Deep learning evaluation using ShapeWorld #### Alexander Kuhnle Department of Computer Science and Technology University of Cambridge # Evaluation methodology # Evaluation methodology ### ShapeWorld generation framework ### ShapeWorld: language generation "A pentagon is above a green ellipse, and no blue shape is an ellipse." ### \Uparrow Internal DMRS mapping \Uparrow | $\exists a$ | $a.{ m shape}{=}{ m pg}$ | a.y>b.y | ∃b | b.color=gr | b.shape = el | ^ | $\neg \exists c$ | $c.\operatorname{color=bl}$ | true | c=d | $\exists d$ | d.shape=el | |--|--|---------|----|------------|--------------|-----------------|--|-----------------------------|------|--------------------------|-------------|------------| | $\exists a$ | $\exists a: a. \text{shape=pg}$ $a. y > b. y$ $\exists b: b. \text{color=gr} \land b. \text{shape=el}$ | | | | ^ | ¬∃c: c.color=bl | | | c=d | $\exists d : d.shape=el$ | | | | $\exists a: a. \text{shape=pg} \land [\exists b: b. \text{color=gr} \land b. \text{shape=el} \land a. \text{y} > b. \text{y}]$ | | | | | | | $\neg \exists c : c.color=bl \land [\exists d : d.shape=el \land c=d]$ | | | | | | | $(\exists a \colon a.shape = pp \land [\exists b \colon b.color = pr \land b.shape = el \land a.vp > b.y]) \land (\neg \exists c \colon c.color = bl \land [\exists d \colon d.shape = el \land c = d])$ | | | | | | | | | | | | | # ShapeWorld: language generation # Performance breakdown and generalisation | Dataset | CNN-L | STM | CNN-LS | STM-SA | FiLM | | | |------------------|-------|------|--------|--------|-------|------|--| | (single-shape) | _ | - | - | _ | 100.0 | 87.2 | | | existential | 100.0 | 81.1 | 100.0 | 99.7 | 100.0 | 99.9 | | | logical | 79.7 | 62.2 | 76.5 | 58.4 | 99.9 | 98.9 | | | numbers | 75.0 | 66.4 | 99.1 | 98.2 | 99.6 | 99.3 | | | quantifiers | 72.1 | 69.1 | 84.8 | 80.8 | 97.7 | 97.0 | | | (simple-spatial) | 81.4 | 64.8 | 81.9 | 57.7 | 85.1 | 61.3 | | | relational | - | - | - | _ | 50.6 | 51.0 | | | implicit-rel | - | - | - | _ | 52.9 | 53.2 | | | superlatives | - | - | - | _ | 50.8 | 50.2 | | four triangles four crosses # Replication of psycholinguistic experiments ### Intermediate representations and multilingual data Existential [ObjectType1 Attribute-shape-pentagon] [Relation-y-rel--1 [ObjectType Attribute-color-green] Attribute-shape-ellipse]] "A pentagon is above a green ellipse." 有某一个红色正方形 有一个圆形 有某一个绿色半圆形 有某一个紫色十字形 有某一个红色半圆形 #### Real-world vs artificial data real-world data vs artificial data limited and expensive \longleftrightarrow unlimited amount uncontrolled content \longleftrightarrow configurable content sparse instance coverage \longleftrightarrow targeted instance coverage monolithic benchmark \longleftrightarrow set of tailored probing tests test interpolation ability \longleftrightarrow test extrapolation ability ⇒ Complementary evaluation paradigms