Deep learning evaluation using ShapeWorld

Alexander Kuhnle

Department of Computer Science and Technology University of Cambridge

Evaluation methodology

Evaluation methodology

ShapeWorld generation framework

ShapeWorld: language generation

"A pentagon is above a green ellipse, and no blue shape is an ellipse."

\Uparrow Internal DMRS mapping \Uparrow

$\exists a$	$a.{ m shape}{=}{ m pg}$	a.y>b.y	∃b	b.color=gr	b.shape = el	^	$\neg \exists c$	$c.\operatorname{color=bl}$	true	c=d	$\exists d$	d.shape=el
$\exists a$	$\exists a: a. \text{shape=pg}$ $a. y > b. y$ $\exists b: b. \text{color=gr} \land b. \text{shape=el}$				^	¬∃c: c.color=bl			c=d	$\exists d : d.shape=el$		
$\exists a: a. \text{shape=pg} \land [\exists b: b. \text{color=gr} \land b. \text{shape=el} \land a. \text{y} > b. \text{y}]$							$\neg \exists c : c.color=bl \land [\exists d : d.shape=el \land c=d]$					
$(\exists a \colon a.shape = pp \land [\exists b \colon b.color = pr \land b.shape = el \land a.vp > b.y]) \land (\neg \exists c \colon c.color = bl \land [\exists d \colon d.shape = el \land c = d])$												

ShapeWorld: language generation

Performance breakdown and generalisation

Dataset	CNN-L	STM	CNN-LS	STM-SA	FiLM		
(single-shape)	_	-	-	_	100.0	87.2	
existential	100.0	81.1	100.0	99.7	100.0	99.9	
logical	79.7	62.2	76.5	58.4	99.9	98.9	
numbers	75.0	66.4	99.1	98.2	99.6	99.3	
quantifiers	72.1	69.1	84.8	80.8	97.7	97.0	
(simple-spatial)	81.4	64.8	81.9	57.7	85.1	61.3	
relational	-	-	-	_	50.6	51.0	
implicit-rel	-	-	-	_	52.9	53.2	
superlatives	-	-	-	_	50.8	50.2	

four triangles

four crosses

Replication of psycholinguistic experiments

Intermediate representations and multilingual data

Existential [ObjectType1 Attribute-shape-pentagon]
[Relation-y-rel--1 [ObjectType Attribute-color-green]

Attribute-shape-ellipse]]

"A pentagon is above a green ellipse."

有某一个红色正方形 有一个圆形 有某一个绿色半圆形 有某一个紫色十字形 有某一个红色半圆形

Real-world vs artificial data

real-world data vs artificial data limited and expensive \longleftrightarrow unlimited amount uncontrolled content \longleftrightarrow configurable content sparse instance coverage \longleftrightarrow targeted instance coverage monolithic benchmark \longleftrightarrow set of tailored probing tests test interpolation ability \longleftrightarrow test extrapolation ability

⇒ Complementary evaluation paradigms

