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Fashion

A growing interest in semantic representations

• Bi-lexical Semantic Dependency Graphs

• Abstract Meaning Representations

• Elementary Dependency Structures

• Dependency-based Minimal Recursion Semantics

• Universal Conceptual Cognitive Annotation

Many descriptive and theoretical differences, but one important
similarity: All use graphs!

Every linguist has an obsession

BV

top

ARG2

ARG1 BV

have v 1

linguist n 1

every q a q

obsession n 1

ARG1 ARG2BV BV
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New questions

Work in computational linguistics is in some cases motivated
from a scientific perspective in that one is trying to provide a
computational explanation for a particular linguistic or
psycholinguistic phenomenon; and in other cases the motivation
may be more purely technological in that one wants to provide a
working component of a speech or natural language system.

www .aclweb .org

1 How can we build a high-performance string-to-graph parser?

2 How can we build a high-performance graph-to-string parser?

3 Can we use a single model to achieve the two goals?

4 Is our model linguistically meaningful?

5 Can we apply our model to evaluate a linguistic hypothesis?
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Outline

Graph-Based Meaning Representation

Synchronous Hyperedge Replacement Grammar

Parsing a Graph with an SHRG

Comparative Computational Semantics

4 of 28



Reflections on predicate–argument structure

• Arguments recursively are predicates most of the time;

• ‘content words’ introduce predicates, e.g. nouns, verbs, and adjs;

• arity determines the (possible) number of arguments;

• seemingly zero-place predicates can have referential argument;

offer’(x) ∧ schedule’( , x, expire’( , x))

• possibly multiple predicates per word or construction.

schedule v 1

expire v 1

offer n 1

the q advertize v 1

loc nonsp

time n

def implicit q

today a 1

ARG3

ARG2 ARG1 BV ARG2

ARG1 ARG2
BV

ARG1

The offer advertized today is scheduled to expire. [WSJ#0032002]
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Why graphs

Allow us to exploit graph-centric

• visualization,

• formalisms,

• algorithms,

• neural architectures

• and many other things

to build an accurate mapping between natural language utterances
and in-depth meaning representations.
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Two fundamental problems

In mid-October, Time magazine lowered its guaranteed circulation rate base for
1990 while not increasing ad page rates; with a lower circulation base, Time’s ad

rate will be effectively 7.5% higher per subscriber; a full page in Time costs about
$120,000.

Natural Language Understanding ⇒ String-to-graph Parsing

'In mid-October, Time magazine lowered its guaranteed circulation rate base for 1990 while not increasing ad page rates; with a lower circulation base, Time's ad rate will be effectively 7.5% higher per subscriber; a full page in Time costs about $120,000.'
'10月中旬  ，  《时代》  杂志  降低  了  1990年  的  承诺  基本  发行量  ，  同时  不  增加  广告  页面  价格  。  基本  发行量  低  了  ，  相当于  《时代》  每  位  订阅者  所  付  的  广告  费  将  提高  7.5%  。  《时代》  的  整版  页面  大约  要价  12万  美元  。'

implicit_conj

_while_x(同时)
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Neural string-to-graph parsers are cool!

Elementary Dependency Structure SMATCH EDM

Factorization-Based 95+ -
Synchronous Hyperedge Replacement Grammar 93+ 92+

Do they touch the upper bound?

Annotator Comparison

Metric A vs. B A vs. C B vs. C Average

EDM 94 94 95 94

E. Bender, D. Flickinger, S. Oepen, W. Packard and A. Copestake. 2015. Layers

of Interpretation: On Grammar and Compositionality.
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Natural Language Generation ⇒ Graph-to-string Parsing

10月中旬,《时代》杂志降低了1990年的承诺基本发行量,同时不增加广告页面价
格。基本发行量低了,相当于《时代》每位订阅者所付的广告费将提高7.5%。
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Beyond building practical systems

Work in computational linguistics is in some cases motivated
from a scientific perspective in that one is trying to provide a
computational explanation for a particular linguistic or
psycholinguistic phenomenon; and in other cases the motivation
may be more purely technological in that one wants to provide a
working component of a speech or natural language system.

www .aclweb .org

1 How can we build a high-performance string-to-graph parser?

⇒ How can we build a high-performance graph-to-string parser?

3 Can we use a single model to achieve the two goals?

4 Is our model linguistically meaningful?

⇒ Can we apply our model to evaluate a linguistic hypothesis?
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Context-free rewriting

Context-free rewriting is a powerful way to build complex things

https://www.contextfreeart.org/
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Syntactico-semantic composition as CF rewriting
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Hypergraph

some q

boy n 1

want v to

go v 1

BV ARG1 ARG2

ARG1

A graph consists of:

• A set of nodes.

• A set of edges connecting two nodes.
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Hypergraph

some q
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A hypergraph adds:

• Hyperedges connecting any number of nodes.

• A single node can be treated as an edge.
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Hyperedge Replacement Grammar
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• Terminal vs. non-terminal hyperedges

• Non-terminal hyperedges are utilized to control a derivation
process.

• A derivation starts from a non-terminal hyperedge .
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• We repeat until all edges are terminal ones.
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• Terminal vs. non-terminal hyperedges (symbols)

• Non-terminal hyperedges (symbols) are utilized to control a
derivation process.

• A derivation starts from a non-terminal hyperedge (symbol).

• In a derivation step, we substitute a non-terminal hyperedge
(symbols) with a hypergraph (a sequence of symbols).

• We repeat until all edges (symbols) are terminal ones.
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Flexibility
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HRGs can be linguistically meaningful
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A top-down strategy
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Regular graph grammar

Strong regularity

Sorcha Gilroy, Adam Lopez, Sebastian Maneth and Pijus Simonaitis.
(Re)introducing Regular Graph Languages. 2017.

Weak regularity (our ongoing work)

A production rule is regular iff
every non-terminal edge of its right hand side is anchored by at least
one terminal edge.
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Practical graph-to-string parsing

(#n/#e) Weak Regular Strong Regular Baseline
(12/23) #subgraphs 26,414

#total merge 565,222 4,422,904 4,878,124
Time (s) 0.045 0.079 0.076

(16/23) #subgraphs 53,965
#total merge 1,694,389 21,176,306 23,478,324
Time (s) 0.115 0.282 0.277

(20/42) #subgraphs 71,261
#total merge 1,654,275 39,131,493 41,291,199
Time (s) 0.110 0.483 0.438

(23/45) #subgraphs 188,961
#total merge 79,648,439 1,056,812,108 1,089,545,027
Time (s) 1.777 12.646 10.015

(28/59) #subgraphs 297,708
#total merge 466,191,707 7,971,458,311 8,032,173,533
Time (s) 22.999 159.353 84.754

Exact graph parsing can be practical.
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Lexicalist vs. Constructivist

The recent study of events and argument structure in generative
syntax, as pointed out by Marantz (2013), has shifted from the
lexicalist approach to the constructivist approach.

• The interpretation of an event is determined by the syntactic
configuration.

• The predicate only provides conceptual meaning.

Lexicalist approach Constructivist approach

Chomsky (1970), Levin and Rappaport
Hovav (1995)

Hale and Keyser (1993, 2002), Halle and
Marantz (1993), Borer (2005a,b, 2013)

CCG, LFG, HPSG
Sign-Based Construction Grammar, Gold-
berg (1995, 2006)
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Lexicalist vs. Constructivist

• The interpretation of an event is determined by the syntactic
configuration.

• The predicate only provides conceptual meaning.

Lexicalized Grammar Construction Grammar
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Lexicalist vs. Constructivist

Lexicalized Grammar Construction Grammar

1

NP VP=⇒S
1

2

3

NP

arg11arg12

VP
=⇒S

1

D N=⇒NP
2 1

bvD N=⇒NP

2

1

V VP=⇒VP
1 2

arg2V VP=⇒VP

2

1

bv some=⇒D
1

some=⇒D

2

3

1arg1

arg2
want

=⇒V
1

want=⇒V

A significant number of production rules of any lexicalized grammar
are not regular, but almost all production rules of a carefully designed
construction grammar can be regular.
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Constituency test

Replacement If a group of words can be replaced with a single word,
Stand Alone If a group of words can stand alone in response to a

question,
Movement If a group of words can be moved around in the

sentence,
Coordination If you can coordinate a group of words with a similar

group of words,

Another perspective

By assuming incremental structure building it becomes
possible to explain the differences between the range of
constituents available to different diagnostics of constituency,
including movement, ellipsis, coordination, scope and binding.

Colin Phillips. Linear Order and Constituency.

25 of 28



Constituency test

• Dana preferred for Pat to get the job.
• Could rising volatility possibly be ...
• ... with the additional $4.90 going to ...

1
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pron

want

exciting

thing

arg1arg1

arg2

1

23

4

pron

want

exciting

thing

arg1arg1

arg2

S

VP

VP

to be exciting

VP

wants things

NP

PRP

she

S

VP

VP

things to be exciting

VP

wants

NP

PRP

she
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Conclusion

1. How can we build a high-performance string-to-graph parser?

2. How can we build a high-performance graph-to-string parser?

3. Can we use a single model to achieve the two goals?

4. Is our model linguistically meaningful?

5. Can we apply our model to evaluate a linguistic hypothesis?
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Game over

Q What is the meaning of life?

A life’

life v 1

Thank You!
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