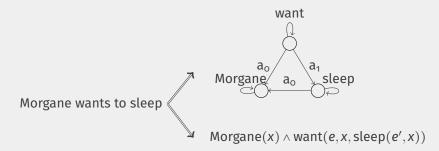
SEMANTIC EXPRESSIVE CAPACITY WITH BOUNDED MEMORY


ANTOINE VENANT

SAARLAND UNIVERSITY

JULY 16, 2019

JOINT WORK WITH ALEXANDER KOLLER

Linguistic expression \Rightarrow (formal) meaning representation. Representations can be logical formulae, or graphs (AMR [Banarescu & all 2013], MRS [Copestake & all 2005]).

 Consensual approach: semantic interpretation is a compositional process, guided by syntax.

Statement

"The meaning of a complex expression is a **function** of the meaning of its parts and the **syntactic rule** that combines them."

Requires:

- A syntax tree, along which semantic construction is performed in a bottom-up fashion.
- Operators for semantic composition (semantic algebra).
- Which semantic interpretation functions can we express compositionally using specific classes of syntax trees and semantic operators?

(Essentially) one job:

combine predicates with their arguments.

'Unification style'

Finite set of markers denoting 'holes' ((s), (o), (mod), (comp)) waiting to be filled with semantic values. Markers accessible in unconstrained order [Copestake & all, 2001, Courcelles & Englefriet 2012, Groshwitz & all 2017].

'Lambda style'

Countably infinite ordered set of markers but order constrain access (variables' scope) [Montague 1977, Steedman 2001].

'Unification style'

Finite set of markers denoting 'holes' $(\langle s \rangle, \langle o \rangle, \langle mod \rangle, \langle comp \rangle)$ waiting to be filled with semantic values. Markers accessible in unconstrained order [Copestake & all, 2001, Courcelles & Englefriet 2012, Groshwitz & all 2017].

→ number of 'holes' accessible at a given time of the construction process is bounded: 'bounded memory'.

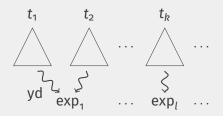
'Lambda style'

Countably infinite ordered set of markers but order constrain access (variables' scope) [Montague 1977, Steedman 2001].

QUESTION

'bounded memory' operators are popular

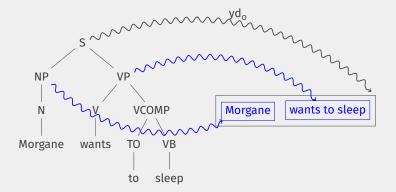
- In semantic parsing [Chiang & all 2013, Groschwitz & all 2018, Chen & all 2018].
- For the manual design of grammars [Bender 2002 *inter alia*].


Expressive limitation due to bounded memory capacity?

- Specifically, considering long distance dependencies.
- If impossible (from distance) to combine a predicate with its argument right away → need to store argument slot until argument becomes available.

- A lot is known on expressive capacity of grammatical formalisms – in terms of languages (of words/trees).
 - e.g., famous CCG/TAG/LIG [Vijay-Shanker & Weir, 1994] weak equivalence result.
- What about the joint expressivity of grammatical formalisms and specific semantic combinators in terms of *relations*?
- Do (weakly) equivalent grammatical formalisms support the same compositional interpretations?
- Inform the elaboration of semantic parsing systems

ABSTRACT VIEW ON GRAMMARS


- Set of 'grammatical' syntax trees $\{t_1, t_2, ...\}$.
- yield function, yd, associating each tree with its string projection (the linguistic expression for which it is a grammatical analysis).

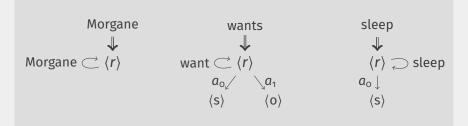
■ The set {*t*₁, *t*₂,...} could be given by any kind of descriptive/computing device (formal grammar, neural net,...).

The projective yield yd_o

Concatenates children's yield from left to right.

A NON-PROJECTIVE YIELD: yd_w

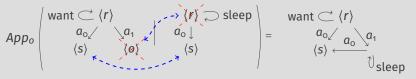
Swiss-German cross-serial dependencies [Shieber 1985]



(dass) (mer) d' chind em Hans es huus lönd (that) (we) the-children-ACC Hans-DAT the-house-ACC let hälfed aastriiche help paint

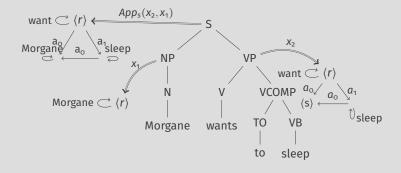
'(that we) let the children help Hans paint the house'

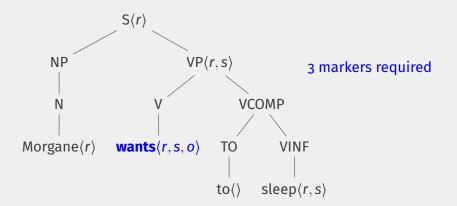
SEMANTIC COMPOSITION 1/3


Interpretation for elementary syntactic constituants

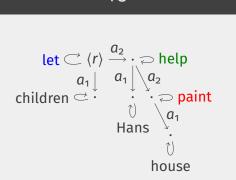
- $\langle s \rangle$, $\langle o \rangle$, $\langle r \rangle$: markers.
- ⟨s⟩, ⟨o⟩: argument placeholders ('holes'): a semantic value will eventually be substituted for them during the process of semantic composition.
- ⟨*r*⟩: root of the semantic constituant ('hook'), destined to be substituted for an argument placeholder.

Semantic algebra (i.e. composition operators)

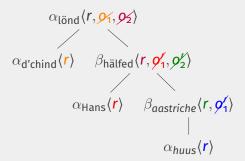

Example with the AM algebra [Groschwitz & all 2017]


- Merge referenced marker (o) of the fonctor with the root (r) of the argument, then 'forgets' these two markers.
- Merge any other identical marker (here, $\langle s \rangle$).

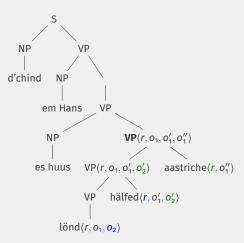
Homomorphic interpretation of syntax trees


 $\{VP(x_1, x_2) \rightarrow APP_o(x_1, x_2), S(x_1, x_2) \rightarrow APP_s(x_2, x_1)\}$

'SEMANTIC' MEMORY


PROJECTIVITY AND MEMORY 1/3

d'chind em Hans es huss lönd hälfed aastriche


- lönd: $\langle r, o_1, o_2 \rangle$ (two objects).
- hälfed: (r, o_1, o_2) (two objects).
- **aastriche:** $\langle r, o_1 \rangle$ (one object).

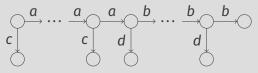
Non-projective analysis possible with a 3-markers capacity.

PROJECTIVITÉ AND MEMORY 3/3

With a projective analysis: 4 markers seem intuitively required.

ABSTRACTING AWAY

- Arbitrary long crossed-serial dependencies → infinite memory required?
- A formal relation for a mathematical proof:


CSD

Word to graph function $w \mapsto g_w$ where

• Words w are of the form: $a \dots a b \dots b c \dots c d \dots d$.

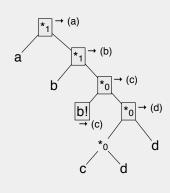
n times m times n times m times

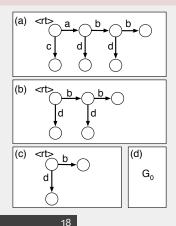
• And for each such w, g_w is:

UNNATURAL CONSTRUCTIONS

Theorem ?

There exists no projective grammar and finite memory compositional interpretation mechanism over a projective grammar which expresses CSD.

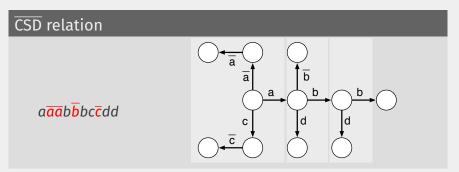

NOT A Theorem

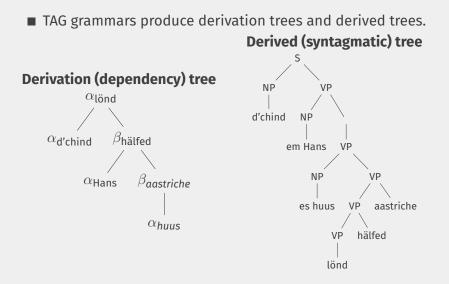

There exists no projective grammar and finite memory compositional interpretation mechanism over a projective grammar which expresses CSD.

UNNATURAL CONSTRUCTIONS

NOT A Theorem

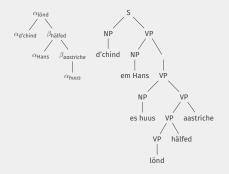
There exists no projective grammar and finite memory compositional interpretation mechanism over a projective grammar which expresses CSD.


If one further impose specific alignements between elementary syntactic and semantic constituants ('a' aligned with '._a,', 'b' aligned with '._b,'...) it can be shown:


Theorem

- there exists no projective grammar and finite memory compositional interpretation mechanism over a projective grammar expressing CSD and respecting elementary alignments.
- There exists a non-projective grammar and a finite-memory compositional interpretation mechanism expressing CSD and respecting elementary alignments.
- Remark: strong assumption on alignments but no assumption on grammatical formalism.

IMPERFECT ALIGMENTS


- Whithout the alignment condition the theorem is false.
- However, weaker form of alignments can be achieved if we constrain the grammatical formalism (pumping lemma).
- Requires arbitrary complex 'arguments' to avoid previous unnatural constructions.
- Result for Tree-Adjoining Grammars (TAG).

Two (weakly) equivalent grammar formalisms

- Formalism TAG: Use the **derivation trees** of some TAG grammar with a **non-projective** yield.
- Formalism PTAG: Use the **derived trees** of some TAG grammar wutg the **projective** yield.
- The two formalisms generate the same word langages, but not necessarily the same relations.

SECOND RESULT

Theorem

- There exists a (non-projective) TAG grammar and a finite memory compositional interpretation mechanism expressing CSD.
- There exists no (projective) PTAG grammar and finite memory compositional interpretation mechanism expressing CSD.

- Theoretical result on the link between compositionality, projectivity and bounded memory capacity.
- Strong result, under strong assumption of perfect syntax/semantics alignments at the lexical level.
- independent of considered grammatical formalism.
- New light shed on the choice between derivation/derived tree as the support of semantic composition for TAG grammars.
- Do weakly equivalent grammatical formalisms support the same compositional interpretation mechanisms? → **No!**.

CONCLUSIONS AND FUTURE WORK

- Notion of expressivity at the syntax/semantics interface.
- Theoretical study on the link between projectivity and 'semantic' memory.
- What could we say about more restricted forms of non-projectivity? Finite increase in required memory capacity?
- Artificial non-projectivity due to imperfect aligners in semantic parsing systems.
- Locally translate from 'unification style' to 'lambda style' to circumvent projectivity issues?

26

25

Questions?