Neural networks for transducing between DMRS graphs in English and Japanese

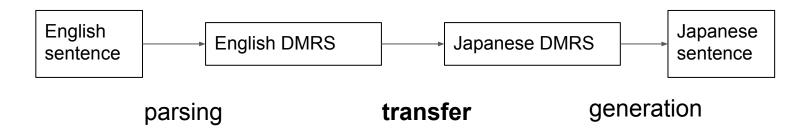
Ryan Pham Michael Goodman Jan Buys

Towards Neural Machine Translation with MRS

- NMT is state-of-the-art for machine translation (for most language pairs)
- But using explicit syntax and/or semantics might still improve performance

Towards Neural Machine Translation with MRS

Semantic machine translation:



Semantic transfer

- Formulate as a graph transduction problem, using DMRS as representation
- Language pair where broad-coverage grammars are available for both languages: English (ERG) and Japanese (JACY)
- Use parsed parallel corpora as training data
- Evaluation metric: Smatch score (F1 graph overlap score)

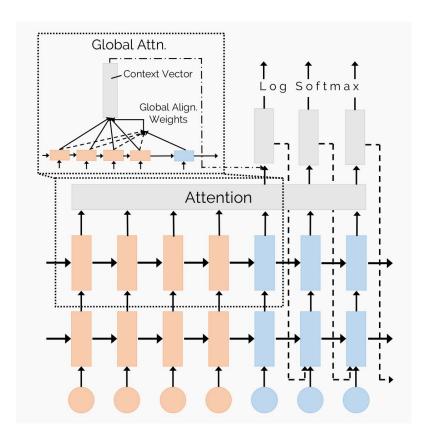
Semantic transfer

- Use neural networks for graph transduction
- Formulate as a sequence-to-sequence problem: linearize graphs
- Train neural encoder-decoder model
- Does not require explicit alignments between the graphs

Graph linearization

```
(10002 / _bc_v_id
                                        Original
    :lok "<4:6>"
    :sf prop
    :tense pres
    :mood indicative
    :prog -
    :perf -
    :cvarsort e
    :ARG1-NEQ (10000 / generic entity
        :lnk "<0:4>"
        :pers 3
        :num sq
        :gend n
        :cvarsort x
        :RSTR-H-of (10001 / that q dem
            :lnk "<0:4>"))
   :ARGZ-NEQ (10005 / idea n of
        :lnk "<14:19>"
        :pers 3
        :num sq
        :ind +
        :cvarsort x
        :RSTR-H-of (10003 / a q
            :lnk "<7:8>")
        :ARG1-EQ-of (10004 / good_a_at-for-of
           :lnk "<9:13>"
            :sf prop
            :tense untensed
            :mood indicative
            :proq -
            :perf -
            :cvarsort e)))
              That's a good idea!
```

Neural network architecture



 Encoder-decoder RNN with Global (Luong) attention and input feeding

Datasets

• Parse bitext with grammars, only use sentence pairs when both are parsable

Tanaka	Kyoto	Japanese WordNet
 Not perfect translations ~ 124,000 pairs Split in 2 sets 	 Exact translations of Wikipedia articles ~131,000 pairs 	Corpus modeled after WordNet~114,000 pairs

Results

Dataset	Variation	SMATCH	B.O.W.
		0.61	0.61
Tanaka'	- Features	0.63	0.62
	+ Coverage	0.61	0.61
	Transformer	0.59	0.59
JPN WN		0.57	0.54
All – Tanaka'		0.53	0.52
All		0.57	0.56

Results

Dataset	Model	SMATCH	Abstract Pred.		Surface Pred.	
Dataset			Precision	Recall	Precision	Recall
	_	0.61	0.75	0.70	0.55	0.48
Tanaka'	-Features	0.63	0.73	0.73	0.56	0.52
Tanaka	+Coverage	0.61	0.75	0.70	0.56	0.49
	Transformer	0.59	0.77	0.65	0.56	0.46
JPN WN	_	0.57	0.83	0.61	0.52	0.39
All - Tanaka'	_	0.53	0.78	0.55	0.49	0.30
All	_	0.57	0.76	0.61	0.52	0.38

Example Prediction

Expected	Prediction
(_motsu_v	(_motsu_v
	:ARG1-NEQ(pron
	:RSTR-H-of(def_q)
	:ARG2-EQ-of(_wa_d))
:ARG2-NEQ(_hon_n	:ARG2-NEQ(_hon_n
:RSTR-H-of(_kono_q)	:RSTR-H-of(_kono_q)
:ARG1-EQ-of(_atarashii_a)))	:ARG1-EQ-of(_atarashii_a)))

Common Predicate Errors

Abstract		Surface		
	def_q	compound	_no_p	_sono_q
	udef_q	named	_wa_d	_exist_v
	nominalization	pron	ni p	koto n nom

Error analysis

- Sequential model has trouble dealing with long-distance relations between elements in the graph
- Abstract predicates and versatile surface predicates are often mispredicted
- Training data size limited by coverage of the Japanese grammar

Future work

- Model architectures that are more suitable for graphs
 - TreeLSTM or graph convolutional encoders
 - Stack-based decoders
 - Parent feeding for dealing with long-distance dependencies
- Neural network approach requires more training data
 - Pre-trained monolingual models might also help
- Evaluation: Need upper bounds on performance, gold-annotated test data, methods to estimate training data quality

Future work

- Evaluation: Need upper bounds on performance, gold-annotated test data, methods to estimate training data quality
- Towards full translation systems: Need annotated data in (more) languages to train parsers and generators
- In low-resource settings, how can we make use of grammars with limited coverage?