The goals of computational semantics: DELPH-IN and deep learning

Guy Emerson

Top-down vs. Bottom-up

Top-down vs. Bottom-up

overarching

incremental

Top-down vs. Bottom-up

overarching classical incremental neural

Goals of semantics (Koller, 2016)

"Truth-conditional semantics hasn't reached its goal, but at least we knew what the goal was."

Goals of semantics (Koller, 2016)

"Truth-conditional semantics hasn't reached its goal, but at least we knew what the goal was."

"Bottom-up theories are intrinsically unfalsifable."

- Grounding
- Lexical meaning
- Sentence meaning

Goal: explain how language relates to the world

Goal: explain how language relates to the world

Goal: generalise to new situations

Deep learning: process images, audio, …

- Deep learning: process images, audio, …
- Deep learning: learn to generalise

- Deep learning: process images, audio, …
- Deep learning: learn to generalise
- DELPH-IN: truth-conditional semantics (*how* language relates to the world)

- Deep learning: process images, audio, …
- Deep learning: learn to generalise
- DELPH-IN: truth-conditional semantics (*how* language relates to the world)
- → Alex Kuhnle, Huiyuan Xie

Goal: capture lexical relations (e.g. hyponymy)

Goal: capture lexical relations (e.g. hyponymy)

Goal: capture vagueness

Goal: capture lexical relations (e.g. hyponymy)

- More natural for DELPH-IN
- Goal: capture vagueness

Goal: capture lexical relations (e.g. hyponymy)

- More natural for DELPH-IN
- Goal: capture vagueness
 - More natural for deep learning

Lexical Similarity

democracy	water	happiness		
aubergine	flood	јоу		
computer	law	cat		
earthquake	lawyer	dog		

Lexical Similarity

Rank correlation on several lexical similarity datasets:

Model	SL noun	SL verb	SimVerb	MEN	WS sim	WS rel
Skip-gram	.40	.23	.21	.62	.69	.46
SVO Skip-g.	.44	.18	.23	.60	.61	.24
My work	.46	.25	.26	.52	.60	.16

Goal: support logic (truth, entailment)

- Goal: support logic (truth, entailment)
- Goal: compositionally derive representations (reliably generalise to new sentences)

- Goal: support logic (truth, entailment)
- Goal: compositionally derive representations (reliably generalise to new sentences)
- Goal: model context dependence (specific usage vs. general meaning)

Dependency Minimal Recursion Semantics

Dependency Minimal Recursion Semantics

 $\forall x \exists y \exists z \text{ picture}(x) \Rightarrow [\text{story}(z) \land \text{tell}(y) \land \text{ARG1}(y, x) \land \text{ARG2}(y, z)]$

DELPH-IN: logical representations (MRS)

- DELPH-IN: logical representations (MRS)
- DELPH-IN: composition (via a grammar)

- DELPH-IN: logical representations (MRS)
- DELPH-IN: composition (via a grammar)
- Deep learning: learn contextual features

- DELPH-IN: logical representations (MRS)
- DELPH-IN: composition (via a grammar)
- Deep learning: learn contextual features
- → Weiwei Sun, Michael Goodman

DELPH-IN and Deep Learning

Complementary strengths

DELPH-IN and Deep Learning

Complementary strengths

Combine them to reach our goals!