
Improved Type Hierarchy Processing

and Display

John Carroll

Department of Informatics, University of Sussex, UK

DELPH-IN Meeting, Paris, June 2018

With thanks to: Ann, Glenn, Petter, Uli C, Woodley



Outline

Improved type hierarchy display in the LKB

Efficient computation of BCPOs for large type hierarchies

Baseline algorithm

Fast transitive reduction

Improvements

Empirical results

2



Improved Type Hierarchy Display

Part of recent enhancements to LKB-FOS

• intended to allow more effective debugging of type hierarchies

• possibly also useful for teaching and demos

• will be ported back to ‘classic’ LKB

Type Hierarchy below / above / around ; e.g. ERG (1214), types around *localcons*:

3



Show/Hide Types; as before, but much more efficient for large hierarchies

Show/Hide Defns; e.g. hierarchy above *cpcons* showing type constraints:

4



Zoom In / Zoom Out; e.g. hierarchy around sign min zoomed out 5 times:

5



Efficient computation of BCPOs

Computation performed during grammar loading (creates ‘GLB types’)

• so it’s inside the grammar testing and debugging cycle

Tolerably efficient in all four DELPH-IN parsing/generation systems for most
current grammars

• but not for Norsyg

In early August 2017, BCPO computation for Norsyg took around 1 min 30 sec
(agree), 30 minutes (LKB-FOS), and 2 hours or more (ACE)

• why? it’s an O(n3) algorithm applied to a 40,000-type hierarchy

6



Baseline Algorithm

1: Assign a unique bit code to each ‘authored’ type
2: repeat
3: for each pair of bit codes do
4: if their bitwise AND is not the code for an existing type then
5: create a GLB type and add it to the pool of bit codes

6: until no new GLB types
7: Integrate GLB types into hierarchy through subsumption relationship
8: Remove redundant links using transitive reduction

Ulrich Callmeier (2001) Efficient Parsing with Large-Scale Unification Grammars. Diploma Dis-

sertation, Saarland University. http://www.coli.uni-saarland.de/˜uc/thesis/thesis.ps

7



a := *top*.

b := *top*.

d := a & b.

c := b.

e := a & c.

f := a & c.

*top*�
�
��

A
A
A
A
A
A
A

b

a

�
�
�
��

Q
Q
Q
QQ

�
�
�
�
�
�
�
�
�
�
�
�
��
d

c

�
�
�
�
�
�
�
�
�
��

((((
((((

(((

���
��

@
@
@
@@

f

e

*top* a b c d e f

*top* 1 1 1 1 1 1 1
a 1 1 1 1
b 1 1 1 1 1
c 1 1 1
d 1
e 1
f 1
a ∧ c 1 1
a ∧ b 1 1 1

8



*top* a b c d e f glba∧c glba∧b
*top* 1 1 1 1 1 1 1 1
a 1 1 1 1 1
b 1 1 1 1 1 1
c 1 1 1
d
e
f

glba∧c 1 1
glba∧b 1 1 1 1

blue entries
removed by
transitive reduction

*top*�
�
��

A
A
A
A
A
A
A

b

a

�
�
�
��

Q
Q
Q
QQ

�
�
�
�
�
�
�
�
�
�
�
�
��
glba∧b

c

PPPPP

�
�
�
�
�
�
�
��

S
S
S
S
S
S
S

glba∧c

d

H
HHHH

��
��
� e

f

9



Fast Transitive Reduction

We want to apply transitive reduction to a large, though sparse DAG; let’s first
consider transitive closure, which is highly related

Warshall’s Algorithm

for j = 1 . . . n do . Process each column
for i = 1 . . . n do . Process each row

for k = 1 . . . n do
M(i, j)←M(i, j) ∨ (M(i, k) ∧M(k, j))

Warshall (improved)

for j = 1 . . . n do
for i = 1 . . . n do

if M(i, j) = 1 then
M(i, ∗)←M(i, ∗) ∨M(j, ∗) . ‘OR’ row j into row i

10



Warren’s Algorithm

for i = 2 . . . n do . Row-wise, below main diagonal
for j = 1 . . . i− 1 do

if M(i, j) = 1 then
M(i, ∗)←M(i, ∗) ∨M(j, ∗)

for i = 1 . . . n− 1 do . Row-wise, above main diagonal
for j = i + 1 . . . n do

if M(i, j) = 1 then
M(i, ∗)←M(i, ∗) ∨M(j, ∗)

For sparse DAGs, we need the following to be efficient:

• find next 1 in a bit vector

• compute (in-place) the bit-wise OR of two bit vectors

Transitive reduction is very similar, except for M(i, ∗)←M(i, ∗) ∧ ¬M(j, ∗)

11



Are there any existing comparative evaluations? Yes!

Gerald Penn (2006) Efficient transitive closure of sparse matrices over closed semirings. Theoretical

Computer Science, 354, 72–81. https://doi.org/10.1016/j.tcs.2005.11.008

[1] Version of ERG with 4,305 types (11,720 entries including main diagonal), C
implementation by G. Penn, on 32-bit 2.4 GHz Xeon server

[2] ERG (1214), 6,016 types (19,107 entries including main diagonal), SBCL im-
plementation, on 64-bit 2.5 GHz i5 desktop

Implementation CPU time (sec)

Warshall [1] 481

Warshall, naive [2] 668

Warshall, improved [2] 0.14

Warren [2] 0.012

12



Improvements

A. Partition type hierarchy into independent sub-graphs

• For each descendant d of x, are each of d’s parents also one of x’s descen-
dants? (i.e. do d’s parents remain within the partition’s ‘envelope’)

• For ERG (1214), there are 134 non-trivial partitions

SIGN MIN: 1149 types
PREDSORT: 1016 types
SYNSEM MIN: 866 types
...
XMOD: 7 types

• apply the BCPO algorithm to each partition individually

13



B. Add ‘summary words’ to each bit code: each successive bit represents whether
any bit is set in each successive 64-bit word in the bit code (wrapping around at
end)

E.g. determining whether the bitwise AND of a pair of bit codes is all zero (on a
4-bit computer):

0000 1101 0000 1111 0000 0011

AND

0000 0000 1011 0000 1100 0000

->

0000 0000 0000 0000 0000 0000

We can speed this up by first checking the AND of the bit codes’ summary words:

0101

AND

1010

->

0000

14



C. Only consider a subset of ‘active’ types for computing GLBs; only some of
these (‘split’ types) need participate in the pairwise AND tests to find new GLBs

More precisely, we classify types according to 3 tests:

1. more than 1 parent and/or more than 1 daughter

2. not inside a tree-shaped part of hierarchy? (nor a leaf type with 1 parent)

3. more than 1 daughter that is not in a tree-shaped part of hierarchy

Active types satisfy tests 1 and 2; split types are active and additionally satisfy 3

*top*�
�
��

A
A
A
A
A
A
A

b

a

�
�
�
��

Q
Q
Q
QQ

�
�
�
�
�
�
�
�
�
�
�
�
��
d

c

�
�
�
�
�
�
�
�
�
��

(((
((((

((((

���
��

@
@
@
@@

f

e

active, split
active, not split

15



D. When integrating new GLB types into the hierarchy, test subsumption against
split types, and compute the remaining authored type → GLB links via (partial)
transitive closure

*top* a b c d e f glba∧c glba∧b
*top* 1 1 1 1 1 1 1 1
a 1 1 1 1 1
b 1 1 1 1 1 1
c 1 1 1
d
e
f

glba∧c 1 1
glba∧b 1 1 1 1

add via subsumption@
@

@
@I

�
�
�
�
�
�
�
�
�
�
�
��


transitive closure
(3 new entries added)

XXX
XXX

XXy

16



E. Ignore the result of a bitwise AND containing only a single 1 bit, since it must
be the code for an existing (authored) type

Also, if a new GLB type has only 2 bits set (i.e. has only 2 active daughters) then
don’t add it to the pool, and don’t test whether it subsumes any other GLBs

glba∧c HHHHH
��

��
� e

f

17



F. Record start and end indices for bit codes, and use these to skip over leading
and trailing all-zero words in AND / subsumption tests

0000 0000 1011 0000 1100 0000

->

start=2, end=4, code=0000 0000 1011 0000 1100 0000

G. Use bit code start and end indices to filter out non-overlapping / non-contained
bit codes in AND / subsumption tests

H. Compress bit codes (after initial assignment step), starting each code at its
first non-zero word and finishing at its last

• requires careful programming to correctly align codes

0000 0000 1011 0000 1100 0000

->

start=2, end=4, code=1011 0000 1100

18



Empirical Results

Tests with Norsyg (1708) (42,300 authored types, 21,498 GLBs) on 3.3 GHz i5

Baseline: faithful implementation of PET’s algorithm in LKB-FOS, without im-
provements but with fast transitive reduction

System CPU time (sec)

Baseline 982

+ A. Partition hierarchy 866

+ B. Summary words (3) 82

+ C. Active and split types 43

+ D. Splits-GLB partial closure 32

+ E. Filter 1-bit ANDs, 2-bit GLBs 23

+ F. Skip all-zero bit code words 12

+ G. Filter on bit code indices 7.4

+ H. Compressed bit codes 3.9

Baseline + C +...+ H
6.6 sec

Baseline + F + G + H
30 sec

19



Results for some other DELPH-IN grammars:

Grammar (version) CPU time (sec)
Baseline Improved

ERG (1214) 1.6 0.06

JACY (2016-11-17) 0.03 0.003

GG (Oct 2008) 2.6 0.07

HAG (1607) 0.4 0.07

20



Summary

Improved type hierarchy display

• types below / above / around, show/hide type constraints, zoom in / zoom out

Efficient computation of BCPOs for large type hierarchies

• massively combinatorial

• algorithmic and data structure improvements make a big difference

• reduced processing time for all grammars, and for Norsyg from 16 minutes to
4 seconds

Available now in LKB-FOS, and will be ported back to ‘classic’ LKB

21



Thanks! Any questions?

22


