
Natural Language Expression of User Policies in Pervasive Computing
Environments

Julie Weeds∗, Bill Keller ∗, David Weir∗, Ian Wakeman†, Jon Rimmer† and Tim Owen†

∗Natural Language Processing Group
†Networks Laboratory

Department of Informatics, School of Science and Technology
University of Sussex, Brighton, BN1 9QH, UK

{juliewe,billk,davidw,ianw,jonr,timo}@sussex.ac.uk

Abstract
The pervasive computing environments of tomorrow will typically consist of a large heterogeneous collection of networked services.
In an ongoing research project, we are exploring ways to enable non-technical users to configure their environment. Our architecture
includes an ontology that precisely describes the available services, a formal language for defining user policies and a middleware
implementation of formal policies. In this paper, we analyse how existing natural language technologies can be applied to bridge the gap
from a natural language description of user policies to a formal representation.

1. Introduction
The pervasive computing environments of tomorrow

will typically consist of a large heterogeneous collection of
networked services. These could include services associ-
ated with physical devices such as printers, mobile phones,
motion detectors, and household heating systems, services
associated with non-physical resources such as personal
calendars or pdf to postscript converters, and services as-
sociated with intelligent agents that could, for example, de-
termine your current location, the location of your smart
trousers, or identify items that you need to include in your
next Internet shop.

We assume a model where service provision is medi-
ated through abroker which implements a collection of
policies that configure the actual services in the environ-
ment in a variety of ways. Policies can be used to automate
routine tasks and may involve instantiating underspecified
descriptions of events and/or combining different services.
For example, a user may have a policy to always use the
printer nearest to their current location. With knowledge
of this policy, we would expect a broker to route an under-
specified print request to the most appropriate printer.

Given the current state of the art, there are severe lim-
its on the kinds of policies that it is currently realistic to
expect a broker to implement, but there is clearly substan-
tial scope for configuring the basic set of actual services.
To some extent, it will be possible to preconfigure the ser-
vices provided by a broker (for example, by providing de-
faults that can be used to instantiate underspecified service
requests). However, there is clearly a need to allow users
to add personalised policies. For example, you might want
your phone calls forwarded to your answer machine when
your calendar indicates that you are busy, unless the caller
is a family member, and you aren’t in a meeting with your
boss.

Making it possible for non-technical users to configure
their environment through a broker represents a major tech-
nological challenge. Users cannot be assumed to have sig-

This work is supported by EPSRC grant number
GR/S26408/01.

nificant technological expertise, indeed, they may not even
be aware of the existence of some of the moreinvisibleser-
vices in their environment. Furthermore, there is likely to
be a significant gap between the system of rules and con-
straints that determine the behaviour of the broker and a
user’s conceptualisation of their environment. This paper
arises from an ongoing research project in which we are
exploring the role that natural language (NL) descriptions
can play in bridging this gap. Our architecture includes an
ontology that precisely describes the actual services, a for-
mal language for defining policies, and a middleware im-
plementation of formal policies1. In the remainder of the
paper we present an analysis of how existing NL technolo-
gies can be applied to this problem.

2. An Abstract Policy Representation
Language

In order to modularise the problem, we consider an ar-
chitecture which has an (unambiguous) abstract policy rep-
resentation language at its centre (see Figure 1). This lan-
guage is “spoken” (or manipulated) by all of the agents in
our system, which we envisage including the policy bro-
ker, a natural language user interface (NLI) and a graphi-
cal user interface (GUI). Given some unambiguous formal
language, we are left with the smaller problems of develop-
ing the individual agents that can manipulate it. For exam-
ple, the NLI, which is the focus of this paper, is required to
“translate” from user policies expressed in natural language
to user policies expressed in the formal language.

The design of the formal language is the subject of on-
going research within our project. Here, we will just give
a flavour of what might be required. We will start by dis-
cussing the domain ontology, which is used to establish a
shared terminology between the agents. We will then dis-
cuss how policies might be expressed with reference to con-
cepts in the ontology.

1The latter is also being developed within our project (Owen
et al., 2003; Robinson and Wakeman, 2003) but is outside the
scope of this paper

Domain Instance

Descriptions

Upper Ontology

Lexical
Resources

Grammatical

Requests

Events

Printing
Service

Location
ServiceServiceService

E-mail

Policy Broker

Implementation

Users

Knowledge

Interface (GUI)

Graphical User

Interface (NLI)

Natural Language

Abstract

Representation
Policy

Concrete
Policy

Calendar

realised by

interpreted by

policies

define

maps torefers to

used by

compiled into

interpreted by

Service

Resources

Standard

Ontology
Service

Figure 1: System Architecture

2.1. Domain Ontology

Throughout this paper we will use an office scenario to
explore the issues in generating interpretations of NL policy
descriptions. In this scenario there are classes ofobjects,
corresponding to entities such as printers, scanners, docu-
ments and users and classes ofevents, which correspond
to different types of services within the environment. For
example, events may be userrequests, e.g., “print docu-
ment A”. Other events may be systemnotifications of state
changes, e.g., “user B is in the office”.

The ontology is a shared terminology which captures
the properties of and relationships between objects and
events. For example, printers are devices with attributes
including name, location and status; and print events are
user requests that involve a user, a file and a printer.

Recent interest in the Semantic Web (Berners-Lee et al.,
2001) has led to a proliferation of potential ontology rep-
resentation formalisms. Baader et al. (2003) note that
description logics (DLs) are ideal candidates for ontology
languages since they provide a well-defined semantics and
powerful reasoning ability. Further, as noted by Stevens
et al. (2001), they are the underlying logical formalism of
the web ontology languages OIL (Fensel et al., 2001) and
DAML+OIL (Horrocks and Patel-Schneider, 2001), whilst

being more intuitive to the human user.
Using DL, descriptions of concepts within the do-

main are built from atomic concepts (unary predicates) and
atomic roles (binary predicates). Figure 2 shows a fragment
of the concept hierarchy for our office scenario expressed in
a typical DL. For example, the concept printer is declared
as a subconcept of device and printers have attributes (func-
tional roles) such ascolournessandstatus. colournessis
declared as a total attribute of the concept printer since ev-
ery printer is related to exactly one ColourValue. Follow-
ing Borgida and Brachman , we use the concept constructor
the to declare total attributes.

Other roles, however, are relational rather than func-
tional i.e., they do not define a one-to-one mapping. For
example, the expression Emailv ∀recipient.User u ≥
1 recipient states that every recipient of an Email event is
a User and that there is at least one recipient.

The relatively intuitive syntax of this DL makes it ideal
for generating from natural language. For example, we can
represent the natural language expression “an online colour
printer” using the description:

x ∈ Printeru∃colourness.COLOURu∃status.ONLINE

In order to be able to distinguish between individual ob-
jects (e.g., a particular printer) and values (e.g. an integer

Object v TOP u the name.String

PhysicalObject v Object

u the location.PhysicalLocation

Device v PhysicalObject

Printer v Device

u the colourness.ColourValue

u the status.StatusValue

u the duplicity.DuplexValue

u the idletime.Duration

Scanner v Device

u the colourness.ColourValue

u the status.StatusValue

u

User v PhysicalObject

ElectronicObject v Object

File v ElectronicObject

u the colourness.ColourValue

u the security.SecurityValue

u the owner.User

u the format.FormatValue

u the size.Size

Document v File

u the version.VersionValue

u the length.Length

Event v TOP u the id.String

Request v Event

Print v Request

u the agent.User

u ∀patient.File

u ≥ 1 patient
u ∀target.Printer

TurnOn v Request

u ∀patient.Device

u ≥ 1 patient
Email v Request

u the sender.User

u ∀recipient.User

u ≥ 1 recipient
u themessage.String

u ∀attachment.File

ClassObject v TOP u the name.String

Relation v TOP

Nearest v Relation

u the objectclass.ClassObject

u the location.PhysicalLocation

u the individual.Object

Figure 2: Fragment of the office scenario concept hierarchy

or the value “COLOUR”), we allow attributes to have val-
ues from concrete domains (Horrocks and Patel-Schneider,
2001). For example, thelengthof a Document is anINTE-
GER and is indistinct from anotherINTEGER with the
same value. Similarly, the concept ColourValue is not de-
fined in terms of other concepts and roles but in terms of
the individual values:

ColourV alue ≡ {COLOUR,MONO}

Having declared the primitive concepts and roles in our
scenario, it is also possible to define new ones. For exam-
ple, we might want to define a long document as a docu-
ment with more than 10 pages:

Documentu the long.TRUE ≡ Documentu ∃length > 10

We also want to model superlative concepts e.g. “the
longest document”, “the busiest printer” and “the nearest
printer to me”. This type of information is most naturally
associated with the entire concept rather than with each
of its individual instances (Borgida and Brachman, 2003).
However, as noted by Borgida and Brachman, DLs do not
currently have the ability to be able to treat concepts as
objects (as might be possible in some object-oriented sys-
tems). Thus it is necessary to create a meta-individual that
is related to the concept by a naming convention. For ex-
ample, we might create the individual PRINTER-CLASS-
OBJECT (as an instance of the ClassObject concept) and
attach the information regardingbusiestand nearestas
roles of this individual. However, certain relationships,
such asnearest, will have to be reified (i.e. represented
as a concept rather than a role) as they involve more than
two objects. For example, Nearest is a ternary relation be-
tween a concept or class of objects, a physical location and
an individual object.

Our discussion so far has focussed on the concept hier-
archy. Most DLs also support the notion of a role hierarchy.
In our example, there is a similarity between thepatientrole
of a Print event (what is being printed) and themessage
role of an e-mail event (what is being e-mailed); and also
between thetarget role of a Print event (where it is being
printed) and therecipient role of an e-mail event (where
it is being e-mailed). We will model these similarities by
turning each pair of roles into sub-roles of a common super-
role. Davis and Barrett (2002) note that very general roles
prove useful for stating linguistic regularities in the linking
between semantic roles and syntactic arguments, which is
something we aim to exploit in our mapping between natu-
ral language and logical descriptions.

Finally, we note that our domain ontology is intended
to encode only the concepts, objects and services specific
to the user’s environment. When new services are added, a
description must be included by the service provider which
will allow it to be incorporated into the ontology. Our on-
tology will be integrated with existing high-level ontologies
such as the Suggested Upper Merged Ontology (SUMO)
(Pease et al., 2002) to provide definitions of non-domain
specific concepts such as time. Current research (Pease and
Fellbaum, 2004) on integrating the machine readable dic-
tionary WordNet (Fellbaum, 1998) with SUMO increases

User Policy Set
1 Normally, I use lja.

If lja is off-line, I use ljx.
If the document consists of more than 15 or 20
pages then I use ljb.
If the document is in colour then I might use cclj.

2 I primarily use printer cork, because its near my
desk.
If the document is long and only a draft then I
will use ljb.

3 If I am printing the final copy of a document
which is in colour, then I will print it on cclj.
Otherwise, if the document is long I will print it
on ljb.
Otherwise, I use the closest printer.

Figure 3: Excerpts from user statements describing how
they select what printer to use

its appeal for use with natural language. In order to in-
tegrate our ontology with SUMO, it will be necessary to
provide a mapping between the DL representation of our
ontology and a KIF or DAML representation.

2.2. User Policies

There is a range of different types of policies that a user
might want to express:

default rules: filling in the gaps in an underspecified user
request, possibly based on the characteristics of other
objects involved in the event.

ontological definitions: defining a new concept or role in
terms of other concepts and roles.

rewrite rules: changing a user request under some speci-
fied condition.

blocking rules: blocking a user request under some speci-
fied condition.

event generation: generating a new event on the basis of
a trigger event.

In this paper, we focus on default rule policies, which
have a first order logic (FOL) interpretation. Ontological
definitions can also be expressed in FOL since they are as-
sertions in English. We expect to be able to apply much
of our work on default rule policies to ontological defini-
tions. We also note that there is previous work (Pease and
Murray, 2003) on the translation of ontological definitions
from controlled English to logic. Rewrite and blocking
rules present problems for any monotonic logic formalism,
since the consequents of these rules may contradict other
facts in the database (including the conditions of the rule).
Event generation policies are similar in form to the com-
plex sentences used in task-oriented dialogues (Balkanski,
1992) and their logical expression is the subject of ongoing
research.

With a view to collecting real-life policies, we per-
formed an initial study of how users manage a collection

of available printers, and how they might express their
policies using natural language. In the study, twenty-four
users within a university department were asked to write
down how they decide what printer to use. Figure 3 shows
some typical examples extracted from their statements. In
many cases, a default rule or policy could be applied which
would, say, route a colour document to a colour printer if
the target of the print event is unspecified. In principle, this
rule could also be interpreted as a rewrite rule and apply
when the broker receives a print request in which a specific
printer is specified, but whether or not this is desirable, and
how problems relating to this can be resolved is a complex
issue that is outside the scope of this paper.

Another issue that is clear from our study is that policies
cannot be interpreted in isolation. In addition to a policy
about colour documents, a user may also have a policy to
print long documents on a double-sided printer. One com-
plication here is thatlongdoes not have a precise definition
and thus a policy is required stating how it should be inter-
preted in this context. A second complication is the possi-
ble interaction or conflict between these two policies. What
happens if the user attempts to print a document which is
colour and in its final version and long? In this case, it
may be possible to print the document to a duplex, colour
printer. However, this may not be what the user wants and
even if it is, it may not be possible given the actual services
available i.e., there may be no double-sided, colour printer
in the user’s domain.

One possible solution is to interpret the semantics of
user policies as preferences or soft constraints (e.g., Bar-
tak (2002)) on the broker’s reasoning. In the above exam-
ple, a preference for a colour printer and a preference for a
double-sided printer will be generated. We can also model a
preference for a certain default printer, or an on-line printer,
or the nearest printer to my current location in terms of con-
straints. The problem of finding an appropriate printer then
becomes one of (possibly weighted) constraint satisfaction.
Figure 4 shows constraints that we might wish to generate
for a set of policies.

Another approach, which could be used alongside or in-
stead of constraints, is to provide a multimodal interface
which will allow the user to simulate and debug their own
policies. For example, using the interface, a user could se-
lect which policy has highest priority. Using this type of
model, the system can be thought of a tool for aiding the
translation between different policy representations: NL,
logical, graphical and software implementation.

3. From NL Descriptions to Constraints
Our general approach to obtaining constraints from NL

policy statements is fairly standard (Allen, 1984) and in-
volves mapping syntactic structure in the natural language
to the semantic representation provided by the ontology.
This section describes some of the more interesting details.
In particular, we will discuss the recovery of syntactic de-
pendencies using a shallow parser, extension of the lexicon
using pre-existing lexical resources and distributional sim-
ilarity methods, word sense disambiguation using knowl-
edge of the semantic argument types from the ontology and
recovery of implicit event participants using the ontology.

No. NL Description Policy Constraint Strength
1 Always print colour documents on a

colour printer.
x ∈ Print u patient.(Documentu colourness.COLOUR)→
x ∈ target.(Printer u colourness.COLOUR)

Strong

2 I usually print draft copies double-
sided.

x ∈ Print u agent.name.$Usernameu
patient.(Documentu version.DRAFT) →
x ∈ target.(Printer u duplicity.DRAFT)

Weak

3 I never print confidential documents
on lja.

x ∈ Print u agent.name.$Username
u patient.(Documentu security.CONFIDENTIAL) →
x 6∈ target.(Printer u name.′lja′)

Strong

4 Never send documents to an off-line
printer.

x ∈ Printu patient.Document→
x 6∈ target.(Printeru status.OFFLINE)

Strong

5 By default, I print documents on the
closest printer.

(x ∈ Print u patient.Document
u agent.(name.$Usernameu location.y))
∧ w ∈ (Nearestu objectclass.PRINTER-CLASS-OBJECT
u location.y u individual.z) → x ∈ target.z

Weak

Figure 4: Examples of NL policies and corresponding constraints

Always

iobj
mod

documents printer

ncmod

a colourcolour

ncmod detmod

dobj

print

(dobj, print:2_VV0, document+s:4_NN2)
(iobj, on:5_II, print:2_VV0, printer:8_NN1)
(ncmod, document+s:4_NN2, colour:3_NN1)
(ncmod, printer:8_NN1, colour:7_NN1)
(detmod, printer:8_NN1, a:6_AT1)
(mod, print:2_VV0, Always:1_RR)

Figure 5: Dependency analysis for the user policy “Always
print colour documents on a colour printer”

3.1. Shallow Parsing

Shallow, dependency-based parsing can be used to de-
termine the local, grammatical relations between the words
in a sentence. These grammatical dependencies are closely
related to the logical dependencies that hold between ob-
jects and events in our ontology. A key advantage of shal-
low parsing over deep syntactic analysis is its robustness.
We aim to show that combining dependency-based parsing
with the domain ontology will provide a robust and accu-
rate approach to the interpretation of NL policy statements.

Our approach makes use of the RASP toolkit (Briscoe
and Carroll, 2002), a pipelined, modular parsing system
comprising separate processing stages for: tokenisation,
part-of-speech and punctuation tagging, lemmatisation and
shallow parsing. The output of the RASP parser is a depen-
dency analysis of the input sentence, represented as a set
of grammatical relations between lexical heads. An exam-
ple of a dependency parse for the user policy“Always print
colour documents on a colour printer”is shown in Figure
5, together with the corresponding set of grammatical rela-
tions that is output by the parser. The dependency structure
shows that“print” is the lexical head of the whole sentence,

and that it has a direct object (dobj)“documents”, an indi-
rect object (iobj)“printer” and a modifier (mod)“always” .
Further, the direct object“documents” is the lexical head
of the sub-phrase“colour documents”, where“colour” is
a (non-clausal) modifier (ncmod) of the head; and similarly
for the indirect object“printer” .

3.2. The Lexicon

The words used by the user need to be mapped onto
concepts in the ontology. We assume the existence of acore
lexicon that associates a small number of words or phrases
with each concept or class in the ontology. For example,
the core lexicon might well assign the wordprinter to the
concept or classPrinter in the ontology.

There are, of course, many alternative ways that the
same concept can be expressed, for example, by the use
of synonyms or hypernyms/hyponyms. Rather than trying
to include all of these directly to our lexicon, we are inves-
tigating how machine readable dictionaries (such as Word-
Net) and distributional similarity techniques can be used to
overcome sparseness of the core lexicon.

This approach is bound to introduce a certain amount of
noise, but the domain ontology can be used to resolve some
of the potential uncertainty in how to map from lexical
items into the ontology. For each wordw in the dependency
tree, a set of possible concepts in the ontology will be gen-
erated. Each possible conceptcwill have asimilarity score
cw associated with it which indicates the similarity between
the lexical itemw and the core lexicon’s entry for the con-
ceptc. For example, the lexical items associated with the
ColourValue concept in the ontology arecolour and
monochrome. However, if a user uses the termblack-and-
white, we identify that the user meansmonochromewithout
explicitly stating this in our domain ontology sinceblack-
and-white is synonymous withmonochromein WordNet
and can therefore be given a high similarity score. Simi-
larly, we can determine that a user who refers to acopy, as
in policy example 2, might be referring to adocumentsince
these are related in WordNet via their common hypernym
Writing, written material. As will be discussed in Section
3.3., where the user refers todraft copies, there is further
evidence for the document interpretation, sincedraft is a

possible value of an attribute of a document.
There are at least two problems with using WordNet

to augment our domain ontology. First, a word may not
exist in WordNet. For example, there is no entry for the
word double-sided(in WordNet 1.6). Second, words tend
to have multiple senses in WordNet, many of which are un-
likely interpretations given the domain. To some extent,
the domain ontology can be used directly for disambigua-
tion. For example, we know that the most likely sense of
printer is the devicesense, rather than thepersonsense,
since the entry forprinter in the core lexicon maps it to the
printer concept in the ontology, which is a subconcept
of device . This idea can also be extended to words out-
side of the core lexicon. For example, there are four senses
of the wordcopyin WordNet 1.6. In our office scenario, the
highest similarity between concepts in WordNet occurs be-
tween the written material sense ofcopyand document, and
so disambiguation is comparatively straightforward. How-
ever, as the scenario and the ontology are scaled-up, the
process becomes more problematic.

These problems can be tackled using lexical distribu-
tional similarity methods (e.g., Weeds (2003)) to automat-
ically generate thesauruses from domain-specific corpora.
Such techniques can be used to find semantically similar
neighbours of words not in WordNet. Further, it has been
shown (McCarthy et al., 2004) that the most distribution-
ally similar neighbours of a word can be used to select the
most likely sense of a word in WordNet given the domain.
There is also related work (Buitelaar, 2001) which uses a
relative term frequency score to compute the domain rele-
vance of a term and thus of a concept in a semantic lexicon
such as WordNet. In both approaches, a domain specific
corpus is required (either to derive reliable similarity scores
or to compute domain relevance scores) and to this end, we
are in the process of creating large domain-specific corpora
consisting of text retrieved from the Internet using search
engines given words in the core lexicon as queries.

In any case, the result at this stage will be a set of pos-
sible referents within the ontology for each word in the ut-
tered policy together with an estimate of their plausibility.

3.3. From NL Dependencies to Logical Descriptions

Having mapped each lexical item onto a set of ontolog-
ical concepts, the next step is to use the output of the shal-
low parser and the ontology to determine the most likely
combination of concepts, and how these fit together. In
general, we disambiguate the referents of each local tree
of the dependency parse by finding the most coherant refer-
ents in the ontology: the most tightly located collection of
elements in the ontology.

In policy example 1, where each word used is mapped
to a single concept in the ontology, there is also a single
path through the ontology that links these concepts in the
way specified by the dependency tree. In general, we would
expect there to be a mapping between the grammatical de-
pendency relation and the semantic role in the ontology. In
the dependency tree, the wordsdocumentsandprinter are
the direct object and indirect object respectively of the verb
print. The corresponding concepts in the ontology can be
the patient and target arguments respectively of aprint

event. Similarly, the adjectivecolour modifies the nouns
documentsandprinter, which maps to the ontological fact
that colour is a value of a role that applies to both the
concepts ofdocument andprinter . Accordingly, we
can generate the following expression of the type of event
described by this NL description:

Print u patient.(Documentu colourness.COLOUR)
u target.(Printeru colourness.COLOUR)

In general, the problem is much harder since each word
used will map to a number of plausible concepts in the on-
tology. Thus, each combination of concepts will be scored
according to their syntactic dependencies and semantic co-
herence within the ontology.

There are three clear benefits of using an ontology to
generate logical forms. First, the ontology provides a cer-
tain amount of disambiguation. In policy example 4, we
can determine thatsendis referring to a print event since it
is applied to a document and a printer. This approach can be
used to disambiguate the wordsendbetween the concepts
print ande-mail . If we send a document to a printer
than we are referring to a print action whereas if we send a
document to a person then it is likely we are referring to an
e-mail action.

Second, the ontology can be used to identify parsing
errors. Although RASP is designed to be robust and ac-
curate, its precision and recall of dependency relations is
unsurprisingly less than human annotators. In particular, it
has low precision and recall for the indirect object relation
(Carroll et al., 1999). For example, the parser may incor-
rectly identify two words as having an indirect object rela-
tionship when they do not. We can identify this as a parser
error if the words do not map to concepts that are related by
the corresponding semantic role in the ontology. Further,
we might be able to use our knowledge of expected con-
cepts in particular roles to correct the parse or hypothesise
syntactic dependencies missed by the parser.

Third, the ontology can be used to discover implicit ar-
guments of events. In policy example 2, there is no explicit
mention of a printer. However, we can introduce a printer
into our logical representation of the event because the only
path through the ontology from print to double-sided (as-
suming our word similarity method has returned a high
similarity betweendouble-sidedandduplex) is through the
concept of printer. Thus the following logical expression
can be generated:

Print u patient.(Documentu version.DRAFT)
u target.(Printeru duplicity.DUPLEX)

3.4. Constraint Generation
The logical expressions we have generated so far de-

scribe an event but they do not express the desired con-
straint on the policy broker. In order to do this we need
to be able to determine which parts of the expression make
up the condition and which the consequent. We also need
to be able to deal with the verbal modifiers such asalways,
usuallyandnever.

In our printing policy examples, it is always the charac-
teristics of the printer used in a print event that are deter-
mined by the characteristics of other objects such as the

document. In general, requests have arguments that are
required (and therefore their characteristics will make up
part of the condition) and arguments which may be under-
specified (and therefore their characteristics will make up
the consequent). This information is encoded in thequal-
ified number restrictionsin the ontological description of
the event. For example, thepatientrole of thePrint con-
cept has the restriction≥ 1, whereas thetarget role does
not. We are also planning investigative work to discover
whether the required information can be learnt from cor-
pus data. We expect to find that the conceptual arguments
that can be underspecified will correspond to the syntactic
arguments that can be omitted.

The verbal modifiers are also of key importance in de-
ciding the overall form of the constraint. However, we
note that there are a relatively small number of them and
therefore it is possible to enumerate them and their effects.
For example,alwaysproduces a strong positive constraint,
“usually” produces a weak positive constraint andnever
produces a strong negative constraint.

3.5. Eliciting Further User Input

As it stands, the system we propose generates a ranked
set of possible constraints for each NL policy statement.
Rather than trying to resolve any remaining ambiguity
(which may in any case be due to a truly globally ambigu-
ous policy), which could result in the broker acting in un-
desirable or unexpected ways, we envisage presenting the
user with the set of ranked alternatives. The user can then
select the desired logical form, which is a much simpler
task than generating it from scratch. It will also be possi-
ble to present undefined concepts (such as “long”) to the
user and request clarification as to the definition of a “long
document”. These clarifications will be in the form ofdefi-
nitional policies, which extend the ontology.

4. Conclusions and Further Work
This paper describes ongoing research on the use of nat-

ural language to express user policies in pervasive comput-
ing environments. The central issue addressed in this paper
is how the ontology is being used as the basis for inter-
preting NL descriptions, and in particular the referents of
the lexical items in the description. We have presented an
approach in which grammatical dependencies generated by
RASP are mapped to ontological relations expressed in DL.
Throughout the paper, we have highlighted areas and issues
which require further investigation. In particular, we are
investigating the range of possible user policies and their
characteristics, so that we can constrain the natural lan-
guage interpretations.

5. References
Allen, James, 1984.Natural Language Understanding.

Benjamin Cummings, 1st edition.
Baader, Franz, Ian Horrocks, and Ulrike Sattler, 2003. De-

scription logics as ontology languages for the semantic
web. InLecture Notes in AI. Springer.

Balkanski, Cecile, 1992. Logical form of complex sen-
tences in task-oriented dialogues. InProceedings of
ACL-1992.

Bartak, Roman, 2002. Modelling soft constraints: a survey.
Neural Network World, 12(5):421–431.

Berners-Lee, T., J. Hendler, and O. Lassila, 2001. The se-
mantic web.Scientific American, 284(5):34–43.

Borgida, Alex and Ronald Brachman, 2003.Description
Logic Handbook, chapter Conceptual Modelling with
Description Logics. Cambridge University Press.

Briscoe, Edward and John Carroll, 2002. Robust accu-
rate statistical annotation of general text. InProceed-
ings of the 3rd International Conference on Language
Resources and Evalutation (LREC-2002).

Buitelaar, Paul, 2001. Semantic lexicons: between ontol-
ogy and terminology. InProceedings of OntoLex 2001.

Carroll, John, Guido Minnen, and Edward Briscoe, 1999.
Corpus annotation for parser evaluation. InProceedings
of EACL-99 Workshop on Linguistically Interpreted Cor-
pora. Bergen, Norway.

Davis, Anthony and Leslie Barrett, 2002. Relationships be-
tween roles. InProceedings of OntoLex 2002.

Fellbaum, C. (ed.), 1998.WordNet: An Electronic Lexical
Database. MIT Press.

Fensel, D., F. van Harmelan, I. Horrocks, D. McGuinness,
and P.F. Patel-Schneider, 2001. OIL: An ontology infras-
tructure for the semantic web.IEEE Intelligent Systems,
16(2):38–45.

Horrocks, I. and P. Patel-Schneider, 2001. The generation
of DAML+OIL. In Proceedings of the 2001 Description
Logic Workshop.

McCarthy, Diana, Rob Koeling, and Julie Weeds, 2004.
Ranking WordNet senses automatically. Technical Re-
port TR 569, Department of Informatics, University of
Sussex.

Owen, Tim, Julian Rathke, Ian Wakeman, and Des Watson,
2003. JPolicy: A java extension for dynamic access con-
trol. Technical Report 04-2003, University of Sussex.

Pease, Adam and Christian Fellbaum, 2004. Language to
logic translation with phrasebank. InProceedings of the
2nd International WordNet Conference.

Pease, Adam and William Murray, 2003. An English to
logic translator for ontology-based knowledge rpresen-
tation languages. InProceedings of 2003 IEEE Confer-
ence on Natural Language Processing and Knowledge
Representation.

Pease, Adam, Ian Niles, and John Li, 2002. The Suggested
Upper Merged Ontology: a large ontology for the se-
mantic web and its applications. InWorking Notes of the
AAAI-2002 Workshop on Ontologies and the Semantic
Web. Edmonton, Canada.

Robinson, Jon and Ian Wakeman, 2003. The scooby event-
based pervasive computing infrastructure. InProceed-
ings of the 1st UK-UbiNet Workshop. London, UK.

Stevens, R., I. Horrocks, C. Goble, and S. Bechhofer, 2001.
Building a reason-able bioinformatics ontology using
OIL. In Proceedings of the IJCAI-2001 Workshop on
Ontologies and Information Sharing.

Weeds, Julie, 2003.Measures and Applications of Lexi-
cal Distributional Similarity. Ph.D. thesis, University of
Sussex.

