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Towards Neural Machine Translation with MRS

e NMT is state-of-the-art for machine translation (for most language pairs)
e But using explicit syntax and/or semantics might still improve performance



Towards Neural Machine Translation with MRS

Semantic machine translation:

English
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Japanese
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Semantic transfer

e Formulate as a graph transduction problem, using DMRS as representation

e Language pair where broad-coverage grammars are available for both
languages: English (ERG) and Japanese (JACY)

e Use parsed parallel corpora as training data

e Evaluation metric: Smatch score (F1 graph overlap score)



Semantic transfer

Use neural networks for graph transduction

Formulate as a sequence-to-sequence problem: linearize graphs
Train neural encoder-decoder model

Does not require explicit alignments between the graphs



Graph linearization
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That's a good idea!




Neural network architecture
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Datasets

Parse bitext with grammars, only use sentence pairs when both are parsable

Tanaka Kyoto Japanese WordNet
Not perfect « Exacttranslations of « Corpus modeled
translations Wikipedia articles after WordNet
~ 124,000 pairs e ~131,000 pairs * ~114,000 pairs

Splitin 2 sets



Results

0.61 0.61
- Features 0.63 0.62
Tanaka'
+ Coverage 0.61 0.61
Transformer 0.59 0.59
JPN WN -- 0.57 0.54
All - Tanaka' -- 0.53 0.52

All == 0.57 0.56



Results

Abstract Pred.

Surface Pred.

Dataset Model SMATCH Precision | Recall | Precision | Recall
- 0.61 0.75 0.70 0.55 0.48
Tanaka’ -Features 0.63 0.73 0.73 0.56 0.52
+Coverage 0.61 0.75 0.70 0.56 0.49
Transformer 0.59 0.77 0.65 0.56 0.46
JPN WN — 0.57 0.83 0.61 0.52 0.39
All - Tanaka’ — 0.53 0.78 0.55 0.49 0.30
All — 0.57 0.76 0.61 0.52 0.38
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Abstract Surface

def_q compound Hifele _sono_q
udef_q named _wa_d _exist_v

nominalization pron _ni_p _koto_n_nom



Error analysis

e Sequential model has trouble dealing with long-distance relations between
elements in the graph

e Abstract predicates and versatile surface predicates are often mispredicted

e Training data size limited by coverage of the Japanese grammar



Future work

e Model architectures that are more suitable for graphs

o TreeLSTM or graph convolutional encoders
o Stack-based decoders
o Parent feeding for dealing with long-distance dependencies

e Neural network approach requires more training data
o Pre-trained monolingual models might also help

e Evaluation: Need upper bounds on performance, gold-annotated test data,
methods to estimate training data quality



Future work

e Evaluation: Need upper bounds on performance, gold-annotated test data,
methods to estimate training data quality

e Towards full translation systems: Need annotated data in (more) languages to
train parsers and generators

e Inlow-resource settings, how can we make use of grammars with limited

coverage?



