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Deep Deep parsing
(Buys and Blunsom, ACL 2017)

Fast, accurate, robust

● Deep learning models to transform natural language sentences into 
graph-based meaning representations

● Transition-based neural parsers applicable to multiple graph-based semantic 
formalisms

● Encoder-decoder RNNs with hard attention, pointer networks and a 
stack-based architecture
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Dependency MRS (DMRS)

Everybody       wants    to           meet                                     John .    



Semantic Graphs
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End-to-end semantic graph parsing
Top-down graph linearization
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Transition-based graph parsing
● Arc-eager transition system for semantic graphs
● Data structures: Input sentence, stack, buffer
● Actions:

○ Shift - generate next predicate on buffer
○ Reduce
○ Left-arc
○ Right-arc
○ Cross-arc
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Transition-based parsing
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Transition-based parsing
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Transition-based parsing
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Transition-based parsing
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Transition-based parsing
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Transition-based parsing
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Transition-based graph parsing
Transition-based parsing: Oracle

● Node ordering - monotone ordering wrt alignments
● Predict alignment spans start (shift) and end (reduce)

Delexicalization: Lemmas are predicted separately and recovered during 
post-processing  
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End-to-end graph parsing: Encoder-decoders

Formulate parsing as a sequence to sequence problem

● LSTM Recurrent neural network encodes the sentence 
● A decoder LSTM predicts graph linearization
● Attention mechanism links the encoder and decoder
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End-to-end graph parsing
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Graph parsing with stack-based decoders

● Decoder LSTM predicts actions and predicates
● Model the transition system stack and buffer
● Use the alignments of top stack and buffer nodes to extract encoder features
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Graph parsing with stack-based decoders

RNN decoder with hard attention
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Input sentence e, transition sequence t, alignment a.



18

Graph parsing with stack-based decoders



Graph parsing with stack-based encoder-decoders

RNN decoder with hard attention
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Graph parsing with stack-based encoder-decoders
RNN decoder with stack-based features
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DMRS Experiments

Model EDM EDM 
Predicates

EDM 
Arguments

Top-down soft att 81.53 85.32 76.94

Arc-eager soft att, lexicalized 81.35 85.79 76.02

Arc-eager soft att, unlexicalized 82.56 86.76 77.54

Arc-eager hard att 84.65 87.77 80.85

Arc-eager stack-based att 85.28 88.38 81.51

Encoder-decoders with pointer networks for alignment
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DMRS Experiments
Test results

22

Model EDM EDM 
Predicates

EDM 
Arguments

Smatch

Top-down RNN 79.68 83.36 75.16 85.28

Arc-eager RNN 84.16 87.54 80.10 86.69

ACE (ERG) 89.64 92.08 86.77 93.50
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DMRS Experiments
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Why error analysis?
Does the Deep Deep parser generate ERSs that are ill-formed or otherwise would 
never be produced by the grammar?

Or is it merely a matter of ‘ordinary’ attachment errors...

If so, can we extract wellformedness conditions that are violated and then use 
these to inform the Deep Deep parser?
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Error analysis: Methodology
Data: DeepBank; pre-defined dev set, ~1800 items

Compare EDM triples

Look for:

Mismatches of predicates

Mismatches of predicate-ARG-predicate triples
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Overall numbers: Predicate symbols
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Overall numbers: Incorrect ARG
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ARG1 688

ARG2 245

ARG3 15

ARG 8

Total 956



Overall numbers: Extra ARG
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ARG1 140

ARG2 57

ARG3 14

RSTR 37

Total 148



Predicate names
Error type: The Deep Deep parser uses lemmas to generate surface predicate 
names, which sometimes gives oddball results: _is_v_id; _to+order+to_x

Candidate lemmas come from a lookup table extracted from the training data 
(surface form -> lemma), using the Stanford CoreNLP lemmatizer as fallback. 

Predicates senses are predicted without constraints, so no guarantee that 
lemma+sense combination will occur in the SEM-I. 
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Spurious predicate names: Examples
_to+order+to_x (98),  _a_p(16), _is_v_id (15), _could_v_moda (12), 
_circa_v_modal (10), _term_a_1 (8), _term_a_of (7), _accord+to_p (7), 
_chip_a_1(6), ...
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Predicate spans
Span start and end indexes are predicted before and after the predicate names, 
respectively. 

Error type: The Deep Deep parser is willing to posit grammar preds like 
‘compound’ and ‘appos’ over spans of a single token

Abstract predicates where the predicted span is a subsequence or supersequence 
of the gold span is a common source of errors.  
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Predicate span examples
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Predicate span examples

33

Rival Boston Herald columnist Howie Carr, who usually rails at Statehouse 
"hacks" and nepotism, argued that the new drawings were designed to hide 
Mr. Madden's "rapidly growing forehead" and the facial defects of "chinless" 
Dan Shaughnessy, a Globe sports columnist. (item 103)



Extra ARGs
Cases where the Deep Deep parser posits an ARGn for a predicate that is not 
found in the gold annotations

In that particular instance, or never for the predicate 
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Extra ARG examples
udef_q ARG1 (14)

implicit_conj ARG1 (5)

pronoun_q ARG2 (2)

named ARG2 (1)

subord ARG3 (1)

compound  RSTR (9)
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At least one such example seems to be associated 
with a non-connected graph



Missing ARGs
The Deep Deep parser fails to include an ARG for a predicate that is in the gold

Future work: Classify into required (would always be present) v. optional 
arguments

Future work: Analysis of parser actions that lead to this outcome
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Incorrect ARGs
Cases where the Deep Deep parser uses a legitimate ARG label but gives it the 
wrong value --- these are likely to be simple attachment errors

Future work: Look at these more carefully to see if there are type constraints on 
the ARGs (e v. x v. h in the MRS) that are being violated
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Next steps
Do incorrect/missing/extra ARG errors lead to follow-on attachment errors?

What are the highest value errors to try to correct?

Which kinds of linguistic clues can we hand to the Deep Deep parser?
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