
Exact and Efficient Graph Parsing

Weiwei Sun

Institute of Computer Science
and Technology

Peking University

July 16, 2019

Joint work with

Yufei is with you

2 of 28

Fashion

A growing interest in semantic representations

• Bi-lexical Semantic Dependency Graphs

• Abstract Meaning Representations

• Elementary Dependency Structures

• Dependency-based Minimal Recursion Semantics

• Universal Conceptual Cognitive Annotation

Many descriptive and theoretical differences, but one important
similarity: All use graphs!

Every linguist has an obsession

BV

top

ARG2

ARG1 BV

have v 1

linguist n 1

every q a q

obsession n 1

ARG1 ARG2BV BV

3 of 28

Fashion

A growing interest in semantic representations

• Bi-lexical Semantic Dependency Graphs

• Abstract Meaning Representations

• Elementary Dependency Structures

• Dependency-based Minimal Recursion Semantics

• Universal Conceptual Cognitive Annotation

Many descriptive and theoretical differences, but one important
similarity: All use graphs!

Every linguist has an obsession

BV

top

ARG2

ARG1 BV

have v 1

linguist n 1

every q a q

obsession n 1

ARG1 ARG2BV BV

3 of 28

Fashion

A growing interest in semantic representations

• Bi-lexical Semantic Dependency Graphs

• Abstract Meaning Representations

• Elementary Dependency Structures

• Dependency-based Minimal Recursion Semantics

• Universal Conceptual Cognitive Annotation

Many descriptive and theoretical differences, but one important
similarity: All use graphs!

Every linguist has an obsession

BV

top

ARG2

ARG1 BV

have v 1

linguist n 1

every q a q

obsession n 1

ARG1 ARG2BV BV

3 of 28

New questions

Work in computational linguistics is in some cases motivated
from a scientific perspective in that one is trying to provide a
computational explanation for a particular linguistic or
psycholinguistic phenomenon; and in other cases the motivation
may be more purely technological in that one wants to provide a
working component of a speech or natural language system.

www .aclweb .org

1 How can we build a high-performance string-to-graph parser?

2 How can we build a high-performance graph-to-string parser?

3 Can we use a single model to achieve the two goals?

4 Is our model linguistically meaningful?

5 Can we apply our model to evaluate a linguistic hypothesis?

4 of 28

www.aclweb.org

New questions

Work in computational linguistics is in some cases motivated
from a scientific perspective in that one is trying to provide a
computational explanation for a particular linguistic or
psycholinguistic phenomenon; and in other cases the motivation
may be more purely technological in that one wants to provide a
working component of a speech or natural language system.

www .aclweb .org

1 How can we build a high-performance string-to-graph parser?

2 How can we build a high-performance graph-to-string parser?

3 Can we use a single model to achieve the two goals?

4 Is our model linguistically meaningful?

5 Can we apply our model to evaluate a linguistic hypothesis?

4 of 28

www.aclweb.org

New questions

Work in computational linguistics is in some cases motivated
from a scientific perspective in that one is trying to provide a
computational explanation for a particular linguistic or
psycholinguistic phenomenon; and in other cases the motivation
may be more purely technological in that one wants to provide a
working component of a speech or natural language system.

www .aclweb .org

1 How can we build a high-performance string-to-graph parser?

2 How can we build a high-performance graph-to-string parser?

3 Can we use a single model to achieve the two goals?

4 Is our model linguistically meaningful?

5 Can we apply our model to evaluate a linguistic hypothesis?
4 of 28

www.aclweb.org

Outline

Graph-Based Meaning Representation

Synchronous Hyperedge Replacement Grammar

Parsing a Graph with an SHRG

Comparative Computational Semantics

4 of 28

Reflections on predicate–argument structure

• Arguments recursively are predicates most of the time;

• ‘content words’ introduce predicates, e.g. nouns, verbs, and adjs;

• arity determines the (possible) number of arguments;

• seemingly zero-place predicates can have referential argument;

offer’(x) ∧ schedule’(, x, expire’(, x))

• possibly multiple predicates per word or construction.

schedule v 1

expire v 1

offer n 1

the q advertize v 1

loc nonsp

time n

def implicit q

today a 1

ARG3

ARG2 ARG1 BV ARG2

ARG1 ARG2
BV

ARG1

The offer advertized today is scheduled to expire. [WSJ#0032002]

5 of 28

Reflections on predicate–argument structure

• Arguments recursively are predicates most of the time;

• ‘content words’ introduce predicates, e.g. nouns, verbs, and adjs;

• arity determines the (possible) number of arguments;

• seemingly zero-place predicates can have referential argument;

offer’(x) ∧ schedule’(, x, expire’(, x))

• possibly multiple predicates per word or construction.

schedule v 1

expire v 1

offer n 1

the q advertize v 1

loc nonsp

time n

def implicit q

today a 1

ARG3

ARG2 ARG1 BV ARG2

ARG1 ARG2
BV

ARG1

The offer advertized today is scheduled to expire. [WSJ#0032002]

5 of 28

Reflections on predicate–argument structure

• Arguments recursively are predicates most of the time;

• ‘content words’ introduce predicates, e.g. nouns, verbs, and adjs;

• arity determines the (possible) number of arguments;

• seemingly zero-place predicates can have referential argument;

offer’(x) ∧ schedule’(, x, expire’(, x))

• possibly multiple predicates per word or construction.

schedule v 1

expire v 1

offer n 1

the q advertize v 1

loc nonsp

time n

def implicit q

today a 1

ARG3

ARG2 ARG1 BV ARG2

ARG1 ARG2
BV

ARG1

The offer advertized today is scheduled to expire. [WSJ#0032002]

5 of 28

Reflections on predicate–argument structure

• Arguments recursively are predicates most of the time;

• ‘content words’ introduce predicates, e.g. nouns, verbs, and adjs;

• arity determines the (possible) number of arguments;

• seemingly zero-place predicates can have referential argument;

offer’(x) ∧ schedule’(, x, expire’(, x))

• possibly multiple predicates per word or construction.

schedule v 1

expire v 1

offer n 1

the q advertize v 1

loc nonsp

time n

def implicit q

today a 1

ARG3

ARG2 ARG1 BV ARG2

ARG1 ARG2
BV

ARG1

The offer advertized today is scheduled to expire. [WSJ#0032002]

5 of 28

Why graphs

Allow us to exploit graph-centric

• visualization,

• formalisms,

• algorithms,

• neural architectures

• and many other things

to build an accurate mapping between natural language utterances
and in-depth meaning representations.

6 of 28

Two fundamental problems

In mid-October, Time magazine lowered its guaranteed circulation rate base for
1990 while not increasing ad page rates; with a lower circulation base, Time’s ad

rate will be effectively 7.5% higher per subscriber; a full page in Time costs about
$120,000.

Natural Language Understanding ⇒ String-to-graph Parsing

'In mid-October, Time magazine lowered its guaranteed circulation rate base for 1990 while not increasing ad page rates; with a lower circulation base, Time's ad rate will be effectively 7.5% higher per subscriber; a full page in Time costs about $120,000.'
'10月中旬 ， 《时代》 杂志 降低 了 1990年 的 承诺 基本 发行量 ， 同时 不 增加 广告 页面 价格 。 基本 发行量 低 了 ， 相当于 《时代》 每 位 订阅者 所 付 的 广告 费 将 提高 7.5% 。 《时代》 的 整版 页面 大约 要价 12万 美元 。'

implicit_conj

_while_x(同时)

L-HNDL

_lower_v_cause(降低)

L-INDEX implicit_conj

R-INDEX

ARG1

neg(不)

ARG2

named(《时代》)

ARG1

_base_n_1(基本)

ARG2

_be_v_id

L-INDEX

_cost_v_1

R-INDEX

focus_d

ARG1_in_p_temp

ARG2

ARG1

mofy(10月中旬)

ARG2

proper_q

BV

_mid_a_1(10月中旬)

ARG1

proper_q

BV

_magazine_n_1(杂志)

udef_q

BV

compound

ARG1 ARG2

def_explicit_q

BV

poss

ARG1

pron

ARG2

pronoun_q

BV

_guarantee_v_1(承诺)

ARG2

parg_d

ARG2

ARG1

compound

ARG1

_circulation_n_of(发行量)

ARG2

udef_q

BV

compound

ARG1

_rate_n_of(发行量)

ARG2

udef_q

BV

_for_p

ARG1

yofc(1990年)

ARG2

proper_q

BV

_increase_v_cause(增加)

ARG1

_rate_n_of(价格)

ARG2

udef_q

BV

compound

ARG1

_page_n_1(页面)

ARG2

udef_q

BV

compound

ARG1

_ad_n_1(广告)

ARG2

udef_q

BV

_rate_n_of(费)

ARG1

_percent_n_of(7.5%)

ARG2

_page_n_1(整版 页面)

ARG1

_dollar_n_1(美元)

ARG2

focus_d

ARG1 _with_p

ARG2

ARG1

_base_n_1(基本)

ARG2

_a_q(了)

BV

_low_a_1(低)

ARG1

comp

ARG1

compound

ARG1

_circulation_n_of(发行量)

ARG2

udef_q

BV

proper_q

named

BV

def_explicit_q

BV

poss

ARG2 ARG1

compound

ARG1

_ad_n_1(广告)

ARG2

udef_q

BV

_effectively_x_deg

udef_q

ARG1

BV

card(7.5%)

ARG1

_higher_x_deg(提高)

_per_p(每)

ARG1

ARG1

_subscriber_n_to(订阅者)

ARG2

udef_q

BV

_a_q(的)

BV

_full_a_of(整版)

ARG1

_in_p

ARG1

named(《时代》)

ARG2

proper_q

BV

_about_x_deg(大约)

udef_q

ARG1

BV

card(12万)

ARG1

7 of 28

Two fundamental problems

In mid-October, Time magazine lowered its guaranteed circulation rate base for
1990 while not increasing ad page rates; with a lower circulation base, Time’s ad

rate will be effectively 7.5% higher per subscriber; a full page in Time costs about
$120,000.

Natural Language Understanding ⇒ String-to-graph Parsing

'In mid-October, Time magazine lowered its guaranteed circulation rate base for 1990 while not increasing ad page rates; with a lower circulation base, Time's ad rate will be effectively 7.5% higher per subscriber; a full page in Time costs about $120,000.'
'10月中旬 ， 《时代》 杂志 降低 了 1990年 的 承诺 基本 发行量 ， 同时 不 增加 广告 页面 价格 。 基本 发行量 低 了 ， 相当于 《时代》 每 位 订阅者 所 付 的 广告 费 将 提高 7.5% 。 《时代》 的 整版 页面 大约 要价 12万 美元 。'

implicit_conj

_while_x(同时)

L-HNDL

_lower_v_cause(降低)

L-INDEX implicit_conj

R-INDEX

ARG1

neg(不)

ARG2

named(《时代》)

ARG1

_base_n_1(基本)

ARG2

_be_v_id

L-INDEX

_cost_v_1

R-INDEX

focus_d

ARG1_in_p_temp

ARG2

ARG1

mofy(10月中旬)

ARG2

proper_q

BV

_mid_a_1(10月中旬)

ARG1

proper_q

BV

_magazine_n_1(杂志)

udef_q

BV

compound

ARG1 ARG2

def_explicit_q

BV

poss

ARG1

pron

ARG2

pronoun_q

BV

_guarantee_v_1(承诺)

ARG2

parg_d

ARG2

ARG1

compound

ARG1

_circulation_n_of(发行量)

ARG2

udef_q

BV

compound

ARG1

_rate_n_of(发行量)

ARG2

udef_q

BV

_for_p

ARG1

yofc(1990年)

ARG2

proper_q

BV

_increase_v_cause(增加)

ARG1

_rate_n_of(价格)

ARG2

udef_q

BV

compound

ARG1

_page_n_1(页面)

ARG2

udef_q

BV

compound

ARG1

_ad_n_1(广告)

ARG2

udef_q

BV

_rate_n_of(费)

ARG1

_percent_n_of(7.5%)

ARG2

_page_n_1(整版 页面)

ARG1

_dollar_n_1(美元)

ARG2

focus_d

ARG1 _with_p

ARG2

ARG1

_base_n_1(基本)

ARG2

_a_q(了)

BV

_low_a_1(低)

ARG1

comp

ARG1

compound

ARG1

_circulation_n_of(发行量)

ARG2

udef_q

BV

proper_q

named

BV

def_explicit_q

BV

poss

ARG2 ARG1

compound

ARG1

_ad_n_1(广告)

ARG2

udef_q

BV

_effectively_x_deg

udef_q

ARG1

BV

card(7.5%)

ARG1

_higher_x_deg(提高)

_per_p(每)

ARG1

ARG1

_subscriber_n_to(订阅者)

ARG2

udef_q

BV

_a_q(的)

BV

_full_a_of(整版)

ARG1

_in_p

ARG1

named(《时代》)

ARG2

proper_q

BV

_about_x_deg(大约)

udef_q

ARG1

BV

card(12万)

ARG1

7 of 28

Neural string-to-graph parsers are cool!

Elementary Dependency Structure SMATCH EDM

Factorization-Based 95+ -
Synchronous Hyperedge Replacement Grammar 93+ 92+

Do they touch the upper bound?

Annotator Comparison

Metric A vs. B A vs. C B vs. C Average

EDM 94 94 95 94

E. Bender, D. Flickinger, S. Oepen, W. Packard and A. Copestake. 2015. Layers

of Interpretation: On Grammar and Compositionality.

8 of 28

Neural string-to-graph parsers are cool!

Elementary Dependency Structure SMATCH EDM

Factorization-Based 95+ -
Synchronous Hyperedge Replacement Grammar 93+ 92+

Do they touch the upper bound?

Annotator Comparison

Metric A vs. B A vs. C B vs. C Average

EDM 94 94 95 94

E. Bender, D. Flickinger, S. Oepen, W. Packard and A. Copestake. 2015. Layers

of Interpretation: On Grammar and Compositionality.
8 of 28

Neural string-to-graph parsers are cool!

Elementary Dependency Structure SMATCH EDM

Factorization-Based 95+ -
Synchronous Hyperedge Replacement Grammar 93+ 92+

Do they touch the upper bound?

Annotator Comparison

Metric A vs. B A vs. C B vs. C Average

EDM 94 94 95 94

E. Bender, D. Flickinger, S. Oepen, W. Packard and A. Copestake. 2015. Layers

of Interpretation: On Grammar and Compositionality.
8 of 28

Two fundamental problems

'In mid-October, Time magazine lowered its guaranteed circulation rate base for 1990 while not increasing ad page rates; with a lower circulation base, Time's ad rate will be effectively 7.5% higher per subscriber; a full page in Time costs about $120,000.'
'10月中旬 ， 《时代》 杂志 降低 了 1990年 的 承诺 基本 发行量 ， 同时 不 增加 广告 页面 价格 。 基本 发行量 低 了 ， 相当于 《时代》 每 位 订阅者 所 付 的 广告 费 将 提高 7.5% 。 《时代》 的 整版 页面 大约 要价 12万 美元 。'

implicit_conj

_while_x(同时)

L-HNDL

_lower_v_cause(降低)

L-INDEX implicit_conj

R-INDEX

ARG1

neg(不)

ARG2

named(《时代》)

ARG1

_base_n_1(基本)

ARG2

_be_v_id

L-INDEX

_cost_v_1

R-INDEX

focus_d

ARG1_in_p_temp

ARG2

ARG1

mofy(10月中旬)

ARG2

proper_q

BV

_mid_a_1(10月中旬)

ARG1

proper_q

BV

_magazine_n_1(杂志)

udef_q

BV

compound

ARG1 ARG2

def_explicit_q

BV

poss

ARG1

pron

ARG2

pronoun_q

BV

_guarantee_v_1(承诺)

ARG2

parg_d

ARG2

ARG1

compound

ARG1

_circulation_n_of(发行量)

ARG2

udef_q

BV

compound

ARG1

_rate_n_of(发行量)

ARG2

udef_q

BV

_for_p

ARG1

yofc(1990年)

ARG2

proper_q

BV

_increase_v_cause(增加)

ARG1

_rate_n_of(价格)

ARG2

udef_q

BV

compound

ARG1

_page_n_1(页面)

ARG2

udef_q

BV

compound

ARG1

_ad_n_1(广告)

ARG2

udef_q

BV

_rate_n_of(费)

ARG1

_percent_n_of(7.5%)

ARG2

_page_n_1(整版 页面)

ARG1

_dollar_n_1(美元)

ARG2

focus_d

ARG1 _with_p

ARG2

ARG1

_base_n_1(基本)

ARG2

_a_q(了)

BV

_low_a_1(低)

ARG1

comp

ARG1

compound

ARG1

_circulation_n_of(发行量)

ARG2

udef_q

BV

proper_q

named

BV

def_explicit_q

BV

poss

ARG2 ARG1

compound

ARG1

_ad_n_1(广告)

ARG2

udef_q

BV

_effectively_x_deg

udef_q

ARG1

BV

card(7.5%)

ARG1

_higher_x_deg(提高)

_per_p(每)

ARG1

ARG1

_subscriber_n_to(订阅者)

ARG2

udef_q

BV

_a_q(的)

BV

_full_a_of(整版)

ARG1

_in_p

ARG1

named(《时代》)

ARG2

proper_q

BV

_about_x_deg(大约)

udef_q

ARG1

BV

card(12万)

ARG1

Natural Language Generation ⇒ Graph-to-string Parsing

10月中旬,《时代》杂志降低了1990年的承诺基本发行量,同时不增加广告页面价
格。基本发行量低了,相当于《时代》每位订阅者所付的广告费将提高7.5%。

9 of 28

Beyond building practical systems

Work in computational linguistics is in some cases motivated
from a scientific perspective in that one is trying to provide a
computational explanation for a particular linguistic or
psycholinguistic phenomenon; and in other cases the motivation
may be more purely technological in that one wants to provide a
working component of a speech or natural language system.

www .aclweb .org

1 How can we build a high-performance string-to-graph parser?

⇒ How can we build a high-performance graph-to-string parser?

3 Can we use a single model to achieve the two goals?

4 Is our model linguistically meaningful?

⇒ Can we apply our model to evaluate a linguistic hypothesis?

10 of 28

www.aclweb.org

Beyond building practical systems

Work in computational linguistics is in some cases motivated
from a scientific perspective in that one is trying to provide a
computational explanation for a particular linguistic or
psycholinguistic phenomenon; and in other cases the motivation
may be more purely technological in that one wants to provide a
working component of a speech or natural language system.

www .aclweb .org

1 How can we build a high-performance string-to-graph parser?

⇒ How can we build a high-performance graph-to-string parser?

3 Can we use a single model to achieve the two goals?

4 Is our model linguistically meaningful?

⇒ Can we apply our model to evaluate a linguistic hypothesis?

10 of 28

www.aclweb.org

Beyond building practical systems

Work in computational linguistics is in some cases motivated
from a scientific perspective in that one is trying to provide a
computational explanation for a particular linguistic or
psycholinguistic phenomenon; and in other cases the motivation
may be more purely technological in that one wants to provide a
working component of a speech or natural language system.

www .aclweb .org

1 How can we build a high-performance string-to-graph parser?

⇒ How can we build a high-performance graph-to-string parser?

3 Can we use a single model to achieve the two goals?

4 Is our model linguistically meaningful?

⇒ Can we apply our model to evaluate a linguistic hypothesis?
10 of 28

www.aclweb.org

Outline

Graph-Based Meaning Representation

Synchronous Hyperedge Replacement Grammar

Parsing a Graph with an SHRG

Comparative Computational Semantics

10 of 28

Context-free rewriting

Context-free rewriting is a powerful way to build complex things

https://www.contextfreeart.org/

11 of 28

https://www.contextfreeart.org/

Context-free rewriting

Context-free rewriting is a powerful way to build complex things

https://www.contextfreeart.org/

11 of 28

https://www.contextfreeart.org/

Syntactico-semantic composition as CF rewriting

S

S

NP

arg1arg1

VP

N
D

arg1arg1

bv

VP

N

VVP

D

arg1arg1

bv

arg2

boy

want
go

some

arg1arg1

bv

arg2

γ1
=⇒ γ3

=⇒ γ4
=⇒ ∗

=⇒

12 of 28

Syntactico-semantic composition as CF rewriting

S

S

VPNP

=⇒

S

NP

arg1arg1

VP

N
D

arg1arg1

bv

VP

N

VVP

D

arg1arg1

bv

arg2

boy

want
go

some

arg1arg1

bv

arg2

γ1
=⇒

γ3
=⇒ γ4

=⇒ ∗
=⇒

12 of 28

Syntactico-semantic composition as CF rewriting

S

S

VPNP

S

VPNP

ND

=⇒ =⇒

S

NP

arg1arg1

VP

N
D

arg1arg1

bv

VP

N

VVP

D

arg1arg1

bv

arg2

boy

want
go

some

arg1arg1

bv

arg2

γ1
=⇒ γ3

=⇒

γ4
=⇒ ∗

=⇒

12 of 28

Syntactico-semantic composition as CF rewriting

S

S

VPNP

S

VPNP

ND

S

VP

VPV

NP

ND

=⇒ =⇒ =⇒

S

NP

arg1arg1

VP

N
D

arg1arg1

bv

VP

N

VVP

D

arg1arg1

bv

arg2

boy

want
go

some

arg1arg1

bv

arg2

γ1
=⇒ γ3

=⇒ γ4
=⇒

∗
=⇒

12 of 28

Syntactico-semantic composition as CF rewriting

S

S

VPNP

S

VPNP

ND

S

VP

VPV

NP

ND

S

VP

VP

V

go

TO

to

V

wants

NP

N

boy

D

some

=⇒ =⇒ =⇒ ∗
=⇒

S

NP

arg1arg1

VP

N
D

arg1arg1

bv

VP

N

VVP

D

arg1arg1

bv

arg2

boy

want
go

some

arg1arg1

bv

arg2

γ1
=⇒ γ3

=⇒ γ4
=⇒ ∗

=⇒

12 of 28

Hypergraph

some q

boy n 1

want v to

go v 1

BV ARG1 ARG2

ARG1

A graph consists of:

• A set of nodes.

• A set of edges connecting two nodes.

13 of 28

Hypergraph

some q

boy n 1

want v to

go v 1

BV ARG1 ARG2

ARG1

1

2
3

4

boy n 1

want v 1
go v 1

some q

arg1arg1

bv

arg2

A hypergraph adds:

• Hyperedges connecting any number of nodes.

• A single node can be treated as an edge.

13 of 28

Hyperedge Replacement Grammar

S

NP

arg1arg1

VP

N
D

arg1arg1

bv

VP

N

VVP

D

arg1arg1

bv

arg2

boy

want
go

some

arg1arg1

bv

arg2

γ1
=⇒ γ3

=⇒ γ4
=⇒ ∗

=⇒

• Terminal vs. non-terminal hyperedges

• Non-terminal hyperedges are utilized to control a derivation
process.

• A derivation starts from a non-terminal hyperedge .

• In a derivation step, we substitute a non-terminal hyperedge with
a hypergraph .

• We repeat until all edges are terminal ones.

14 of 28

Hyperedge Replacement Grammar

S

NP

arg1arg1

VP

N
D

arg1arg1

bv

VP

N

VVP

D

arg1arg1

bv

arg2

boy

want
go

some

arg1arg1

bv

arg2

γ1
=⇒

γ3
=⇒ γ4

=⇒ ∗
=⇒

• Terminal vs. non-terminal hyperedges

• Non-terminal hyperedges are utilized to control a derivation
process.

• A derivation starts from a non-terminal hyperedge .

• In a derivation step, we substitute a non-terminal hyperedge with
a hypergraph .

• We repeat until all edges are terminal ones.

14 of 28

Hyperedge Replacement Grammar

S

NP

arg1arg1

VP

N
D

arg1arg1

bv

VP

N

VVP

D

arg1arg1

bv

arg2

boy

want
go

some

arg1arg1

bv

arg2

γ1
=⇒ γ3

=⇒

γ4
=⇒ ∗

=⇒

• Terminal vs. non-terminal hyperedges

• Non-terminal hyperedges are utilized to control a derivation
process.

• A derivation starts from a non-terminal hyperedge .

• In a derivation step, we substitute a non-terminal hyperedge with
a hypergraph .

• We repeat until all edges are terminal ones.

14 of 28

Hyperedge Replacement Grammar

S

NP

arg1arg1

VP

N
D

arg1arg1

bv

VP

N

VVP

D

arg1arg1

bv

arg2

boy

want
go

some

arg1arg1

bv

arg2

γ1
=⇒ γ3

=⇒ γ4
=⇒

∗
=⇒

• Terminal vs. non-terminal hyperedges

• Non-terminal hyperedges are utilized to control a derivation
process.

• A derivation starts from a non-terminal hyperedge .

• In a derivation step, we substitute a non-terminal hyperedge with
a hypergraph .

• We repeat until all edges are terminal ones.

14 of 28

Hyperedge Replacement Grammar

S

NP

arg1arg1

VP

N
D

arg1arg1

bv

VP

N

VVP

D

arg1arg1

bv

arg2

boy

want
go

some

arg1arg1

bv

arg2

γ1
=⇒ γ3

=⇒ γ4
=⇒ ∗

=⇒

• Terminal vs. non-terminal hyperedges

• Non-terminal hyperedges are utilized to control a derivation
process.

• A derivation starts from a non-terminal hyperedge .

• In a derivation step, we substitute a non-terminal hyperedge with
a hypergraph .

• We repeat until all edges are terminal ones.

14 of 28

Hyperedge Replacement Grammar

S

NP

arg1arg1

VP

N
D

arg1arg1

bv

VP

N

VVP

D

arg1arg1

bv

arg2

boy

want
go

some

arg1arg1

bv

arg2

γ1
=⇒ γ3

=⇒ γ4
=⇒ ∗

=⇒

• Terminal vs. non-terminal hyperedges (symbols)

• Non-terminal hyperedges (symbols) are utilized to control a
derivation process.

• A derivation starts from a non-terminal hyperedge (symbol).

• In a derivation step, we substitute a non-terminal hyperedge
(symbols) with a hypergraph (a sequence of symbols).

• We repeat until all edges (symbols) are terminal ones.

14 of 28

As a bottom-up graph gluing procedure

1

boysome

want
go

arg1arg1

bv

arg2S

X

Y
want

go

arg1arg1

arg2VP

X

Y

go
arg1

VP

go
arg1V

go

∅

to

X

Y
want

arg1

arg2 V

want

1

boysome
bv

NP

1

boy

N

boys

1
some

bv
D

Some

⇐=
VPNP

S

=⇒
ND

NP

⇐=
V

VP

VP

⇐= V

VP

15 of 28

As a bottom-up graph gluing procedure

1

boysome

want
go

arg1arg1

bv

arg2S

X

Y
want

go

arg1arg1

arg2VP

X

Y

go
arg1

VP

go
arg1V

go

∅

to

X

Y
want

arg1

arg2 V

want

1

boysome
bv

NP

1

boy

N

boys

1
some

bv
D

Some

⇐=
VPNP

S

=⇒
ND

NP

⇐=
V

VP

VP

⇐= V

VP

15 of 28

As a bottom-up graph gluing procedure

1

boysome

want
go

arg1arg1

bv

arg2S

X

Y
want

go

arg1arg1

arg2VP

X

Y

go
arg1

VP

go
arg1V

go

∅

to

X

Y
want

arg1

arg2 V

want

1

boysome
bv

NP

1

boy

N

boys

1
some

bv
D

Some

⇐=
VPNP

S

=⇒
ND

NP

⇐=
V

VP

VP

⇐= V

VP

15 of 28

As a bottom-up graph gluing procedure

1

boysome

want
go

arg1arg1

bv

arg2S

X

Y
want

go

arg1arg1

arg2VP

X

Y

go
arg1

VP

go
arg1V

go

∅

to

X

Y
want

arg1

arg2 V

want

1

boysome
bv

NP

1

boy

N

boys

1
some

bv
D

Some

⇐=
VPNP

S

=⇒
ND

NP

⇐=
V

VP

VP

⇐= V

VP

15 of 28

As a bottom-up graph gluing procedure

1

boysome

want
go

arg1arg1

bv

arg2S

X

Y
want

go

arg1arg1

arg2VP

X

Y

go
arg1

VP

go
arg1V

go

∅

to

X

Y
want

arg1

arg2 V

want

1

boysome
bv

NP

1

boy

N

boys

1
some

bv
D

Some

⇐=
VPNP

S

=⇒
ND

NP

⇐=
V

VP

VP

⇐= V

VP

15 of 28

As a bottom-up graph gluing procedure

1

boysome

want
go

arg1arg1

bv

arg2S

X

Y
want

go

arg1arg1

arg2VP

X

Y

go
arg1

VP

go
arg1V

go

∅

to

X

Y
want

arg1

arg2 V

want

1

boysome
bv

NP

1

boy

N

boys

1
some

bv
D

Some

⇐=
VPNP

S

=⇒
ND

NP

⇐=
V

VP

VP

⇐= V

VP

15 of 28

As a bottom-up graph gluing procedure

1

boysome

want
go

arg1arg1

bv

arg2S

X

Y
want

go

arg1arg1

arg2VP

X

Y

go
arg1

VP

go
arg1V

go

∅

to

X

Y
want

arg1

arg2 V

want

1

boysome
bv

NP

1

boy

N

boys

1
some

bv
D

Some

⇐=
VPNP

S

=⇒
ND

NP

⇐=
V

VP

VP

⇐= V

VP

15 of 28

As a bottom-up graph gluing procedure

1

boysome

want
go

arg1arg1

bv

arg2S

X

Y
want

go

arg1arg1

arg2VP

X

Y

go
arg1

VP

go
arg1V

go

∅

to

X

Y
want

arg1

arg2 V

want

1

boysome
bv

NP

1

boy

N

boys

1
some

bv
D

Some

⇐=
VPNP

S

=⇒
ND

NP

⇐=
V

VP

VP

⇐= V

VP

15 of 28

As a bottom-up graph gluing procedure

1

boysome

want
go

arg1arg1

bv

arg2S

X

Y
want

go

arg1arg1

arg2VP

X

Y

go
arg1

VP

go
arg1V

go

∅

to

X

Y
want

arg1

arg2 V

want

1

boysome
bv

NP

1

boy

N

boys

1
some

bv
D

Some

⇐=
VPNP

S

=⇒
ND

NP

⇐=
V

VP

VP

⇐= V

VP

15 of 28

As a bottom-up graph gluing procedure

1

boysome

want
go

arg1arg1

bv

arg2S

X

Y
want

go

arg1arg1

arg2VP

X

Y

go
arg1

VP

go
arg1V

go

∅

to

X

Y
want

arg1

arg2 V

want

1

boysome
bv

NP

1

boy

N

boys

1
some

bv
D

Some

⇐=
VPNP

S

=⇒
ND

NP

⇐=
V

VP

VP

⇐= V

VP

15 of 28

Flexibility

boysome

want
go

arg1arg1 arg1arg1

bv

arg2S

wantgo arg2 VP

go
VP

go
V

go

∅

to

want
V

want

boysome
bvNP

boy
N

boys

some
D

Some

⇐=

NP

arg1arg1

VP
S

=⇒bv
D N

NP
⇐= arg2

V VP

VP

⇐=
V

VP

16 of 28

HRGs can be linguistically meaningful

S

NP

arg1arg1
VP

NNSDET

arg1arg1

bv

VP

NNS

VBPVP

DET

arg1arg1

bv

arg2

γ1
=⇒ γ3

=⇒ γ4
=⇒

Construction semantics

1

2

3

NP

arg1
arg1

VP
⇒S

γ1
2 1

bvDET NNS⇒NP

γ3
1 2

arg2VBP VP⇒VP

γ4

Control construction Generalized quantifier Predicate–argument
(Equi verbs) structure

17 of 28

Outline

Graph-Based Meaning Representation

Synchronous Hyperedge Replacement Grammar

Parsing a Graph with an SHRG

Comparative Computational Semantics

17 of 28

A top-down strategy

1

23

4

boysome

want
go

arg1arg1

bv

arg2S

23

wantgo
arg2

VP

go
VP

go
V

go

∅

to

want
V

want

12

boysome
bv

NP

boy
N

boys

some
D

Some

⇐=

NP

arg1arg1

VP
S

=⇒bv
D N

NP
⇐= arg2

V VP

VP

⇐=
V

VP

NP

arg1arg1

VP

arg1VP NP

18 of 28

A top-down strategy

1

23

4

boysome

want
go

arg1arg1

bv

arg2S

23

wantgo
arg2

VP

go
VP

go
V

go

∅

to

want
V

want

12

boysome
bv

NP

boy
N

boys

some
D

Some

⇐=

NP

arg1arg1

VP
S

=⇒bv
D N

NP
⇐= arg2

V VP

VP

⇐=
V

VP

NP

arg1arg1

VP

arg1VP NP

18 of 28

A top-down strategy

1

23

4

boysome

want
go

arg1arg1

bv

arg2S

23

wantgo
arg2

VP

go
VP

go
V

go

∅

to

want
V

want

12

boysome
bv

NP

boy
N

boys

some
D

Some

⇐=

NP

arg1arg1

VP
S

=⇒bv
D N

NP
⇐= arg2

V VP

VP

⇐=
V

VP

N

bvD N

18 of 28

A top-down strategy

1

23

4

boysome

want
go

arg1arg1

bv

arg2S

23

wantgo
arg2

VP

go
VP

go
V

go

∅

to

want
V

want

12

boysome
bv

NP

boy
N

boys

some
D

Some

⇐=

NP

arg1arg1

VP
S

=⇒bv
D N

NP

⇐= arg2
V VP

VP

⇐=
V

VP

N

bvD N

18 of 28

A top-down strategy

1

23

4

boysome

want
go

arg1arg1

bv

arg2S

23

wantgo
arg2

VP

go
VP

go
V

go

∅

to

want
V

want

12

boysome
bv

NP

boy
N

boys

some
D

Some

⇐=

NP

arg1arg1

VP
S

=⇒bv
D N

NP

⇐= arg2
V VP

VP

⇐=
V

VP

N

bvD N

18 of 28

A top-down strategy

1

23

4

boysome

want
go

arg1arg1

bv

arg2S

23

wantgo
arg2

VP

go
VP

go
V

go

∅

to

want
V

want

12

boysome
bv

NP

boy
N

boys

some
D

Some

⇐=

NP

arg1arg1

VP
S

=⇒bv
D N

NP

⇐= arg2
V VP

VP

⇐=
V

VP

arg2V VP

arg2V NP

V

18 of 28

A top-down strategy

1

23

4

boysome

want
go

arg1arg1

bv

arg2S

23

wantgo
arg2

VP

go
VP

go
V

go

∅

to

want
V

want

12

boysome
bv

NP

boy
N

boys

some
D

Some

⇐=

NP

arg1arg1

VP
S

=⇒bv
D N

NP
⇐= arg2

V VP

VP

⇐=
V

VP

arg2V VP

arg2V NP

V

18 of 28

A top-down strategy

1

23

4

boysome

want
go

arg1arg1

bv

arg2S

23

wantgo
arg2

VP

go
VP

go
V

go

∅

to

want
V

want

12

boysome
bv

NP

boy
N

boys

some
D

Some

⇐=

NP

arg1arg1

VP
S

=⇒bv
D N

NP
⇐= arg2

V VP

VP

⇐=
V

VP

arg2V VP

arg2V NP

V

18 of 28

A top-down strategy

1

23

4

boysome

want
go

arg1arg1

bv

arg2S

23

wantgo
arg2

VP

go
VP

go
V

go

∅

to

want
V

want

12

boysome
bv

NP

boy
N

boys

some
D

Some

⇐=

NP

arg1arg1

VP
S

=⇒bv
D N

NP
⇐= arg2

V VP

VP

⇐=
V

VP

arg2V VP

arg2V NP

V

18 of 28

A top-down strategy

1

23

4

boysome

want
go

arg1arg1

bv

arg2S

23

wantgo
arg2

VP

go
VP

go
V

go

∅

to

want
V

want

12

boysome
bv

NP

boy
N

boys

some
D

Some

⇐=

NP

arg1arg1

VP
S

=⇒bv
D N

NP
⇐= arg2

V VP

VP

⇐=
V

VP

arg2V VP

arg2V NP

V

18 of 28

A top-down strategy

1

23

4

boysome

want
go

arg1arg1

bv

arg2S

23

wantgo
arg2

VP

go
VP

go
V

go

∅

to

want
V

want

12

boysome
bv

NP

boy
N

boys

some
D

Some

⇐=

NP

arg1arg1

VP
S

=⇒bv
D N

NP
⇐= arg2

V VP

VP

⇐=
V

VP

18 of 28

A top-down strategy

boysome

want
go

arg1arg1 arg1arg1

bv

arg2S

wantgo arg2 VP

go
VP

go
V

go

∅

to

want
V

want

boysome
bvNP

boy
N

boys

some
D

Some

⇐=

NP

arg1arg1

VP
S

=⇒bv
D N

NP
⇐= arg2

V VP

VP

⇐=
V

VP

Key

At each step, we rely
on some terminal edge(s)
to identify applicable rules
and thus decompose a sub-
graph.

NP

arg1arg1

VP

arg1VP NP N bvD N arg2V VP arg2V NP V

19 of 28

Regular graph grammar

Strong regularity

Sorcha Gilroy, Adam Lopez, Sebastian Maneth and Pijus Simonaitis.
(Re)introducing Regular Graph Languages. 2017.

Weak regularity (our ongoing work)

A production rule is regular iff
every non-terminal edge of its right hand side is anchored by at least
one terminal edge.

20 of 28

Practical graph-to-string parsing

(#n/#e) Weak Regular Strong Regular Baseline
(12/23) #subgraphs 26,414

#total merge 565,222 4,422,904 4,878,124
Time (s) 0.045 0.079 0.076

(16/23) #subgraphs 53,965
#total merge 1,694,389 21,176,306 23,478,324
Time (s) 0.115 0.282 0.277

(20/42) #subgraphs 71,261
#total merge 1,654,275 39,131,493 41,291,199
Time (s) 0.110 0.483 0.438

(23/45) #subgraphs 188,961
#total merge 79,648,439 1,056,812,108 1,089,545,027
Time (s) 1.777 12.646 10.015

(28/59) #subgraphs 297,708
#total merge 466,191,707 7,971,458,311 8,032,173,533
Time (s) 22.999 159.353 84.754

Exact graph parsing can be practical.

21 of 28

Practical graph-to-string parsing

(#n/#e) Weak Regular Strong Regular Baseline
(12/23) #subgraphs 26,414

#total merge 565,222 4,422,904 4,878,124
Time (s) 0.045 0.079 0.076

(16/23) #subgraphs 53,965
#total merge 1,694,389 21,176,306 23,478,324
Time (s) 0.115 0.282 0.277

(20/42) #subgraphs 71,261
#total merge 1,654,275 39,131,493 41,291,199
Time (s) 0.110 0.483 0.438

(23/45) #subgraphs 188,961
#total merge 79,648,439 1,056,812,108 1,089,545,027
Time (s) 1.777 12.646 10.015

(28/59) #subgraphs 297,708
#total merge 466,191,707 7,971,458,311 8,032,173,533
Time (s) 22.999 159.353 84.754

Exact graph parsing can be practical.

21 of 28

Practical graph-to-string parsing

(#n/#e) Weak Regular Strong Regular Baseline
(12/23) #subgraphs 26,414

#total merge 565,222 4,422,904 4,878,124
Time (s) 0.045 0.079 0.076

(16/23) #subgraphs 53,965
#total merge 1,694,389 21,176,306 23,478,324
Time (s) 0.115 0.282 0.277

(20/42) #subgraphs 71,261
#total merge 1,654,275 39,131,493 41,291,199
Time (s) 0.110 0.483 0.438

(23/45) #subgraphs 188,961
#total merge 79,648,439 1,056,812,108 1,089,545,027
Time (s) 1.777 12.646 10.015

(28/59) #subgraphs 297,708
#total merge 466,191,707 7,971,458,311 8,032,173,533
Time (s) 22.999 159.353 84.754

Exact graph parsing can be practical.

21 of 28

Practical graph-to-string parsing

(#n/#e) Weak Regular Strong Regular Baseline
(12/23) #subgraphs 26,414

#total merge 565,222 4,422,904 4,878,124
Time (s) 0.045 0.079 0.076

(16/23) #subgraphs 53,965
#total merge 1,694,389 21,176,306 23,478,324
Time (s) 0.115 0.282 0.277

(20/42) #subgraphs 71,261
#total merge 1,654,275 39,131,493 41,291,199
Time (s) 0.110 0.483 0.438

(23/45) #subgraphs 188,961
#total merge 79,648,439 1,056,812,108 1,089,545,027
Time (s) 1.777 12.646 10.015

(28/59) #subgraphs 297,708
#total merge 466,191,707 7,971,458,311 8,032,173,533
Time (s) 22.999 159.353 84.754

Exact graph parsing can be practical.

21 of 28

Outline

Graph-Based Meaning Representation

Synchronous Hyperedge Replacement Grammar

Parsing a Graph with an SHRG

Comparative Computational Semantics

21 of 28

Lexicalist vs. Constructivist

The recent study of events and argument structure in generative
syntax, as pointed out by Marantz (2013), has shifted from the
lexicalist approach to the constructivist approach.

• The interpretation of an event is determined by the syntactic
configuration.

• The predicate only provides conceptual meaning.

Lexicalist approach Constructivist approach

Chomsky (1970), Levin and Rappaport
Hovav (1995)

Hale and Keyser (1993, 2002), Halle and
Marantz (1993), Borer (2005a,b, 2013)

CCG, LFG, HPSG
Sign-Based Construction Grammar, Gold-
berg (1995, 2006)

22 of 28

Lexicalist vs. Constructivist

The recent study of events and argument structure in generative
syntax, as pointed out by Marantz (2013), has shifted from the
lexicalist approach to the constructivist approach.

• The interpretation of an event is determined by the syntactic
configuration.

• The predicate only provides conceptual meaning.

Lexicalist approach Constructivist approach

Chomsky (1970), Levin and Rappaport
Hovav (1995)

Hale and Keyser (1993, 2002), Halle and
Marantz (1993), Borer (2005a,b, 2013)

CCG, LFG, HPSG
Sign-Based Construction Grammar, Gold-
berg (1995, 2006)

22 of 28

Lexicalist vs. Constructivist

• The interpretation of an event is determined by the syntactic
configuration.

• The predicate only provides conceptual meaning.

Lexicalized Grammar Construction Grammar

boysome

want
go

arg1arg1

bv

arg2S

want
go

arg1arg1

arg2VP

go
arg1VP

go
arg1V

go

∅

to

want
arg1

arg2 V

want

boysome
bvNP

boy
N

boys

some
bvD

Some

⇐=
VPNP

S

=⇒
ND

NP

⇐=
V

VP

VP

⇐= V

VP

boysome

want
go

arg1arg1 arg1arg1

bv

arg2S

wantgo arg2 VP

go
VP

go
V

go

∅

to

want
V

want

boysome
bvNP

boy
N

boys

some
D

Some

⇐=

NP

arg1arg1

VP
S

=⇒bv
D N

NP
⇐= arg2

V VP

VP

⇐=
V

VP

23 of 28

Lexicalist vs. Constructivist

Lexicalized Grammar Construction Grammar

1

NP VP=⇒S
1

2

3

NP

arg11arg12

VP
=⇒S

1

D N=⇒NP
2 1

bvD N=⇒NP

2

1

V VP=⇒VP
1 2

arg2V VP=⇒VP

2

1

bv some=⇒D
1

some=⇒D

2

3

1arg1

arg2
want

=⇒V
1

want=⇒V

A significant number of production rules of any lexicalized grammar
are not regular, but almost all production rules of a carefully designed
construction grammar can be regular.

24 of 28

Lexicalist vs. Constructivist

Lexicalized Grammar Construction Grammar

1

NP VP=⇒S
1

2

3

NP

arg11arg12

VP
=⇒S

1

D N=⇒NP
2 1

bvD N=⇒NP

2

1

V VP=⇒VP
1 2

arg2V VP=⇒VP

2

1

bv some=⇒D
1

some=⇒D

2

3

1arg1

arg2
want

=⇒V
1

want=⇒V

A significant number of production rules of any lexicalized grammar
are not regular, but almost all production rules of a carefully designed
construction grammar can be regular.
24 of 28

Constituency test

Replacement If a group of words can be replaced with a single word,
Stand Alone If a group of words can stand alone in response to a

question,
Movement If a group of words can be moved around in the

sentence,
Coordination If you can coordinate a group of words with a similar

group of words,

Another perspective

By assuming incremental structure building it becomes
possible to explain the differences between the range of
constituents available to different diagnostics of constituency,
including movement, ellipsis, coordination, scope and binding.

Colin Phillips. Linear Order and Constituency.

25 of 28

Constituency test

• Dana preferred for Pat to get the job.
• Could rising volatility possibly be ...
• ... with the additional $4.90 going to ...

1

23

4

pron

want

exciting

thing

arg1arg1

arg2

1

23

4

pron

want

exciting

thing

arg1arg1

arg2

S

VP

VP

to be exciting

VP

wants things

NP

PRP

she

S

VP

VP

things to be exciting

VP

wants

NP

PRP

she

26 of 28

Conclusion

1. How can we build a high-performance string-to-graph parser?

2. How can we build a high-performance graph-to-string parser?

3. Can we use a single model to achieve the two goals?

4. Is our model linguistically meaningful?

5. Can we apply our model to evaluate a linguistic hypothesis?

27 of 28

Game over

Q What is the meaning of life?

A life’

life v 1

Thank You!

28 of 28

Game over

Q What is the meaning of life?

A

life’

life v 1

Thank You!

28 of 28

Game over

Q What is the meaning of life?

A

life’

life v 1

Thank You!

28 of 28

	Graph-Based Meaning Representation
	Synchronous Hyperedge Replacement Grammar
	Parsing a Graph with an SHRG
	Comparative Computational Semantics

