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Goals of semantics (Koller, 2016)

“Truth-conditional semantics hasn’t reached its goal,
but at least we knew what the goal was.”

“Bottom-up theories are intrinsically unfalsifable.”
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Goals of semantics

� Grounding

� Lexical meaning

� Sentence meaning
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Lexical Semantics

� Goal: capture lexical relations (e.g. hyponymy)

� More natural for DELPH-IN

� Goal: capture vagueness

� More natural for deep learning
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Lexical Similarity

democracy water happiness

aubergine flood joy

computer law cat

earthquake lawyer dog
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Lexical Similarity

Rank correlation on several lexical similarity datasets:

Model SL noun SL verb SimVerb MEN WS sim WS rel

Skip-gram .40 .23 .21 .62 .69 .46

SVO Skip-g. .44 .18 .23 .60 .61 .24

My work .46 .25 .26 .52 .60 .16
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Sentence Meaning

� Goal: support logic (truth, entailment)

� Goal: compositionally derive representations
(reliably generalise to new sentences)

� Goal: model context dependence
(specific usage vs. general meaning)
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Dependency Minimal Recursion Semantics

Every picture tells a story

RSTR

ARG1

RSTR

ARG2

∀x∃y∃z picture(x)⇒ [story(z)∧ tell(y)∧ ARG1(y,x)∧ ARG2(y, z) ]
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Sentence Meaning

� DELPH-IN: logical representations (MRS)

� DELPH-IN: composition (via a grammar)

� Deep learning: learn contextual features

→ Weiwei Sun, Michael Goodman
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DELPH-IN and Deep Learning

� Complementary strengths

� Combine them to reach our goals!
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