25%
word but not in sense
Incorrect hypernym 4%

| Accuracy | 94.75% ]

Table 9: Estimated Accuracy of Hypernyms

edge sources. For example, shortage (short* 3* 6) has the definition, “if there is
a shortage of something, there is not enough of it.”

As can be seen from the figures, the coverage of the CIDESH falls between
the minimum and maximum values for human coverage, as would be expected.
Evaluated on the same sample, it’s coverage is 5% less than that of WordNet. The
overlap of coverage between the CIDESH and WordNet is not great as one might
expect. I estimated 40% of CIDE noun senses in both the WordNet hierarchy and
CIDESH, 45.5% in just one of the hierarchies and 14.5% in neither hierarchy.

4.3 Accuracy of Hypernym Selection

Table 9 gives estimated figures for the accuracy of the hypernym for a given noun
sense. These figures were estimated over the same sample set as used to calculate
the coverage statistics. It should be appreciated that I define a noun sense to have
an accurate hypernym if it does not have a wrong hypernym.

I also calculated the same set of statistics, for the same sample, before the second
pass extraction was performed in order to evaluate whether the increase in coverage
obtained was at the expense of accuracy. These statistics are shown in Table 10.
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| | Percentage |
Hypernym correct in 50%
word and sense
No hypernym given 46%
Hypernym correct in 1%
word but not in sense
Incorrect hypernym 3%

| Accuracy | 96% |

Table 10: Estimated Accuracy of Hypernyms Before Second Pass Extraction

As the figures show, there is a slight drop in accuracy along with the increase
in coverage. However, the drop in accuracy is small (1.25%) and may even be
insignificant. Further, the increase in accurate coverage (from 50% to 55.5%) would
appear to be of more significance.

Leaving aside specific anomalies in CIDE+ (see Appendix A (extended ver-
sion) for examples), there are a couple of main types of case where the extraction
technique occasionally selects the wrong genus term or sense. The first is that
occasionally the genus term is syntactically ambiguous, very often due to use of
a disjunction. For example, a jar (jar* 1% 0) is defined as “a glass or clay con-
tainer...”. It is quite simple for us to see that the or coordinates the adjective
constituents but it is possible that it coordinates the nbar constituents, “glass” and
“clay container”. Since the extraction module works on the minimal attachment
principle, it will, in this example, find two genus terms, “glass” (of the drinking
vessel sense) and “container”. In this example, this does not affect the tree since
the lowest common ancestor of “glass” and “container” is in fact the correct genus
term, “container”.

The second type of case is when subject domain codes reflect more heavily one
part of a definition than another, and/or when an entry combines two senses. For
example, “mule” (mulex 1% 0) is defined as “an animal whose mother is a horse
and whose father is a donkey which is used for transporting loads, or fig. a person
who agrees to carry illegal drugs into another country in return for payment by
the person selling the drugs”. Accordingly, “mule” is in both animal and human
classes and the extraction module should extract “animal” when extracting the
animal class and “person” when extracting the human class. However, there is
also a human sense of animal, defined as “you can also say that a person who is
very cruel or unpleasant or has no social manners is an animal”. Accordingly, the
extraction module extracts this as the genus term and, since the disjunction occurs
much later, the rest of the definition is ignored.

4.4 Accuracy of Semantic Hierarchy Hypernym Chains

An incorrect choice in hypernym obviously has more effect on the overall hierarchy,
the higher up in the hierarchy the word occurs. Accordingly, I estimated the per-
centage of nodes having an accurate hypernym chain to the top of the hierarchy.
For a random sample set of 100 hypernym chains, T determined that 84% were com-
pletely accurate. Of the 16% inaccurate chains, 62.5% were considered to contain
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CIDESH | WordNet | LDOCE | LDOCE
animal | substance
average depth(est.) 5.1 6.6 - -
maximum depth 12 >13 6 b)
percentage of non-leaf nodes(P) 10.8% - 4.2% 5%
average branching factor(100/P) 9 - 24 20
maximum branching factor 600 400 - -

Table 11: Tree Statistics for CIDE+ Semantic Hierarchy and for WordNet

only a minor detour, that is, only a single error was made and this single error was
such that the subsequent step reverted the course of the chain to the correct one.

4.5 Other Semantic Hierarchy Statistics

Table 11 summarizes certain other tree statistics, concerning depth and bushiness,
for CIDESH, for WordNet (where known or estimated) and for the two hierar-
chies (animal and substance) constructed from LDOCE by Copestake (1990) (where
known).

The average depth of CIDESH is significantly less than that of WordNet. Fur-
ther, from examination of CIDESH and WordNet, there appears to be much more
more variance in the length of WordNet chains. At least one chain in CIDESH
reaches a length of 12 but such lengths are rare and most chains have a length of
four, five or six. Connected to this is that CIDESH also appears to be bushier
than WordNet. In other words, it would appear that there are a lot less non-leaf
nodes in CIDESH and that each non-leaf node tends to have a lot more hyponyms.
Conversely, however, the percentage of non-leaf nodes in CIDESH is higher than in
Copestake’s (1990) hierarchies constructed from LDOCE.

The reason that CIDESH is fairly shallow and bushy can be found in the con-
struction of CIDE+ definitions. Being a learner’s dictionary, CIDE+ defines each
word sense using a limited vocabulary and it does not go into technical distinctions.
Accordingly, a hypernym chain in CIDESH may be of length 7 whereas in Word-
Net, the same noun sense has a hypernym chain of length 14 (see Figure 11 for
illustration).

4.6 Evaluation of the Semantic Hierarchy as a Tool for Word
Sense Disambiguation

In order to evaluate CIDESH as a tool for WSD, CIDESH and the Preiss (2000)
WSD module were tested together.

The evaluation set was randomly taken from CIDE+ examples since these are
already CIDE+ sense tagged for one word in the sentence. Obviously, only sentences
where the sense tag was for a noun were considered. Further, sentences containing
less than two nouns, sentences where the number of senses for the sense tagged
noun was less than two and sentences where one of the nouns could not be found
in the appropriate hierarchy were discarded. Consequently, starting from the same
initial evaluation set (of 175 sentences), CIDESH was evaluated over 78 sentences

3
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CIDESH CIDE+ definitions WordNet
: . "something which exists
: i : . apart from other things...")
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Figure 11: Comparison of CIDESH and WordNet Hypernym Chains

and WordNet was evaluated over 108 sentences.

It should be noted that the evaluation data used is not ideal for several reasons.
The first is that each sentence is only sense tagged for a single word in the sentence
and accordingly it is not possible to evaluate over the whole sentence. The second
reason is that CIDE+ example sentences were written to illustrate the use of one
particular word sense and this may mean that the other words in the sentence are
unnaturally simple or unambiguous. The third reason is that no-one else has used
this evaluation data and therefore the results obtained cannot easily be evaluated
against the results of other people. However, these example sentences were the only
available CIDE+ sense tagged data available to Preiss and myself at the time of
evaluation.

Table 12 summarises the results obtained by Preiss for three of the disambigua-
tion experts using both CIDESH and WordNet. As already discussed, Preiss im-
plemented each of the three algorithms in four different ways. Table 12 shows just
the results for the exhaustive search implementations since these achieved the best
results?.

The first of the three algorithms used by Preiss is independent of the hierarchy
as is the baseline figure. These results, therefore, depend solely on CIDE+. The
second algorithm used by Preiss considers just the separation in the hierarchy of
the nouns in the sentence. The third algorithm considers the separation in the
hierarchy of the nouns in the definitions of the nouns in the sentence.

4The so-called exhaustive search implementations were not strictly exhaustive since a “window”
of size three was used (that is a maximum of three nouns in the sentence were considered at one
time). However, this approximates quite closely a truly exhaustive search when it is considered
that relatively few example sentences in CIDE+ contain more than three nouns.
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Expert | Algorithm % Accuracy % Accuracy
using CIDESH | using WordNet
7 Baseline: 29.49 31.43
(pick first CIDE+ sense)
3 word form overlap 46.15 50.48
4 distance in hierarchy 35.90 39.05
5 word meaning overlap 43.59 40.00

Table 12: Evaluation of CIDESH and WordNet as Tools for WSD Module

37

The first thing to note from the results is that using a hierarchy has not led
to improved results over the standard definition overlap algorithm. However, the
drop in performance using a hierarchy is not great and it is impossible to conclude
whether, if the idealised hierarchy could be built, whether or not this would lead to
improved results.

Secondly, considering that the definition overlap algorithm performance (and
the baseline figure) is greater for the WordNet sample, a slight drop in performance
could be expected for the CIDESH figures using the two hierarchy dependent algo-
rithms without it being significant. Accordingly, I believe that for the second Preiss
algorithm, CIDESH performs roughly comparably with WordNet and for the third

algorithm it performs significantly better.
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5 Conclusions and Further Work

The extraction and tree building techniques used to semi-automatically extract a
noun hierarchy from CIDE+ have proved fairly accurate. However they have not
provided the coverage of noun senses originally hoped for. Nor have they provided
the coverage required in order to achieve high WSD performance, that is, even if it
is possible to achieve high WSD performance using the ideas discussed herein and
in Preiss (2000).

Further analysis of CIDE+ noun definitions may increase the coverage of the
extraction technique, thereby increasing overall tree coverage. In particular, further
analysis of definitions falling under the abstract, act and condition concepts may
reveal why the techniques performed less well for such definitions and thus lead to
a way of increasing coverage.

Using a combination of semantic class information, subject domain codes and
sense frequency information seems to have proved a successful way of dealing with
the sense disambiguation problem within CIDE+ definitions.

The use of the optional reduction module resulted in human interaction being
required on roughly 1-2% of the entries. This compares with 5% in the case of
Copestake (1990) although her criteria for entries requiring human interaction were
different. She required interaction on choices about entries which might be non-leaf
nodes in the hierarchy. This has the benefit that incorrect decisions can only affect
a single leaf node in the hierarchy and therefore the overall accuracy of the semantic
hierarchy is the same as the accuracy in hypernym selection.

A number of CIDE+ entries required human interaction because of the use of
a disjunctive genus term such as “a building or place”. Intuitively, buildings and
places are concepts which have a lot in common. However, buildings are defined
as being structures, structures as objects and objects as entities. A place, on the
other hand, is a direct child of entity. This means that the lowest common ancestor
of buildings and places is entity. This may be the correct hypernym for a concept
defined as being “a building or place” in the sense that something can be a building
or place without necessarily being either of them. However, there seems to be an
enormous loss of semantic information in going from saying that a hostelry is “a
bar (a place where alcoholic drinks...) or pub (a building with...)” to saying that a
hostelry is “an entity”.

The use of a restricted core vocabulary in CIDE+ has its advantages and dis-
advantages. Obvious advantages are that it makes parsing and word sense disam-
biguation within the definitions easier. However, it also results in a much shallower,
bushier tree since the same words are used over and over again as genus term.
Hence, the distribution of distances between noun senses is going to have a smaller
variance and it will be more difficult to distinguish between two given noun senses.

Further, the performance of the tree-building technique suffered from the number
of circular definition chains in CIDE+ and the extensive use of the disjunctive
example type of definition. Both of these factors, I believe, are a result of the use
of a restricted core vocabulary in CIDE+ definitions

As a tool for word sense disambiguation, the use of a custom-built hierarchy,
such as CIDESH, appears to result in better performance than the use of an existing
hierarchy, such as WordNet. Increased coverage in CIDESH would lead to increased
coverage for the disambiguation technique and possibly also increased performance.
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The lack of overlap between CIDESH and WordNet could potentially be utilised
by an application and could lead to increased WSD performance. Potentially, an
application could attempt to find the word sense in both hierarchies and combine
the information obtained from each in some probabilistic manner.

Regarding the word sense disambiguation technique in general, I believe that
this would benefit enormously from having a fully cross-linked semantic hierarchy
containing all parts of speech. We do not simply rely on words of the same part
of speech when trying to disambiguate a word. Even simple examples like, “I
rowed/ran into the bank” require disambiguation to occur accross natural part of
speech boundaries. It was noted by Fellbaum (1998) that the reason why there
are so few (comparatively) verbs in the English language (and consequently why
this is the most polysemous part of speech), is that most verbs rely on their noun
arguments for disambiguation. Conversely, I believe that the disambiguation of
many noun arguments relies on the verb of which they are an argument.

Accordingly, I believe that further work on building a complete hierarchy should
concentrate on linking verbs to the nouns they take as arguments and adjectives to
the nouns they modify. Verbs and adjectives of course could be further arranged
amongst themselves using synonymy, tropynymy and antonymy. I believe that this
is an intuitive way of arranging verbs and adjectives and would also benefit the
noun hierarchy. My reason for believing this follows the argument of Keil (1979,
1983). He argues that children learn the hierarchical structure of nominal concepts
by observing what can and cannot be predicated at each level. For example, the
important semantic difference between inanimate and animate nouns derives from
the fact that the predicates dead and alive can each be predicated for one class but
not the other. Accordingly, we need the concepts “dead” and “alive” to appreciate
the difference between inanimate and animate objects and this should be reflected
in a noun hierarchy.
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A Appendix A: Apparent Anomalies in CIDE+

A.1 TUndefined Words

The CIDE+ entries with no obviously derivable definition are:

accreditation - accredited* 1* 1 (n)
blackberrying - blackberrying* 1* 0 (n)
disposal - disposal* 1* 0 (n)
interposition - interposition* 1* 0 (n)
reposession - reposession® 1* 0 (n)
resolution - resolution* 1* 0 (n)
seniority - seniority* 1* 0 (n)
statesmanship -  statesmanship* 1* 0 (n)
subjectivity - subjectivity* 1* 0 (n)
accredited - accredited® 1* 0 (adj)
doting - doting* 1* 0 (adj)
feminist - feminist* 1* 0 (adj)
glancing - glancing* 1* 0 (adj)
sodding - sodding* 1* 0 (ad])
teeming - teeming* 1* 0 (adj)
sodding - sodding* 1* 0 (adv)
subjectively - subjectively* 1* 0 (adv)

A.2 Multi-Word Units with no mwu code

This is assuming that a mwu code is given according to the first word in a CIDE+
word group, which generally seems to be the case. In any case, in the majority of
these entries, all words in the wordgroup are multi-word units.
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pencil* 1* 8
st.bernard* 1* 0
bonsai* 1* 8
wave* 5% 1
wave* 5% 2
wave* 5% 3
boob.tube* 1* 0
jerrycan* 1* ()
thermos* 1* 0
doll* 1* 2
irish.stew* 1* 0
loaf* 1* 1
swiss.roll* 1* (
turkish.delight* 1* 0
penny* 1* 5
erratum* 1* 1
id* 1* 0
indian.club* 1* 0
faith* 2* 3
picture* 1* 11
postit® 1% 0
interior* 1* 4
law* 1* 12
irish.coffee* 1* 0
bull* 2* 1
independent® 2% 3
open* 8 *7

deaf* 1* 4
paranoid* 1* 3

annual* 1* 2
picture* 1* 3
search* 1* 9

up* 1* 11

up* 19*% 3

filter* 1* 1
filter* 1* 4

tin* 1* 8
pandoras.box* 1* 0
how* 1* 19
formula* 1* 2
ironmonger* 1* 1
register®* 1* 9

b* 3* 1

sense key word

dog* 1* 15 Every dog has it’s day.

god* 1* 3 Those whom the Gods love die young.

god* 1* 4 Those who the Gods would destroy, they first make mad.
god* 2% 12 God helps those who help themselves.

pencil pusher

St Bernard

bonsai tree

long wave

medium wave

short wave

boob tube

jerry can

Thermos flask

doll’s pram

Irish stew

Half a loaf is better than none.
Swiss roll

Turkish delight

In for a penny, in for a pound.
erratum slip

1.D. card

Indian club

Faith will move mountains.
Every picture tells a story.
Post-it note

interior design

one law for the rich, another for the poor
Trish coffee

bull market

Independence Day

open house

Those none so deaf as those who will not hear.
Just because I'm paranoid
doesn’t mean they’re not out to get me.
annual ring

face is a picture

search warrant

on the up and up

on the up and up

filter bed

filter in

Tin Pan Alley

Pandora’s box

hows and whys

Formula One

hardware store

registry office

B minus
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B Appendix B: Selected Sections of Code

B.1 Extraction FST

[/ R KRR R KK R R  HK R R R KSR R o KK R R R R KR R R K oK R R o KKK R o o K ok ok ok
Genus FST for determination of genus term from mnoun definition
*******************************************************************/

i

name: genus /4
arguments :
argl : int, +, Url of definition being analysed
arg2: char string, +, semantic class wunder eztraction
argl : list , +, list of words in definition
arg4 : list , —, list of genus terms extracted from definition
description :
initialises 6 term predicate (gen_ext)
which tags and implements FST
(initialisation is: with empty genus term list
and in state 1)

genus (U,C, List , Glist ) :—
gen_ext (U,C, List , Glist ,[],1).

i

name: gen_ext /6

arguments :
argl : int, +, Url of definition being analysed
arg2: char string, +, semantic class wunder eztraction
arg8: list , +, words remaining in definition
arg4 : list , —, list of genus terms to be returned
argh : list , +, accumulator — genus terms found so far
argb : atom, +, current state

description :
calls extract_one which tags the next word of the definition .
passes this to the FST genus.

gen_ext (U,C,[H|T], L,A,S) :—
extract_one (U, C,H,H1),
genus (U,C,[ H1|T], L,A,S).
gen_ext (U,C,[], L,A,S) :—
genus (U,C,[], L,A,S).

A
name: genus /6
arguments :
argl : int, +, Url of definition being analysed
arg2: char string, +, semantic class under extraction
arg8 : list , +, remaining words in def — 1st of which is tagged
arg4 : list , —, list of genus terms to be returned
argb: list , +, stack accumulator —
genus terms found so far (may be wused to
store other temporary information such as
previous state for brackets)
arg6 : atom: +, current state
description :
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On the basis of the input (first item 4in the list in argd) and
the current state (arg6 ), genus makes a transition to a new

state and may perform an operation on the stack (argh ).
genus represents the finish state as the first state with

an

empty input. When this state 14s reached, the stack 1is unified

with the output list of genus terms in argi .

comments: in the case of the bracket state, the previous state 1is

remembered so that it can be returned to when the matching

end

bracket is found. Accordingly this is not strictly an FST

(where mnext state is dependent only on current state and i

nput ).

However, it is equivalent to an FST where there is a separate
bracket state associated with every main state. In this case,

the mnext state would be solely dependent on current state
input .

and

genus (U,C,[( (" ,n)|T],G,A,S) :— gen_ext (U,C,T,G,[ S|A], b).
genus (U,C,[( )’ ,n)|T],G,[S|A],b) :— gen_ext (U,C,T,G,A,S).
genus (U,C,[ _|T], G,A,b) :— gen_ext (U,C,T,G,A,b).
genus (U,C,[(W,c)|T],G,A,;1) :— notmem(W,A),

gen_ext (U,C,T,G,[WA],2).
genus (U,C,[( -, member—group ,d)| -T], G,A,;1) :— genus(U,C,[], G,A,1).
genus (U,C,[( -,(group,_-),d)|-T],G,A,1) :— genus (U,C,[], G,A,1).
genus(U,C,[(member -,d)|-T],G,A,1) :— genus(U,C,[], G,A,1).
genus (U,C,[( -, component—whole ,d)| _T], G,A;1) :— genus(U,C,[], G,A,1).
genus (U,C,[( -,( process,_),d)|-T],G,A,;1) :— genus(U,C,[], G,A,1).
genus (U,C,[( -, conj,d)|_T],G,_A,1) :— genus(U,C,[], G,[],1).
genus (U,C,[( -, equals,d)|T], G, _-T2,1) :— gen_ext (U,C, T,G,[],5).
genus (U,C,[( -, equals ,d)|T], G, _T2,1) :— gen_ext (U,C,T,G,[],1).
genus (U,C,[( -,(-,word),d)|T],G,A,1) :— gen_ext (U,C,T,G,A,6).
genus (-, -,[( -, member—group ,d)|-T], .G,_A,2) :— !, fail.
genus (-, _,[( -,(group,_),d)]| T], G,.A,2) :— !, fail
genus ( _ ,[(member,_,d)| T], G,.A,2) :— ! fail.
genus (-, -, [( - component—whole d)| T], G,.A;2) :— !, fail.
genus(- _,[(-,(process,_),d)|-T], .G,.A,2) :— !, fa11
genus (U,C,[( -, conj,d)|-T],G,_A,2) :— genus(U,C,[],G,[],l).
genus (U,C,[(W,c)|T], G,[ -H|T2],2) :— gen_ext (U,C,T,G,[W T2],2).
genus (U,C,[( -, equals ,d)|T], G, _-T2,2) :— gen_ext (U,C,T,G,[],5).
genus (U,C,[( -, equals ,d)|T], G, _-T2,2) :— gen_ext (U,C,T,G,[],1).
genus (U,C,[( -,(-,word),d)|T],G,A,1) :— gen_ext (U,C,T,G,A,6).
genus (U,C,[( -,gen,d)| -T],G,A,2) :— genus(U,C,[], G,A,1).
genus (U,C,[( -, disj ,d)|T], G,A,2) :— gen_ext (U,C,T,G,A,1).
genus (U,C,[( -,comma,d)|T],G,A,2) :— gen_ext (UC TGA,3)
genus (U,C,[( -,comma,d)|_T], G,A,2) :— genus(U,C,[], G,A,1).
genus (U,C,[(W,c)|T],G,A,3) :— notmem(W,A),

gen_ext (U,C, T,G,[WA],4).
genus (U,C,[(W,c)|T], G,[ -H|T2],4) :— gen_ext (U,C,T,G,[W T2],4).
genus (U,C,[( -,comma,d)|T],G,A,3) :— gen_ext (U,C,T,G,A,3).
genus (U,C,[( -,comma,d)|T],G,A,4) :— gen_ext (U,C,T,G,A,3).
genus (U,C,[( -, disj ,d)|T],G,A,3) :— gen_ext (U,C, T,G,A,1).
genus (U,C,[( -, disj ,d)|T],G,A,4) :— gen_ext (U,C, T,G,A,1).
genus (U,C,[( -, etc,d)|-T],G,A,3) :— genus(U,C,[], G,A,1).
genus (U,C,[( -, etc,d)|-T],G,A,4) :— genus(U,C,[], G,A,1).
genus (U,C,[( -, conj,d)|_T],G,_A,3) :— genus(U,C,[], G,[],1)
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genuﬁ(U,C,[( COHJ,d)|-T],G,-A,4) e genu@(U,C,[],G,[],l).
genus (U, C,[( - ,gen,d)|T],G,A,3) :— gen_ext (U,C, T,G,A,3).
genus (U,C,[( -,gen,d)|T],G,A,4) :— gen_ext (U,C,T,G,A 4).
genus (.U, C,[(_-,-,d)|-T], G,-.A,3) :— !, fail.

genus (.U, C,[(_,-,d)|-T], G,_.A,4) :— ' fail .

genus (-, _-,[], -G,-A,3) :— !, fail

genus (-, -,[], -G,-A,4) :— !, fail

genus (U,C,[( -, 0f ,d)|T],G,A,1) :— gen_ext (U,C,T,G,A1).
genus (U, C, [(_,of d)|-T], GA 2) :— genus(U,C,[], G,A1).
genus (U,C,[( -,n)|T],G,A,5) :— gen_ext (U,C,T,G,A,6).
genus (-, -,[ -|-T],-G,.A,5) :— !, fail.

genus (U,C,[( for ,desc,d)|T],G,A,6) :— gen_ext (U,C,T,G,A,1).
genus (-, -,[ -|-T],-G,.A,6) :— !, fail.
genus(U,C,[(_,prep,d)|T],G,A,1) e gen—eXt (U)C)TaG)Aa )
genuﬁ(U,C,[(_,prep,d)|_T],G,A,_) L geIluS(U,C,[],G,A, )
genus (U,C,[( -, desc,d)|-T],G,A,_) :— genus(U,C,[], G,A,1).
genuS(cha[(—7eXCad)|—T]7GaAa—) L genus(U,C []7 ) 11)
genus(U,C,[(_,sim,d)|_T],G,A,_) i genus(U,C []7 1)
genus(U,C,[(_,eg,d)|_T],G,A,_) T genus(U,C,[],GA,l)
genuS(cha[(—7if7d)|—T]7GaAa—) L genus(cha[]7GAal)
genus (U, C.[( _,stop,d)| T], GA, ) i~ genus(U,C,[], G A,1).

genus (U,C,[ -|T], G,A,X) :— gen_ext (U,C, T,G,A,X).

genus (.U, _C,[], nogenus,[], -).
genus (.U, _C,[], G,G, ).



