
Dialogue Management with
VOnDA
Bernd Kiefer // DFKI

June 20, 2018

Co-funded by the Horizon 2020 Framework
Programme of the European Union under grant
agreement no. 643783

Dialogue Management with VOnDA

Talking Robots @ MLT

Dialogue Management with VOnDA

Dialogue Systems for Autonomous Agents

Scenario Requirements

I Delicate Application Areas

I User and Situation Adaptivity

I Long Term use / Multiple Sessions

Application Requirements

I High reliability

I Long-Term Memory

I World knowledge / reasoning about the situation

Dialogue Management with VOnDA

Dialogue Systems for Autonomous Agents

Scenario Requirements

I Delicate Application Areas

I User and Situation Adaptivity

I Long Term use / Multiple Sessions

Application Requirements

I High reliability

I Long-Term Memory

I World knowledge / reasoning about the situation

Dialogue Management with VOnDA

What’s that to do with Delph-IN?

Reliability

I Grammaticality of NL generation

I Fine-grained NL analysis

Symbolic representations for reasoning

I NLU that delivers (general) semantic structures

I . . . and as input to generation

Dialogue Management with VOnDA

What’s that to do with Delph-IN?

Reliability

I Grammaticality of NL generation

I Fine-grained NL analysis

Symbolic representations for reasoning

I NLU that delivers (general) semantic structures

I . . . and as input to generation

Dialogue Management with VOnDA

Approaches to Dialogue Management

I (Hierarchical) State Machines
I SceneMaker, DialogOS
+ Easy to use, sufficient for many applications
− Limited scalability and flexibility, bad at generalization

I Machine Learning, mostly Hierarchical POMDP
I PyDial
+ Adaptive, flexible
− Hard to enforce behaviours or inhibit unwanted behaviour

I Rule / Reasoning Based
I OpenDIAL, RavenClaw, VOnDA
+ declarative, more flexible, generalization is easy, transparent

reasoning
− dependencies between rules, scalability(?), harder to implement

Dialogue Management with VOnDA

Dialogue Management with Bayes Nets

Flexible Hierarchical Control
R: Do you want to ask first?
U: OK.
R: OK, you start, what is the first question?
U: What’s the capital of Italy?

Dialogue Management with VOnDA

State Charts

Dialogue Management with VOnDA

Requirements in PAL

I Flexile dialogue strategies

I Predicable behaviour

I Long-term memory to be used in dialogue

I User-adaptive behaviour (dialogue/generation)

=⇒
Rule-based approach with transparent access to the memory

Dialogue Management with VOnDA

Requirements in PAL

I Flexile dialogue strategies

I Predicable behaviour

I Long-term memory to be used in dialogue

I User-adaptive behaviour (dialogue/generation)

=⇒
Rule-based approach with transparent access to the memory

Dialogue Management with VOnDA

Information State – Update

Information State

Condition/Action Rules

Changes Updates

Sensor Input

Utterances

Utterances

Motions

Dialogue Management with VOnDA

Design Decisions

Information State

I Favour ontologies over (unflexible) database schemata

I Tagging all information with time → memory

I Also: RDF objects can be used like Java objects

I Allow integration of arbitrary sensor data

I DL (and other) reasoning

Rule Language

I Easy access to the database (with history)

I Concise specifications / short code

I Seamless integration of Java code

Dialogue Management with VOnDA

Uniform Representation on all Layers

I Favouring dynamic ontologies over unflexible database
schemata

I Easier to extend and change
I Data structures of differing complexity

I Tagging all incoming and computed information with time
→ Going beyond RDF triples and standard entailment

I Automatically creates a history of events

I Makes it possible to use individuals as programming variables

I Rules that operate over time-stamped information drive the
dialogue

I Alternative dialogue continuations are represented through
future branching time (possible belief sets)

Dialogue Management with VOnDA

Architecture

Dialogue Management with VOnDA

VOnDA Framework

Rule Module Class N RuleModuleN.java RuleModuleN.rudi

...

Rule Module Class 1 RuleModule1.java RuleModule1.rudi

Top Level Rule Class MyAgent.java MyAgent.rudi

callsimports

Concrete Agent API Implementation MyAgentBase.java

extends

Common Agent API Interface Description

Common Agent API Implementation

VOnDA Runtime

Main event
processing loop

RDF Object Access

Dialogue Act Creaton / Comparison

NLG NLU

Agent.java

Agent.rudi

extends

Client Interface StubClient.java / MyClient.java
V
O
n
D
A

C
o
m
p
ile

r

VOnDA
Debugger

RDF
Database

C
la

ss
&

P
re

d
ic

a
te

D
efi

n
it

io
n

s

Belief State Data

Dialogue Management with VOnDA

Ontology and Code

Ontology in Protégé

VOnDA Code and Ontology

u s e r = new Human ;
u s e r . name = ” Joe ” ;
s e t a g e :
i f (u s e r . age <= 0) {

u s e r . age = 1 5 ;
}

Agent
name: xsd:string

Human
age: xsd:int

Robot

Dialogue Management with VOnDA

Information State/Update

High-level programming language unifying rules, data access and
temporal continuation

gameActive = Sorting

lastMove = {Actor:User, Correct=Yes, when=170}

lastSpeechact = {DialogueActType=Inform, Frame=Move,

Actor=Robot, when=180}

if (lastMove.Actor == user) doAction(nextMove)

if (lastMove.Actor == user

&& lastMove.when > lastDA().when

&& random() > .5) {

emitDA(#Acknowledge(Move, Correct={lastMove.Correct}))

}

Dialogue Management with VOnDA

Rule Language: Central Aspects

I (Labeled) reactive rules, triggered by
I incoming / changing data
I timeouts
I system events

I Organized in modules that can be reused
I Rule modules are imported by others (any depth)
I Variables are inherited to imported modules
I Definition of functions (also inherited)

I Built-in timeouts (single / repeating):
react to delays or silence

I Geared towards lean specifications

Dialogue Management with VOnDA

Rule Language II

I Special support for Dialogue Acts
forename = "John"

emitDA(#Inform(Name, value={forename}, sender={I_MYSELF}))

if (!da.value) da.value = forename

I Shortcuts for access to RDF objects
I user.forename = "John"

I fullname = user.forename + " " + user.givenname

I user.hasHobbies += Football

I if (user.hasHobbies.contains((h) -> (h <= Football)) ...

Dialogue Management with VOnDA

Rule Language III

I Types of variables or expressions are inferred where possible
I Manual specification possible where necessary
I Uses ontology for type inference of RDF objects / variables
I Dialogue Acts are backed by ontology: Frame / argument

checking

I Functional expressions
I Java-like: (h) -> (h.isFilled())
I to be used with contains, all, filter, sort

Dialogue Management with VOnDA

Rule Language IV

I Overloaded operators , e.g., <=
I “ordinary” interpretation for Java data types
I subsumption of semantic structures
I subclass operation for RDF classes

I To end normal rule processing:
I labeled return statements
I cancel (local) and cancel all (global)

I Seamless use of Java objects and methods

Dialogue Management with VOnDA

Rule Example I

interpretation_underspecification:

if ((myLastDA() <= #Request(top) || myLastDA() <= #YNQuestion(top))

&& (lastDA() <= #Confirm(top) || lastDA() <= #Disconfirm(top)))

|| (myLastDA() <= #WHQuestion(top) && lastDA() <= #Inform(top)) {

// there is no explicit reference, fill it

if (! lastDA().refersTo)

lastDA().refersTo = myLastDA().id;

// the topic is completely underspecified

if (lastDA().getProposition() == top)

lastDA().setProposition(myLastDA().getProposition());

if (! lastDA().addressee)

lastDA().addressee = myLastDA().sender;

}

Dialogue Management with VOnDA

Rule Example

A pending task with missing information, which is provided now.

task_fill_argument:

if ((lastDA()<= #Inform({pendingTask.Frame})

|| lastDA() <= #Confirm({pendingTask.Frame})) {

for (pair : lastDA().getSlots()) {

if (!pendingTask.pair.arg) {

pendingTask.pair.arg = pair.val;

}

}

if (isFullySpecified(pendingTask)) {

createTask(pendingTask);

// possibly inform that the task will now be executed

emitDA(#Inform({pendingTask.Frame}));

pendingTask = null;

}

}

}

Dialogue Management with VOnDA

Rule Processing

I Fix-point computation of proposed actions (closures)

I Statistical module for selection of most appropriate action

I Support for synchronization with end of text-to-speech and /
or motion for generated dialogue actions

I Detailed logging of rule conditions
I all atomic parts of the boolean expression are logged
I dynamic per-rule selection (by rule name)

I More debugging tools planned (dependency analysis, etc.)

Dialogue Management with VOnDA

Interfacing NL Components

I Goal: declarative high-level specification of possible
things-to-say as parameterised dialogue acts

I Layer One: Taxonomy of dialogue acts along DIT++

General-purpose functions

Action-discussion functions

Directives

Request

Instruct

Adress
Offer

Accept O.Decline O.

Suggestion

Commissives

Adress
Suggestion

Decline S.Accept S.

Offer

Promise

Address Request

Decline R.Accept R.

Information-transfer functions

Information-seeking functions

Information-providing functions

Inform

Disagreement

Correction

AgreementAnswer

ConfirmDisconfirm

Question

Propositional Q.

Check Q.

Set Q.Choice Q.

Dialogue Management with VOnDA

Additional Parameters beyond Speech Acts

Employing FrameNet frames in shallow semantics

A: Can I offer you some coffee and chocolates?
offer(give, theme=coffee and chocolate, sender=I, ...)

B: Only coffee please.
acceptOffer(give, theme=coffee, ...)

Additional parameterisation from information state

I User model

I Sensor data

I dialogue history

Dialogue Management with VOnDA

Information Context

Data used by multi-modal processing

I User Model Information (including emotional state) for
personalization

I Dialogue history (also across sessions), authored content, etc.
for long-term interaction

I Updated during dialogue, text and other processing

Making it accessible

I Declarative specification as RDF subgraphs or queries

I Used for parameterising the (non)verbal generation

I Can be used for automated coverage tests

I Specification describes what is in the user model, long term
memory, etc.

Dialogue Management with VOnDA

VOnDA Approach: Pros

+ Declarative!

+ Uniform representation and access to knowledge

+ Easier to generalize over different dialogue situations

+ Easier to create more flexible dialogues

+ Open to meta-reasoning

+ Better modularization and reusability

+ Self-Introspection and explanation of behaviour

Dialogue Management with VOnDA

VOnDA Approach: Potential Cons

− Hard to keep track of the dependencies between rules

− Rule sets might get quite big for large systems
The same is true for state charts → Break-even point?

− Concept might be harder to grasp for unexperienced users

I Will be addressed by appropriate development tools

I Static and dynamic analysis of rules and behaviour

I Recorded history may help pinpointing problems

Dialogue Management with VOnDA

Try it out!

It’s now an open-source project on github

https://github.com/bkiefer/vonda

Any comments welcome!

https://github.com/bkiefer/vonda

Dialogue Management with VOnDA

References

I Patrick Gebhard, Gregor Mehlmann, and Michael Kipp (2012). Visual
SceneMaker—a tool for authoring interactive virtual characters. Journal
on Multimodal User Interfaces, 6(1-2):3–11.

I H.-U. Krieger & G.-J. Kruijff (2011). Combining Uncertainty and
Description Logic Rule-Based Reasoning in Situation-Aware Robots.
Proceedings of the AAAI 2011 Spring Symposium on “Logical
Formalizations of Commonsense Reasoning.

I I. Kruijff-Korbayová, G. Athanasopoulos, A. Beck, P. Cosi, H. Cuayahuitl,
T. Dekens, V. Enescu, A. Hiolle, B. Kiefer, H. Sahli, M. Schröder, G.
Sommavilla, F. Tesser, W. Verhelst (2011) An event-based conversational
system for the Nao robot Workshop on Paralinguistic Information and its
Integration in Spoken Dialogue Systems

I H.-U. Krieger (2012). A Temporal Extension of the Hayes/ter Horst
Entailment Rules and an Alternative to W3C’s N-ary Relations. Proc. of
the 7th Int. Conf. on Formal Ontology in Information Systems (FOIS).

I H.-U. Krieger (2013). An Efficient Implementation of Equivalence
Relations in OWL via Rule and Query Rewriting . Proceedings of the 7th
IEEE International Conference on Semantic Computing (ICSC).

Dialogue Management with VOnDA

References

I Ivana Kruijff-Korbayová, Elettra Oleari, Ilaria Baroni, Bernd Kiefer, Mattia
Coti Zelati, Clara Pozzi, Alberto Sanna (2014) Effects of Off-Activity
Talk in Human-Robot Interaction with Diabetic Children. Ro-Man 2014

I H.-U. Krieger (2014). A Detailed Comparison of Seven Approaches for
the Annotation of Time-Dependent Factual Knowledge in RDF and
OWL. Proceedings of the 10th Joint ACL-ISO Workshop on Interoperable
Semantic Annotation.

I Pierre Lison and Casey Kennington (2015). Developing spoken dialogue
systems with the OpenDial toolkit. SEMDIAL 2015.

I Stefan Ultes, Lina M Rojas Barahona, Pei-Hao Su, David Vandyke,
Dongho Kim, Inigo Casanueva, Pawe l Budzianowski, Nikola Mrkšić,
Tsung-Hsien Wen, Milica Gasic, et al. (2017). Pydial: A multi-domain
statistical dialogue system toolkit. Proceedings of ACL 2017, System
Demonstrations.

