
LKB: Porting, Algorithm and Feature Updates

John Carroll

Department of Informatics, University of Sussex, UK

DELPH-IN Summit, Cambridge, July 2019



Outline

Maintainability

Scalability

Usability

Compatibility

2



Maintainability

Aim to make LKB code more understandable and easier to extend

Critical code reviews and execution profiling

• code: obscure / inefficient / buggy

• comments: missing / misleading

Concentrated on: basic feature structure operations; type unification; parser task
filtering and ordering, ambiguity packing, batch processing

Data structures remain simplistic (easier debugging); external behaviour unchanged

Cross-checked surprises against other systems, e.g.

• interaction between *chart-packing* and *first-only-p* (PET)

• cyclic check when testing feature structure unifiability with a start symbol (ACE)

3



Building

LKB-FOS is getting to be stable; repository http://svn.delph-in.net/lkb/branches/fos/

kept in sync with releases of pre-built binaries

3 releases in past year, via http://moin.delph-in.net/LkbFos : Oct 2018, Mar/Jul 2019

A few issues with build process:

• not fully automated

• no automated tests

• a few patches to McCLIM to improve usability are not yet in the repository

• need to use older versions of some libraries, due to regressions

(Can go into more detail in a SIG discussion)

4



Scalability

Aim to support grammar development at all scales (student grammars→ resource
grammars)

Type hierarchy: previous work reported at last year’s Summit addressed brows-
ing type hierarchies and processing large hierarchies (e.g. Norsyg)

Lexicons: the ‘constant database’ module performed poorly when database
hashes collided (frequent with large lexicons, e.g. Zhong/zhs); fix greatly im-
proves speed of lexicon reading, batch check, generator indexing

MRS construction: was slow dealing with thousands of parses – added memo-
isation to deal efficiently with repeated sub-structure and repeated computation
(e.g. type of an MRS variable, canonical case of a type name, etc.)

5



Storage management

In many applications, long-lived data is unchanging

• therefore requires little garbage collector attention⇒ hierarchy of ‘generations’,
older generations being GCed less frequently

This is exactly wrong for our (quasi-destructive) DAG processing

• the (long-lived) grammar and lexicon DAGs are full of pointers into new objects

• GCing a new generation requires adjusting all old→new generation pointers –
expensive!

Solution is to use only a single generation, and also don’t GC frequently so data
has more of a chance to become garbage. In SBCL:

(setf (sb-ext:generation-number-of-gcs-before-promotion 0) 1000000)

(setf (sb-ext:bytes-consed-between-gcs) (* 500 (expt 2 20))) ; =500MB

Reduces GC overhead in parsing from around 25% to 10%

6



Comparative evaluation (1)

• based on Glenn Slayden’s evaluation in 2011

• ERG rev 8962, no token mapping, exhaustive unpacking, single thread

• 287 items from ‘hike’: those that do not exceed resource limit in LKB when
packing turned off (265,610 total derivations vs. 277,946 in original)

• Xeon 5460, 3.17GHz, 32GB vs. i5 (2400S), 2.5Ghz, 8GB

System Total CPU time (hh:mm:ss)

‘classic’ LKB (no packing) 2:41:25

agree 3:04

PET 1:47

LKB-FOS 2:52

Glenn Slayden, agree grammar engineering environment, DELPH-IN Summit, June 2011

Glenn Slayden, Array TFS storage for unification grammars, MS dissertation, UW, 2012

7



Comparative evaluation (2)

• couldn’t get ACE to compile ERG rev 8962, so updated evaluation

• ACE 0.9.30 with precompiled ERG (2018)

• 171 items from ‘hike’: those items for which LKB and ACE give same numbers
of derivations (total of 153,706)

• same hardware as before: i5 (2400S), 2.5Ghz, 8GB

• measure total CPU time and memory allocated

System First parse only All parses

CPU (sec) Space (GB) CPU (sec) Space (GB)

ACE 18.5 3.4 96.3 9.9

LKB-FOS 24.6 2.8 126.3 25.6

8



Usability

Aim to make using the LKB as pleasant and productive as possible, for all kinds
of user

In macOS

• familiar option key combos and keyboard layout switching for non-ASCII input

• LKB.app is a double-clickable application, bypassing Terminal / xterm

Customising the interface

• *dialog-font-size* controls font size in dialog box text fields, parse history
menu, and Lkb Top window

• clim:*default-text-style* controls font style of all static text in interface

• experimental support for specifying a different font family for viewing the
grammar and processing results

9



Digression: can customise ‘classic’ LKB interface via X resources – by specify-
ing attribute/ value pairs for application clim in .Xdefaults (or by using xrdb)

E.g. for a GTK-ish look

10



Compatibility

Aim to make it easier to switch between DELPH-IN processors and platforms

TDL syntax standardisation:

• recent TdlRfc specification

• error messages include line/column number; error recovery more reliable

morph.tdl:1275:30: Error: In ST-DECL, found a single quote, which is

no longer a valid notation for strings

Spanning rules:

• prototype implementation gives average 5% reduction in parse time

• ... but in testing with ERG 2018, specifying spanning rules changes number of
parses for some sentences

Token mapping: still not implemented

11



Platforms

12



Code runs natively in Windows 10, but requires X server, e.g. Xming

Unfortunately, a few serious bugs:

• CLIM graphics do not start up from a saved image

• picks up a very basic X Windows font (not DejaVu Sans)

• window contents sometimes do not redraw properly after being obscured

• trying to display a large FS provokes an error

The value 32771 is not of type (SIGNED-BYTE 16)

Caused by an X Windows limitation which McCLIM manages to program
around on other platforms (by ‘coordinate swizzling’)

No LUI; PostgreSQL lexicon doubtful

13



Summary

Have worked on maintainability, scalability, usability, compatibility

Highlights

• many performance issues fixed

• Windows port looks promising

In progress / still to do

• user-friendly font selection

• token mapping

• LkbWishlist

• updated version of ‘classic’ LKB

14



Thanks! Any questions?

15


