
Embed More Ignore Less (EMIL):
Exploiting Enriched Representations for Arabic NLP

Ahmed Younes and Julie Weeds
Department of Informatics, University of Sussex

Brighton, BN1 9RH, United Kingdom
{ay227,juliewe}@sussex.ac.uk

Abstract
Our research focuses on the potential improvements of exploiting language specific characteris-
tics in the form of embeddings by neural networks. More specifically, we investigate the capa-
bility of neural techniques and embeddings to represent language specific characteristics in two
sequence labeling tasks: named entity recognition (NER) and part of speech (POS) tagging. In
both tasks, our preprocessing is designed to use enriched Arabic representation by adding diacrit-
ics to undiacritized text. In POS tagging, we test the ability of a neural model to capture syntactic
characteristics encoded within these diacritics by incorporating an embedding layer for diacrit-
ics alongside embedding layers for words and characters. In NER, our architecture incorporates
diacritic and POS embeddings alongside word and character embeddings. Our experiments are
conducted on 7 datasets (4 NER and 3 POS). We show that embedding the information that is
encoded in automatically acquired Arabic diacritics improves the performance across all datasets
on both tasks. Embedding the information in automatically assigned POS tags further improves
performance on the NER task.

1 Introduction

Named Entity Recognition (NER) and Part-of-Speech (POS) tagging have traditionally been used as
preprocessing steps in many Natural Language Processing (NLP) applications. For example, Yadav and
Bethard (2018) discussed the use of NER across question answering, information retrieval, co-reference
resolution, topic modeling, and machine translation. Similarly, POS tagging is often applied early in
the NLP pipeline for many applications including information retrieval systems, syntax, and semantic
analysis, speech recognition systems and machine translation (Abumalloh et al., 2016). In recent years,
Arabic has been studied increasingly due to the explosion in the number of Arabic users on social media
and the internet in general. Arabic is a morphologically rich language with complex grammatical struc-
ture (Shaalan et al., 2019). Arabic NLP researchers have used two types of approaches and sometimes
a mixture of both to work with Arabic text. The first approach is the simplification approach where
researchers tend to apply preprocessing (transformation) that simplify Arabic text such as letter normal-
ization (Habash, 2010) and transliteration (Ameur et al., 2017). The second approach is the enrichment
approach where researchers tend to apply minimum modification to the Arabic text and devise a way of
incorporating the enriched features and potentially add more features to it.

We assume that the simplification approach may exclude some useful information, and hence take an
enrichment approach. First, we add diacritics information inferred by automatic diacritization model
called Shakkala, based on the assumption that the syntactic and semantic information encoded in diacrit-
ics might be useful in both the NER and the POS task. Once we have a diacritic-enhanced POS model,
we use it to infer POS information for the NER corpora, based on the assumption that both diacritics and
POS information can potentially improve the performance of the NER model. We are aware that this
pipeline will raise the question of the quality of the inferred information and its effect on performance.
Nevertheless, the experimental results shows that the addition of this automatically-inferred information
enhances the performance.
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Our specific contributions are that we propose a framework (EMIL) where we Embed More and Ignore
Less. We show that applying minimal modification to the text and embedding more of the possible fea-
tures into the model can outperform the standard sequence labeling models. We propose a diacritic-aware
architecture for sequence labeling which extends and outperforms the current standard character-aware
architecture of a Bi-directional long short-term memory network (Bi-LSTM) with a CRF. We also pro-
pose a combination architecture for NER that combines word, character, diacritic, and POS information
and outperforms the standard character-aware architecture and our own diacritic-aware architecture.

2 Background and related work

We will now discuss the main characteristics of the Arabic language Section (2.1) and related work on
Arabic NER and POS tagging Section (2.2).

2.1 The Arabic language

As discussed elsewhere, e.g., by Farghaly and Shaalan (2009), Arabic is rich morphology language with
complex grammar structure which poses extra challenges to systems when considering Arabic text as
input. Habash (2010) discussed the script differences such as letter shaping, script direction (right to left)
and obligatory ligatures. Also Habash et al. (2013) discussed the lack of standard orthographies: e.g.,
Ð@Q

	
« and Ð@Qk. both mean (gram). One of the major challenges in Arabic NER is the lack of capitalization

(Shaalan, 2014; Benajiba et al., 2008a). Shaalan (2014) also discussed the agglutinative nature of the
Arabic language where new words and sometimes even sentences can be derived by adding affixes and
clitics to Arabic words, making Arabic a morphologically rich language.

In our work, it is crucial to note that Arabic employs diacritics (short vowels) to encode phonetic,
morphological, syntactic and semantic information. In traditional Arabic text, diacritics are symbols
placed on top of Arabic letters. Figure (1) shows examples of three Arabic diacritic symbols. The choice
of the diacritic on the last letter of the word describes the syntactic dependency of that word within
the sentence. The choice of the diacritic on the first and the middle letters of the word disambiguates
between different possible semantics of the word within the sentence. For example, the undiacritized
word ÕÎ« can be diacritized to become �ÕÎ�

�
« (knew), �ÕÎ�

�
« (known), or �Õ

�
Î

�
« (flag). However, due to the fact

that most modern Arabic text is only partially diacritized or undiacritized, researchers often remove it
for consistency (Habash, 2010). Thus one word in Arabic may be ambiguous and the reader must use
the context to disambiguate.

Figure 1: Arabic diacritics include: short vowels (first three letters), nunation (the second three letters),
sukon (no vowel) and shadda (geminition) (the last two letters respectively).

2.2 Arabic Sequence Classification

Early work on the detection and classification of Named Entities in Arabic NER used a rule-based or
grammar-based approach (Mesfar, 2007; Shaalan and Raza, 2007). Subsequently, the field shifted gener-
ally to a machine learning approach — thus avoiding the time-consuming and expensive maintenance of
rule-sets. Within this general approach a wide variety of techniques have all been applied to the Arabic
NER problem including Support Vector Machines (SVM) (Benajiba et al., 2008b), Conditional Random
Fields (CRF) (Abdul-Hamid and Darwish, 2010; Benajiba et al., 2008a; AbdelRahman et al., 2010),
Maximum Entropy (ME) (Benajiba et al., 2007), Hidden Markov Models (HMM) and Decision Trees
(Nadeau and Sekine, 2007). Notably, Benajiba et al. (2007) developed an Arabic NER system, ANERsys
1.0, which employed maximum entropy and could recognize four types of Named Entities.

The authors also built their own linguistic resources, ANERcorp (an annotated corpus) and ANERgazet
(a gazetteer), which have become benchmarks for evaluation. At this time, work was also done on
incorporating POS information to improve NER. For example, Benajiba and Rosso (2007) proposed



ANERsys 2.0, where they used a POS tagger and a two step approach to enhance the performance of
ANERsys 1.0.

More recently and following the general trend towards neural approaches, Gridach (2016) developed a
character aware neural network model which attempts to capture contextual characteristics in Arabic by
placing a CRF on top of a Bi-LSTM. This provided a hard state-of-the-art for other systems to beat and
provides the foundation of our own approach. Very recently, Ali et al. (2019) applied a neural network
model with a multi-attention layer to extract Arabic NEs. They used two attention units, the embedding
attention layer, and the self-attention unit. They achieved an F1 score of 91.31 to achieve a new state-
of-the-art on a large dataset proposed for evaluation in the same work. At the same time, Khalifa and
Shaalan (2019) used character Convolutional Neural Networks (CNN) as a replacement for character-
level bidirectional Long Short-Term Memory (LSTM) in Arabic NER. Their proposed system was able
to outperform the state-of-art systems, including character-level Bi-LSTM on various standard Arabic
NER corpora. Antoun et al. (2020) proposed AraBERTv0.1 which involves pretraining the BERT trans-
former model for the Arabic language. They compared AraBERTv0.1 and the Bi-LSTM-CRF model on
ANERCorp, the former achieved 84.2 F1 scores whereas the later achieved 81.7. Most recently, Sheng
et al. (2020) proposed a transfer learning approach for Arabic NER with Deep Neural Networks where
they showed that their model outperformed significantly the Bi-LSTM-CRF model. We have not con-
sidered this approach here because our aim is not to create a new state of the art model but to show the
effectiveness of incorporating language specific characteristics in the form of embeddings.

Turning our attention now to Arabic POS tagging, many approaches have also been adopted over the
years including rule-based methods (Alqrainy, 2008; Zribi et al., 2016), statistical models (Al Shamsi
and Guessoum, 2006; Kadim and Lazrek, 2018), hybrid models (Vashishtha and Susan, 2019; Forsati
and Shamsfard, 2014) and neural networks (Yousif and Sembok, 2006; Yousif and Sembok, 2005).
Performance is usually much higher for POS tagging than NER. Khoja (2001) introduced a hybrid POS
tagger (with 33 tags) which combined HMM with a rule-based tagger. They used the Holy Quran Corpus
and achieved an accuracy rate of 97.6% and 96.8% respectively. Yousif and Sembok (2008) used the
SVM approach and a corpus of 177 tagged words. Zeroual and Abdelhak (2016) presented a probabilistic
POS tagger for Arabic text based on HMM called Tree Tagger. The proposed tagger obtained accuracy
rates of 99.4% using Al-Mus’haf corpus.

Similar to other NLP applications, the most recent attention in this area has been on neural approaches.
Wang et al. (2015) demonstrated an effective way of applying a Bi-LSTM to the POS tagging task,
achieving 97.4% on the English Penn Treebank. Darwish et al. (2017) used a Bi-LSTM in their work on
Arabic POS tagging, achieving 95.50%. Alrajhi and ELAffendi (2019) used the LSTM-RNN model on
the Quranic Arabic Corpus (QAC). They reported accuracy of 99.76% at the word level and 99.18% at
the morpheme level. They also compared their system against the Word2Vec POS tagger, for which they
reported accuracy levels of 97.33% and 99.55% for words and morphemes respectively.

Returning to the different approaches of handling Arabic text. As discussed in the previous sections
letter normalization and transliteration are examples of the simplification approach. For example, letter
normalization is commonly applied to reduce the noise and sparsity in the data (Habash, 2010). For
transliteration, Ameur et al. (2017) applied a bidirectional attention-based encoder-decoder model for
the task of machine transliteration between Arabic and English.

Since the removal of diacritics also clearly leads to a potential ambiguity as explained in Section
(2.1) there has been some work on automatic diacritization of partially diacritized or undiacritized text
(Mubarak et al., 2019a; Mubarak et al., 2019b; Abdelali et al., 2016).

Shakkala was built by Barqawi (2017) for Arabic text diacritization using Bi-LSTM networks com-
bined with character embeddings. Fadel et al. (2019) demonstrated the superiority of the neural approach
of Shakkala compared to other different automatic diacritization systems available online e.g., Ali-Soft,
Farasa, Harakat, and MADAMIRA.

Some recent work in Arabic NLP has started to make use of such systems. For example, Al-Sallab
et al. (2017) proposed AROMA, a recursive deep learning model for opinion mining in Arabic. Pre-
processing in AROMA included morphological tokenization and automatic diacritization carried out by



MADAMIRA (Pasha et al., 2014). This resulted in improved performance in classifying opinion as
positive or negative on a range of different Arabic corpora. Similarly, Baly et al. (2017) used a Re-
cursive Neural Tensor Network (RNTN) for sentiment analysis and reported that adding orthographic
features such as diacritics improved the performance. They incorporated orthographic features such as
diacritics by enlarging the vocabulary to have distinct word forms for different versions of the word (di-
acritized/undiacritized) and then deriving embeddings by training a Continuous Bag of Words (CBOW)
model (Mikolov et al., 2013). Similarly, Alqahtani et al. (2019) introduced automatic selective dia-
critization as a viable step in lexical disambiguation. They evaluated the system in downstream tasks
including POS which improved from 97.99% by baseline to 98.70%. They trained word embeddings on
selectively-diacritized dataset to enrich the vocabulary.

3 Hypothesis

The hypothesis of this research can be summarized thus:

1. Incorporating linguistic characteristics of Arabic text in the form of embeddings can be exploited
by a neural network, thus improving performance in downstream tasks.

2. Inferring linguistic characteristics of Arabic text to use as embedded features in a downstream model
can improve downstream performance.

We have already outlined in Section (1) that there are two approaches of handling Arabic text, the simpli-
fication approach which involves transforming the text into simplified representation and the enrichment
approach which minimally modifies the text and potentially adds more exploitable features to the text.
We have assumed that the simplification approach might exclude some useful information and hence
have adopted an enrichment approach. More specifically, we have adopted a pipeline approach where
we use one model to infer a particular linguistic characteristic and then use the inferred information as
features further downstream. For example, we infer diacritic information, using existing models such
as Shakkala. We then exploit these features of the text in the form of embeddings in order to enhance
performance in POS-tagging. We then use diacritics inferred by Shakkala and POS information inferred
by POS model to enhance performance in NER.

We reason that using minimally modified Arabic text as input to neural networks builds the potential
for allowing the neural network to learn an enriched representation of the Arabic language. Further, a
framework such as EMIL, which incorporates more language-specific characteristics of the text in the
form of embeddings should result in improved performance. In particular, since Arabic syntax and word
sense disambiguation relies heavily on diacritics, we reason that applying an automatic diacritization
neural model to minimally transformed Arabic text can capture syntactic and semantic dependencies.
Similarly, useful information for NER can also be derived via POS tagging. Finally, we hypothesize that
incorporating embedding layers based on derived language characteristics such as diacritics and POS
tags can improve the overall performance of a neural network in sequence labeling tasks.

4 Approach

We propose a three-step approach to Arabic sequence labeling. The first step is to automatically diacritize
the text using the state-of-the-art automatic diacritization system Shakkala (Barqawi, 2017). The second
step is the individual training of character and diacritic embeddings using the architecture proposed by
Gridach (2016). The third step is to train all embedding layers together using a combination model (see
section 4.3). There are two main advantages in adopting this architecture for EMIL. First, it is based on
a standard approach in NER and sequence labeling in general, which remains very close to the state-of-
the-art. Second, it is a relatively light-weight architecture requiring less computational resources than
other alternatives (see section 5.3). We will discuss and justify our design choices and the computational
aspects of the architecture further in Section (5.3) and Section (6). Figure (2) gives an overview of the
overall training procedure for our EMIL framework, which we now explain in detail.



Figure 2: EMIL Training procedure.

4.1 Data Preparation

As shown in Figure (2), the input layers of our system are prepared with up to four types of input:
word, POS, character and diacritic. The subset of input layers used depends on the task and setting.
For example, when individually train the character model, we use the word and character input layers
whereas when individually train the diacritic model, we use the word and diacritic input layers. For the
final combination model for NER, we use all four input layers.

Since our data consists of variable length sentences, we use padding of 50 for the word and POS layers
and 10 for the character and diacritic layers, which is consistent with the literature in this area. Thus, for
each of the word and POS layers, the input has a shape of (50,). For each of the character and diacritic
layers, the input has the shape (50,10) dimensions, which means for each word in the sentence there will
be a 10 dimensional array representing the characters or diacritics respectively.

4.2 Individual-training: Character and Diacritic Models

Gridach (2016) proposed a character aware neural network model using a CRF on top of a Bi-LSTM.
The aim of that model was to predict the NER tags by exploiting word and character embeddings. In
our approach, we follow the same architecture. First, as shown in Figure (2) we use the character model
directly to individually train character embeddings. The inputs to this model are word and character
input layers as indicated by arrow (A). The word embedding layer takes as input pre-trained embedding
matrix developed by Soliman et al. (2017), transforming the word input layer into word embeddings.
The character embedding layer is randomly initialized and trained by the C-Bi-LSTM. The forward and
the backward output from this C-Bi-LSTM is concatenated with the output from the word embedding
layer and passed to the main Bi-LSTM. The output from this is passed to a Dense layer which maps
the output of the main Bi-LSTM to the CRF layer, following Lample et al. (2016). After training the
character model, we extract the forward and the backward output of the C-Bi-LSTM and use them to
initialize the character embedding layer in the combination model.

The same approach is applied on diacritic model instead of using character information we use dia-
critics and instead of using C-Bi-LSTM we use D-Bi-LSTM. We extract the forward and backward
outputs of the trained D-Bi-LSTM as individually-trained diacritic embeddings. It is worth noting that
both of these models are trained on diacritized version of the datasets. Also it is important to mention
that the output from this step are weights to initialize the character and diacritic embedding layers in the
combination model and both of these sets of weights have been trained individually in separate mod-
els. The justification of this step can be found in Section (6) Table (2) where the experiments showed
that training these embeddings separately and using them as individually-trained embedding in the final
model improves the performance.

4.3 Combination model

As also shown in Figure (2), the final step in the EMIL training procedure is to combine all embedding
layers and train them all together in a combination model. The first version of this model uses three input



layers (word, character and diacritic) and is referred to as the character-diacritic model. The second ver-
sion uses all four layers of input and is referred to as the four-layer combination model. We now discuss
the embeddings corresponding to each input layer in turn. First, the word embedding layer is provided
with pre-trained word embeddings. Second, the optional POS embedding layer is randomly initialized
(as shown in Figure (2), there is no arrow coming from the individually-trained embedding) and trained
using CP-Bi-LSTM. Third, the character embedding layer is initialized with the individually-trained
character embedding and re-trained using CC-Bi-LSTM. Fourth, the diacritic embedding layer is ini-
tialized with individually-trained diacritic embedding and re-trained using CD-Bi-LSTM. The output
from the pre-trained word embedding, POS embedding, and the forward and backward output from
CC-Bi-LSTM and CD-Bi-LSTM layers are concatenated by stacking each level on top of the other. The
main Bi-LSTM layer is then trained using the concatenated layer, and the output of that layer is passed
to the dense layer and from there to the CRF layer.

5 Empirical Evaluation

The character model described previously is used both as a baseline and for training the individually-
trained character embedding. We also empirically evaluate two versions of the combination model:
the character-diacritic model which incorporates word, character, and diacritic embedding layers; and
the four-layer combination model which has an additional POS layer. We evaluate our models on two
sequence labeling tasks: NER and POS tagging. We now describe the datasets used Section (5.1),
hyperparameter settings Section (5.2) and the experiments performed to test our hypotheses Section
(5.3). We used k-fold cross validation in order to evaluate the statistical significance of our results. The
value of k used in k-fold cross validation varied according to the size of the dataset but was between 4
and 10 in all cases.

5.1 Datasets
We evaluate on 7 sequence labelling benchmarks: 4 of which are NER datasets and 3 of which are POS-
tagging datasets1. In brief, each dataset consists of a sequence of sentences, where each sentence has a
sequence of (word:tag) pairs. For NER we use the BinAjeeba (Darwish, 2013), the ANERCorp developed
by Benajiba et al. (2007), and the Wikipedia and Newswire datasets which are mapped2 versions of
the fine-grained WikiFANE and NewsFANE datasets (Alotaibi and Lee, 2014) respectively. For POS-
tagging we are evaluating on 3 standard datasets: WikiNews (Abdelali et al., 2019), Al-Mushaf (Zeroual
and Abdelhak, 2016), Prague Arabic Dependency Tree Bank (PADT) (Hajic et al., 2004).

5.2 Hyper-parameters settings
Here, we are going to discuss the main hyper-parameters of the combination model. We did not tune these
hyper-parameters — instead selecting values for computational efficiency (see section 5.3) and based on
best practice from the literature. The CP-Bi-LSTM, CC-Bi-LSTM and CD-Bi-LSTM have 10 units
each and the main Bi-LSTM has 20 units. Before we feed the output to the CRF layer, we use a dense
layer with 20 units and tanh activation function to map the output of the main Bi-LSTM to the CRF
layer. We use Keras which is an open source python library based on tensorflow. For optimization we
used adam optimization technique 3.

Regarding the embeddings themselves, we used pre-trained word embeddings developed by Soliman
et al. (2017) with 100 dimensions. The POS, character and diacritic embeddings have 10 dimensions
each. The reason behind choosing 10 as the size of these embedding is that the size of the associ-
ated type vocabulary for each is small. For example, the Arabic alphabet contains 28 characters. We
argue that 10 dimensional embedding will be enough to encode the information provided by the 28
character Arabic alphabet4. The word embedding is pre-trained, character and diacritic embeddings are
individually-trained whereas the POS layer is randomly initialized. We set all of these embeddings to be

1For more details about the data sets, see Appendix A
2For the mapping, see Appendix A.1
3For more details about parameter settings, see Appendix B
4We also experimented with 25 dimensional embeddings as used by Gridach (2016) and found no further improvement



Corpus Character model Character-Diacritic model Four-layer Combination model
F1 Recall Precision F1 Recall Precision F1 Recall Precision

ANERCorp (NER) 0.708 0.762 0.662 0.818* 0.833 0.803 0.929** 0.938 0.920
BinAjeeba (NER) 0.720 0.763 0.681 0.840* 0.854 0.826 0.930** 0.936 0.924
NewsWire (NER) 0.612 0.718 0.534 0.751* 0.803 0.706 - - -
Wikipedia (NER) 0.758 0.794 0.726 0.834* 0.851 0.819 - - -
Al Mushaf (POS) 0.941 0.940 0.942 0.980* 0.9808 0.9806 - - -

PADT (POS) 0.94 0.941 0.939 0.954* 0.955 0.953 - - -
WikiNews (POS) 0.949 0.951 0.948 0.958* 0.960 0.956 - - -

Table 1: Summary of performance by each model on each dataset in the tasks. Best results are highlighted
in bold. * indicates statistical significance at the 5% level in a paired sample comparison with the
character model; ** with the character-diacritic model

trainable so they are trained together. We experimented with variations (randomly initialised character
and diacritic embeddings (no individual-training), randomly initialised word embeddings, individually-
trained POS embeddings and frozen embedding layers) during our ablation studies Section (6) and found
this configuration of embeddings to be optimal.

5.3 Experiment

We conducted our experiments in five steps. First, as a baseline, we constructed a character aware model
similar to the one in Figure (2) (character model/baseline) and trained it on the undiacritized version
of the 7 datasets. It is worth noting that the dataset used to evaluate the baseline and the one used to
evaluate the combination model are identical — the only difference between them is that the latter has
been automatically diacritized using the Shakkala model.

Second, we used the diacritized version of the 7 datasets to extract the individually-trained character
and diacritic embedding as described in Section (4.2) and passed it to the combination model. Third,
we used the same diacritized version of the 7 datasets to train the character-diacritic model where we
combine word, character and diacritic layers. The output from this sub-step is a diacritic-aware NER
tagger for each of the 4 NER datasets and a diacritic-aware POS tagger for each of the 3 POS datasets.
Fourth, we used our enhanced diacritic-aware POS tagger to tag 2 standard NER dataset (BinAjeeba
and ANERCorp). Finally, we used these datasets to evaluate the four-layer combination model where
we combine all four layers. It is worth noting that the amount of time required to cross-validate our
models varied between 21 minutes and 387 minutes and the number of epochs required varied between
90 epochs and 340 epochs across all datasets. For example, cross-validating ANERCorp across the three
models explained earlier took 77 minutes and 169 epochs for the character model, 85 minutes and 164
epochs for the character-diacritic model and 88 minutes and 240 epochs for the four-layer combination
model which makes our architecture light-weight compared to BERT or other architectures which employ
attention mechanisms5.

6 Results

Table 1 summarises our results. For each model and dataset, we give the average precision, recall and
F1-score calculated over the k folds of cross-validation. The character model is our baseline and is
evaluated on the undiacritized version of the 7 datasets. We also give results for the character-diacritic
model evaluated on the diacriticized versions of all 7 datasets and results for the four-layer combination
model evaluated on automatically diacritized and automatically POS-tagged versions of 2 datasets.

First, we compare results for the character model and the character-diacritic model to see the impact
of adding diacritics. We observe that the proposed character-diacritic model outperforms the character
model on all of the datasets for both NER and POS-tagging. Automatically diacritizing the text and
adding the diacritic embedding layer boosts both precision and recall of the system. We used k-fold
cross-validation and all of the differences observed are statistically significant at the 5% level using a

5For more details about the computational aspects, see Appendix C



paired sample test. Our best absolute performance in NER was on the BinAjeeba dataset where we
achieved an F1-score of 0.84, substantially outperforming the character model which achieved 0.72.
Our best absolute and relative gain in performance on POS-tagging was on the Al Mushaf dataset where
F1 performance rose from 0.941 to 0.980.

Second, we compare the character-diacritic model with the four-layer combination model to evaluate
the impact of adding POS information as well as diacritics. We note that automatically POS tagging the
diacritized NER datasets and adding this information via a POS embedding layer leads to a substantial
gain in performance on both datasets. The performance on the BinAjeeba dataset improved form 0.84 to
0.93 using the four-layer combination model. Similarly, F1-score performance on the ANERCorp dataset
rose from 0.82 to 0.92.

We also performed a number of ablation experiments on one of the benchmark datasets (ANERCorp)
which are summarised in Table (2). It is worth noting that all the embedding layers in the ablation ex-
periments are trainable apart from A5. In our ablations, we consider the effect of randomly initialising
or training the different embedding layers for the combination model as follows: (A1) all embeddings
randomly initialised, this ablation shows the importance of the pre-trained and the individual-trained
components of the combination model. As shown in the table the performance drops substantially when
we remove these components; (A2) word embeddings and POS randomly initialised, individually-trained
character and diacritic embeddings, this ablation shows the significance of the pre-trained word embed-
dings and evidently proves its impact on the model. When we use randomly initialized word embeddings
the performance drop from 0.929 to 0.611; (A3) pre-trained word embeddings, randomly initialized char-
acter, diacritics and POS embeddings, this ablation shows the impact of removing the individual training
step from the combination model. The result shows that without the individual training of character
and diacritic embedding the model achieves 0.747 however, when initializing character and diacritic
embeddings of the combination model with individually-trained weights which are trained separately
the performance is boosted to 0.929; and (A4) pre-trained word embeddings and the rest are individu-
ally trained, this ablation is to test the effectiveness of individually training POS embeddings and the
results shows that this approach still outperformed by the original approach where we use randomly ini-
tialized POS embedding. We also considered (A5) freezing the embeddings rather than allowing them
to be trainable in the final model but our results show the massive benefit of trainable embeddings. The
previous ablation experiments supports the choice of our architecture where we use pre-trained word em-
bedding along with randomly initialized pos embedding and individually trained character and diacritic
embeddings.

EMIL A1 A2 A3 A4 A5
0.929 0.617* 0.611* 0.747* 0.927 0.591*

Table 2: Summary of ablation results (F1-score); * indicates statistical significance at the 5% level in a
paired sample comparison with EMIL

7 Error Analysis and Discussion

We now present a detailed analysis of the errors committed by each model on the ANERCorp dataset
for the NER task. In our analysis, we identified 4 types of errors. Type-one: Boundary errors e.g., the
word �

IK
ðQ�
�K
X (Detroit) appears once in the dataset tagged as B-ORG and is classified as I-ORG. Type-

two: Low frequency words e.g., the word �
�m��@


(Isaac) appears twice in the dataset tagged as B-PERS

and is classified as O. We note that a lot of words in this type of error are foreign names. Type-three:
Dominant tags e.g., the word Q�


	
®�Ë@ (the ambassador) is tagged twice as B-ORG and 12 times as O, and

when this word appears as B-ORG a model classifies it as O. Type-four: Counter dominant tags e.g.,
the word YîD

�
�Ó (Mashhad) is labeled 17 times as B-LOC and once as O, and when it appears as B-LOC a

model misclassifies it as O. We note that a lot of type-four errors appear to be gold standard errors where
the word is tagged incorrectly and classified correctly by the model. For example, the word �

é
	
®

	
�Ë@ (AL



Daffa (The bank, like in riverbank)) is incorrectly tagged 4 times as O in the gold standard and our model
classified it as B-LOC, which is in fact the correct label.

Model Type 1 Type 2 Type 3 Type 4
(Baseline) 1540 2406 701 635

(Character-Diacritic) 889 1249 558 443
(Four-layer Combination) 214 683 117 60

Table 3: Summary of the errors committed by each model.

Table (3) shows a summary of the errors. We observe that the addition of diacritics reduced the number
of errors in each type. Further, each error type was reduced again by the addition of POS information.

However, the largest reductions were for type-three and type-four errors which are both due to tag
ambiguity. For example, the word �

éK
Xñª�Ë@ (Al Saudia) can be tagged either as I-LOC or B-LOC de-
pending on the context. Adding diacritics to this word will help disambiguate its sense. For example
instances which should be tagged as B-LOC are adverbs and will be diacritized as

��
é
��
K
X� ñ

�
ª

��
�Ë@ (Al Saudiate)

whereas instances which should be tagged as I-LOC are adjectives and will be diacritized as
��
é
��
K
X� ñ

�
ª

��
�Ë@

(Al Saudiato). It is worth noting that both words have the same meaning but each one plays a different
syntactic and semantic role which can be encoded by the diacritics. This can be used as evidence to sup-
port our claim in Section (3) that neural network can learn syntactic and semantic information from the
embeddings. In a perfect world, automatic diacritization will be optimal but we also note that Shakkala
has some limitations. For example, foreign names written in Arabic, such as Pñ

�
KñÓ È@Q�


	
JJ
k. (General

Motors), tend to produce errors, which is probably due to the sparsity of these types of names in Arabic
corpora. Further, any errors committed by the automatic diacritization module tend to propagate through
the sentence. Less frequently occurring diacritics such as gemination and nunation may also be mis-
placed. In some cases, the POS layer improved the performance as it was able to mitigate the errors
produced by automatic diacritization. For example, if the word Al Saudia was incorrectly diacritized in
the text, the POS tagger could mitigate this error by tagging it correctly as Adj or Adv based on its con-
text. Of course, errors produced by the POS tagger will similarly affect the performance of the four-layer
combination model As discussed in Section (3).

8 Conclusions and Future Work

In summary, we have shown that inferring and incorporating linguistic features of Arabic text in the form
of embeddings can improve the performance of downstream tasks. Further, the pipeline approach that we
are using may not be ideal regarding the quality of the inferred information but it still produces excellent
results overall.

Focussing on diacritic information, we have shown that it is possible for a neural network to learn
from the information encoded in the diacritics of the Arabic text and for this information to be used
successfully in POS tagging and NER. By automatically diacriticising text and adding a diacritic-aware
layer to existing neural architecture, performance (F1) was increased. We have also shown that adding
POS information on top of diacritics in a similar way further improves performance at NER.

There are a number of directions for further work. First, further work on automatic diacritization,
potentially directly including the diacritic inference model into the NER/POS training mode to reduce
the effect of error propagation cause by the pipeline. Second, there is work to be done investigating the
impact of embedding diacritic and POS information in attention-based architectures (Ali et al., 2019;
Khalifa and Shaalan, 2019; Devlin et al., 2018).

Second, we believe that our approach of diacritic sensitive tagging will be useful in other areas of
analysis including segmentation and deeper syntactic analysis. Further, embedding information from
other analyses, including grammatical dependencies, might further improve performance in downstream
tasks such as NER. Consequently, this is clearly only the beginning of investigating how the EMIL
approach, where we Embed More and Ignore Less, can be applied to different sources of information, in
different languages and to different downstream tasks.
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9 Appendix

A Dataset

In this section we are going to present some statistics about the 7 datasets used in this paper. The data in
this section is divided based on the tags that the datasets contain. For example, BinAjeeba and Wikipedia
are gathered together because they have the same tags, and similarly, ANERCorp and NewsWire are
gathered together. For POS, each corpus has its own POS tags so each data will be discussed separately.

Corpus B-LOC I-LOC B-PERS O I-ORG B-ORG I-PERS
BinAjeeba 3553 1647 2910 501 1119 2342 98660
Wikipedia 46232 8615 22715 14732 9962 29895 881913

Table 4: Summary statistics of BinAjeeba and Wikipedia.

Table (4) shows the summary statistics of BinAjeeba and Wikipedia datasets. The BinAjeeba dataset
contains 3889 sentences and 110732 tokens written in Modern Standard Arabic (MSA). The Wikipedia



contains 31397 sentences, 1014064 tokens written in MSA and are the mapped versions of the fine-
grained WikiFANE. We mapped the fine grained tags present in these datasets onto the 3 broad-grained
tags similar to the ones in the table. Both of these datasets are following Automatic Content Extraction
(ACE) tagging guidelines with three types of named entities: location, person and organisation.

Corpus B-LOC I-LOC B-PERS O B-MISC I-ORG I-MISC B-ORG I-PERS
ANERCorp 4269 1070 1914 3440 586 468 1298 2702 117822
NewsWire 4631 906 2325 3521 1220 279 2127 2939 139537

Table 5: Summary statistics of ANERCorp and NewsWire.

Table (5) shows the summary statistics of ANERCorp and NewsWire datasets. The ANERCorp con-
tains 3889 sentences and 133569 tokens written in MSA. The Newswire contains 4886 sentences, 157485
tokens and are mapped versions of the fine-grained NewsFANE datasets. We mapped the fine grained
tags present in this dataset onto the 4 broad-grained tags similar to the ones in the table. Both of these
datasets have three standard tags: person, location, organization and also a fourth miscellaneous tag and
follows ACE tagging guidelines.

For POS-tagging we are evaluating on 3 standard datasets: WikiNews has 571 sentences, 29992 tokens
and 27 POS tags see Table (6); Al-Mushaf has 6347 sentences, 84593 tokens and 9 POS tags see Table
(7); Prague Arabic Dependency Tree Bank (PADT) has 7609 sentences, 282384 tokens and 16 POS tags
see Table (8).

Tag Number of instances
NSUFF 17

FOREIGN 2077
FUT PART 1

NOUN 2
ADJ 5

PART 45
NSUFF/ADJ 339

CASE 1323
ADV 4317

PRON 45
CONJ 63

PART/CONJ 8840
NSUFF/DET 2

PREP 3367
NOUN/DET 16

DET 3
NUM 3

ABBREV 425
NSUFF/NOUN 974

V 48
ADJ/NUM 25
ADJ/CONJ 3

PART/PREP+PART 8
PUNC 2920

PART/PART 1512
ADJ/DET 1754

PART/NOUN 1858

Table 6: Summary statistics of WikiNews dataset.

PRT VERB PUNC DSIL ADV PN NOUN PRON ADJ
978 1730 30 39113 948 1380 15455 6346 18613

Table 7: Summary statistics of AlMushaf dataset.



Tag Number of instances
VERB 29351
SYM 42555
INTJ 1071

CCONJ 2165
DET 25241
NUM 5896
AUX 8
PART 93705
ADV 7758
ADP 2190

PROPN 10877
X 245

PUNCT 22445
NOUN 388
PRON 21300
ADJ 17189

Table 8: Summary statistics of PADT dataset.

A.1 Wikipedia and NewsWire Mapping

As mentioned in the previous section, both Wikipedia and NewsWire are mapped versions of the fine-
grained WikiFANE and NewsFANE datasets. Both of WikiFANE and NewsFANE are following the
(inside-outside-beginning) IOB format. WikiFANE has 103 tag in IOB format and 53 distinct tag trained
on Wikipedia text. NewsFANE has 88 tags in IOB format and 46 distinct tags trained on NewsWire. We
manually mapped each dataset by looking at the original tag and what it represents in order to map it to
the equivalent tag. For example, FAC Airport tag represents a location in the original dataset, hence it
is mapped to location in the mapped dataset. For WikiFANE, we mapped each tag to the equivalent tags
of BinAjeeba tagset which uses: Person, Location and Organization NEs, for NewsFANE we mapped
each tag to the equivalent tags of ANERCorp tagset which uses: Person, Location, Organization and
Miscellaneous NEs to create balance between datasets. It is worth noting that both WikiFANE and
NewsFANE share the same level of granularity with different naming conventions and some extra tags.
Table (9) shows a subset of the mapping in both Wikipedia and NewsWire.

WikiFANE Tag Wikipedia Map NewsFANE Tag NewsWire Map
FAC Airport LOC Airport LOC

FAC Building-Grounds LOC Building-Grounds LOC
FAC Path LOC Continent LOC

FAC Subarea-Facility LOC County-or-District LOC
ORG Commercial ORG Commercial ORG
ORG Educational ORG Educational ORG

ORG Entertainment ORG Entertainment ORG
ORG Government ORG Government ORG

PER Artist PERS Artist PERS
PER Athlete PERS Athlete PERS

PER Businessperson PERS Businessperson PERS
PER Engineer PERS Engineer PERS

PRO Drug O Drug MISC
PRO Food O Food MISC

PRO Hardware O Hardware MISC
PRO Movie O Movie MISC

Table 9: Subset of the mapping of WikiFANE to Wikipedia and NewsFANE to NewsWire.

B Hyper-parameters Settings

In this section, we discuss the hyper-parameter settings in more detail. We used Keras which is an open-
source neural-network library written in Python in the implementation of these models. For optimization,
we used the adam optimization technique with a batch size of 32 batch, early stopping criteria based on
the validation accuracy and validation split of 0.2 for all models. The models in our research can be
divided in three types: baseline, individual-training models and combination model. In the following



subsections we are going to discuss it in details.

B.1 Baseline

In this section, we discuss the main hyper-parameters of the baseline model. We used pre-trained word
embeddings with 100 dimensions and we set this layer to be trainable. The character embedding has 10
dimensions and we also set this layer to be trainable. The C-Bi-LSTM has 10 units wrapped with the
time distributed Keras layer and 0.6 recurrent dropout. We concatenate the embeddings using
Keras concatenation layer which stack each embedding on top of the other. The concatenated embedding
here is the word embedding and the forward and the backward output of the C-Bi-LSTM. We also apply
spatial dropout of 0.6 between the concatenation layer and the main Bi-LSTM. The main Bi-LSTM
has 100 units with recurrent sequence sat to true and recurrent dropout of 0.6. We also placed a Keras
dropout between the main Bi-LSTM and the dense layer. Before we feed the output to the CRF
layer, we use a dense layer with 100 units, wrapped with time distributed Keras layer and tanh
activation function to map the output of the main Bi-LSTM to the CRF layer. The size of the CRF
layer is equal to the number of distinct tags.

B.2 Individual-Training Models for training character embedding

In this section we discuss the character model and the diacritic model that are used to individual-train
character and diacritic embedding layers. These two models are similar to the baseline and following
exactly the same architecture. The only difference between these two models and the baseline is that
after we train these models we extract the forward and the backward output of the C-Bi-LSTM and
D-Bi-LSTM to use it as initialization weights for character and diacritic embedding respectively for the
combination model.

B.3 Combination Model

Here, we discuss the hyper-parameters of the combination model. This model has two versions character-
diacritic model and the four-layer combination model. They both share the same parameters except
two cases they are different, so we will mention the parameters all together and highlight the distinct
parameters as we proceed. We used pre-trained word embeddings similar to the one mentioned earlier
with 100 dimensions. The POS, character and diacritic embeddings have 10 dimensions each. The
word embeddings are pre-trained, character and diacritic embeddings are individually-trained whereas
the POS layer is randomly initialized. We set all of these embeddings to be trainable so they are trained
together. In the character-diacritic model the CC-Bi-LSTM and CD-Bi-LSTM have 10 units with
recurrent dropout of 0.6 each. In the four-layer combination model CP-Bi-LSTM, CC-Bi-LSTM and
CD-Bi-LSTM have 10 units with recurrent dropout of 0.5 each. The CC-Bi-LSTM and CD-Bi-LSTM
layers are wrapped with the time distributed Keras layer and the CP-Bi-LSTM is not. We
concatenate the embeddings using Keras concatenation layer which stack each embedding on top of the
other. In the character-diacritic model the concatenated embedding is the word embeddings and the
forward and the backward output of the CC-Bi-LSTM and the CD-Bi-LSTM layers. In the four-layer
combination model, the concatenated embedding is the word, POS embeddings and the forward and the
backward output of the CC-Bi-LSTM and the CD-Bi-LSTM layers. We also apply spatial dropout of
0.6 between the concatenation layer and the main Bi-LSTM similar to the previous models. The main
Bi-LSTM has 20 units with recurrent sequence set to true. We also placed a Keras dropout between the
main Bi-LSTM and the dense layer. Before we feed the output to the CRF layer, we use a dense
layer with 100 units, wrapped with a time distributed Keras layer and tanh activation function
to map the output of the main Bi-LSTM to the CRF layer. The size of the CRF layer is equal to the
number of distinct tags.

C Computational Aspects

In this section, we present the computational time and the number of epochs that each model took to
train across all datasets. It is worth noting that we didn’t compute the time and number of epochs of the



individual-training models since it is a one time cost. Table (10) shows the time and number of epochs
needed for each model on each dataset, where time is in minutes. This table shows that our proposed
model is light weight which is an advantage over the other heavy weights models such as BERT or
attention.

Corpus Character model Character-Diacritic model Four-layer Combination model
Time Epochs Time Epochs Time Epochs

ANERCorp 77 169 85 164 88 240
BinAjeeba 69 176 65 224 21 194
NewsWire 143 261 67 276 - -
Wikipedia 350 90 387 104 - -
AlMushaf 154 318 122 306 - -

PADT 145 229 101 136 - -
WikiSeg 20 282 16 340 - -

Table 10: The time in minutes and the number of epochs taken to train each model for each dataset.


