
Nick Chen
Jan Buys

Emily M. Bender

Neural MRS parsing: Error analysis

Deep Deep parsing
(Buys and Blunsom, ACL 2017)

Fast, accurate, robust

● Deep learning models to transform natural language sentences into
graph-based meaning representations

● Transition-based neural parsers applicable to multiple graph-based semantic
formalisms

● Encoder-decoder RNNs with hard attention, pointer networks and a
stack-based architecture

2

3

Dependency MRS (DMRS)

Everybody wants to meet John .

Semantic Graphs

4
Everybody wants to meet John .

_want_v_1

every_q

person

_meet_v_1ARG1
ARG2

ARG2

BV

proper_qARG1

“John”

CARG

BV

named

End-to-end semantic graph parsing
Top-down graph linearization

5

Everybody wants to meet John .

_want_v_1

every_q

person

_meet_v_1ARG1
ARG2

ARG2

BV

proper_qARG1

“John”

CARG

BV

named

:root(<2> _want_v_1
 :ARG1(<1> person
 :BV-of(<1> every_q))
 :ARG2 <4> _meet_v_1
 :ARG1*(<1> person
 :ARG2(<5> named_CARG
 :BV-of (<5> proper_q)))

Transition-based graph parsing
● Arc-eager transition system for semantic graphs
● Data structures: Input sentence, stack, buffer
● Actions:

○ Shift - generate next predicate on buffer
○ Reduce
○ Left-arc
○ Right-arc
○ Cross-arc

6

Transition-based parsing

Init(1, person)

Stack Buffer

(1, person)

7

Transition

Everybody wants to meet John .

Transition-based parsing

Shift(1, every_q)

Stack Buffer

(1, person)

8

Transition

(1, every_q)

Everybody wants to meet John .

Transition-based parsing

Left-arc(BV)

Stack Buffer

(1, person)

9

Transition

(1, every_q)

Everybody wants to meet John .

Transition-based parsing

Shift(2, _v_1)

Stack Buffer

(1, person), (1, every_q)

10

Transition

(2, _want_v_1)

Everybody wants to meet John .

Transition-based parsing

Reduce

Stack Buffer

(1, person)

11

Transition

(2, _want_v_1)

Everybody wants to meet John .

Transition-based parsing

Left-arc(ARG1)

Stack Buffer

 (1, person)

12

Transition

(2, _want_v_1)

Everybody wants to meet John .

Transition-based graph parsing
Transition-based parsing: Oracle

● Node ordering - monotone ordering wrt alignments
● Predict alignment spans start (shift) and end (reduce)

Delexicalization: Lemmas are predicted separately and recovered during
post-processing

13

End-to-end graph parsing: Encoder-decoders

Formulate parsing as a sequence to sequence problem

● LSTM Recurrent neural network encodes the sentence
● A decoder LSTM predicts graph linearization
● Attention mechanism links the encoder and decoder

14

End-to-end graph parsing

...

...

PERSON John NNS

wants meet

Bidirectional RNN encoder

15

Everybody

Graph parsing with stack-based decoders

● Decoder LSTM predicts actions and predicates
● Model the transition system stack and buffer
● Use the alignments of top stack and buffer nodes to extract encoder features

16

Graph parsing with stack-based decoders

RNN decoder with hard attention

17

Input sentence e, transition sequence t, alignment a.

18

Graph parsing with stack-based decoders

Graph parsing with stack-based encoder-decoders

RNN decoder with hard attention

...

...

... ...

0

 person

init person
wants John

...

...

Everybody

19

Graph parsing with stack-based encoder-decoders
RNN decoder with stack-based features

...

...

... ...

4

ra(ARG2)

reinit
meet

...

...

Everybody wants

20

re

DMRS Experiments

Model EDM EDM
Predicates

EDM
Arguments

Top-down soft att 81.53 85.32 76.94

Arc-eager soft att, lexicalized 81.35 85.79 76.02

Arc-eager soft att, unlexicalized 82.56 86.76 77.54

Arc-eager hard att 84.65 87.77 80.85

Arc-eager stack-based att 85.28 88.38 81.51

Encoder-decoders with pointer networks for alignment

21

DMRS Experiments
Test results

22

Model EDM EDM
Predicates

EDM
Arguments

Smatch

Top-down RNN 79.68 83.36 75.16 85.28

Arc-eager RNN 84.16 87.54 80.10 86.69

ACE (ERG) 89.64 92.08 86.77 93.50

23

DMRS Experiments

7

42

529

Why error analysis?
Does the Deep Deep parser generate ERSs that are ill-formed or otherwise would
never be produced by the grammar?

Or is it merely a matter of ‘ordinary’ attachment errors...

If so, can we extract wellformedness conditions that are violated and then use
these to inform the Deep Deep parser?

24

Error analysis: Methodology
Data: DeepBank; pre-defined dev set, ~1800 items

Compare EDM triples

Look for:

Mismatches of predicates

Mismatches of predicate-ARG-predicate triples

25

Overall numbers: Predicate symbols

26

Overall numbers: Incorrect ARG

27

ARG1 688

ARG2 245

ARG3 15

ARG 8

Total 956

Overall numbers: Extra ARG

28

ARG1 140

ARG2 57

ARG3 14

RSTR 37

Total 148

Predicate names
Error type: The Deep Deep parser uses lemmas to generate surface predicate
names, which sometimes gives oddball results: _is_v_id; _to+order+to_x

Candidate lemmas come from a lookup table extracted from the training data
(surface form -> lemma), using the Stanford CoreNLP lemmatizer as fallback.

Predicates senses are predicted without constraints, so no guarantee that
lemma+sense combination will occur in the SEM-I.

29

Spurious predicate names: Examples
_to+order+to_x (98), _a_p(16), _is_v_id (15), _could_v_moda (12),
_circa_v_modal (10), _term_a_1 (8), _term_a_of (7), _accord+to_p (7),
_chip_a_1(6), ...

30

Predicate spans
Span start and end indexes are predicted before and after the predicate names,
respectively.

Error type: The Deep Deep parser is willing to posit grammar preds like
‘compound’ and ‘appos’ over spans of a single token

Abstract predicates where the predicted span is a subsequence or supersequence
of the gold span is a common source of errors.

31

Predicate span examples

32

Predicate span examples

33

Rival Boston Herald columnist Howie Carr, who usually rails at Statehouse
"hacks" and nepotism, argued that the new drawings were designed to hide
Mr. Madden's "rapidly growing forehead" and the facial defects of "chinless"
Dan Shaughnessy, a Globe sports columnist. (item 103)

Extra ARGs
Cases where the Deep Deep parser posits an ARGn for a predicate that is not
found in the gold annotations

In that particular instance, or never for the predicate

34

Extra ARG examples
udef_q ARG1 (14)

implicit_conj ARG1 (5)

pronoun_q ARG2 (2)

named ARG2 (1)

subord ARG3 (1)

compound RSTR (9)

35

At least one such example seems to be associated
with a non-connected graph

Missing ARGs
The Deep Deep parser fails to include an ARG for a predicate that is in the gold

Future work: Classify into required (would always be present) v. optional
arguments

Future work: Analysis of parser actions that lead to this outcome

36

Incorrect ARGs
Cases where the Deep Deep parser uses a legitimate ARG label but gives it the
wrong value --- these are likely to be simple attachment errors

Future work: Look at these more carefully to see if there are type constraints on
the ARGs (e v. x v. h in the MRS) that are being violated

37

Next steps
Do incorrect/missing/extra ARG errors lead to follow-on attachment errors?

What are the highest value errors to try to correct?

Which kinds of linguistic clues can we hand to the Deep Deep parser?

38

