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Wedescribea generatorfor rule-basedgrammarswhichareprimarily lexicalist but mayintroducesome
semanticsvia constructions.By combiningchartgenerationwith a treatmentof modificationby adjunc-
tion, weobtainsubstantialperformanceimprovementsover standardlexically-drivenchart-generation.

1 Intr oduction
Therearearangeof approachesto tacticalgenerationin whichtheinputto thegeneratorcanbethoughtof
asabagof lexical itemswith semanticrelationshipscapturedby anappropriateinstantiationof variables.
The instantiatedlexical itemsmay eitherbe constructedfrom a logical form, or generateddirectly, for
instanceby lexicalist transferin a machine-translation(MT) system.Examplesof suchapproachesare
Shake-and-Bake (Whitelock,1992),baggenerationfrom logical form (Phillips,1993)andsomeversions
of chartgeneration(e.g.,Kay (1996)).We will referto theseapproachescollectively aslexically-driven
generation.

Thebasicideasbehindlexically-drivengenerationandits advantagesoveralternativeapproachessuch
assemantichead-drivengenerationhave beenextensively discussed(e.g.,by Whitelock(1992),Beaven
(1992),Brew (1992)andTrujillo (1994))so we will just give a brief overview here. Lexically-driven
generationis potentiallyhighly suitablefor grammarframeworkssuchasHPSG(PollardandSag,1994)
andcategorial grammar, wherethe majority of the informationis encodedin lexical entries(or in lex-
ical rules)asopposedto beingrepresentedin constructions(i.e., grammarrulesoperatingon phrases).
Lexically-driven generationhastwo majoradvantagesfor a generatorwhich mustoperatewith a range
of grammarsandapplications:

1. Apart fromtherequirementsfor lexicalismandsemanticmonotonicity(discussedbelow), thegener-
atorimposesfew constraintson thegrammar. This is especiallysignificantfor systemswhichmust
work with a rangeof large-scalegrammars,especiallyoneswhich arealsousedfor parsing,since
developingandmaintainingsuchgrammarsis very time-consuming.It is thusvery importantthat
any constraintsthat thegenerationalgorithmimposesfit in naturallywith thegrammarformalism
andareintuitive andeasyto test.

2. Syntacticrequirementson generatorinput areminimized.Thereis a well-known problemin guar-
anteeingthata grammarwill generatefrom a particularinput, sometimesdescribedastheproblem
of logical form equivalence(Shieber, 1993). The importanceof this issuewith respectto MT has
beenextensively discussed(e.g.,Whitelock(1992),Beaven(1992)),but evenfor otherapplications
it is desirableto minimizetheextent to which constructionof the input requiresknowledgeof the
grammar. With lexically-driven approaches,thereis no requirementfor thestrategic generatorto
imposeahierarchicalorganizationmirroring thegrammar.

Thus lexically-driven generationis inherentlymoreflexible thanalternative approaches.However,
therearesomedisadvantagesto theexistingalgorithms:

1. Generationis generallylessefficient thanin algorithmswhich usestructureto guideprocessing,
suchassemantichead-driven generation(Shieberet al, 1990). Chartgenerationandthe original



Shake-and-Bake approachareboth exponentialin worst-casecomplexity. As we will discussbe-
low, themainproblemsarisein intersective modification,which is in sharpcontrastto mostother
algorithms,whereefficiency issuestendto arisewith non-localdependencies.

2. Somesystemswhich generatefrom a logical form have usedinadequatesemanticrepresentations,
avoiding internalstructureby omitting a representationof scope.

3. Absolutelexicalismis difficult to sustainin grammars.It is oftendesirableto introducesemantics
via constructions,for instancefor bareNP formation,evenin primarily lexicalist frameworkssuch
asHPSG(e.g.,Sag(1997)on relative clauseconstructions).

In thispaper, wedescribeageneratorwhichavoidstheseproblems.Weaddresstheefficiency issueby
combiningchartgenerationwith aspecialtreatmentof modificationreminiscentof theapproachtakenin
Poznánski etal (1995).Weuseaflat semanticrepresentationwhichcanexpressscopeor underspecified
scopalrelationships.Finally, althoughwe assumea primarily lexicalist grammar, we allow the useof
constructionswhich introducesemantics.

The generatorworks with grammarsin which the semanticsof a phrasecanbe describedasa list
of relationswith coindexed variables.This list mustbe constructedmonotonicallyfrom a bagof non-
overlappingsublists,eachsublistcorrespondingto thesemanticcontribution of a lexical entry, or lexical
or grammarrule (thoughwe assumemostof thesemanticsoriginateslexically). Onesuitableformalism
is Minimal RecursionSemantics(MRS: Copestake et al (1995),Copestake et al (1997)),which we will
usefor concretenesshere. Our experimentshave all beencarriedout on grammarsencodedin a type
featurestructureformalism,but this is nota requirementof thealgorithm.

Thegeneratorinvolvesthreephases:lexical lookup,chartgenerationandadjunctionof modifiers.We
will discusseachof thesecomponentsin detail,but westartwith abrief introductionto MRS.

2 MRS

The MRS representationtechniquehasbeendescribedin detail in Copestake et al (1997). Its salient
featuresare:

Flatness The representationconsistsof a list of labeledrelations,plus a list of relationshipsbetween
labelswhichconstrainscope.In MRS, labelson relationsarereferredto ashandles.

Underspecifiability Scopemaybeunderspecified.

Representableusing typed feature structures MRS structuresand the composition operationson
themcanbestraightforwardlyencodedin atypedfeaturestructureframework. However, for reasons
of spaceandreadability, we will not show featurestructureshere.

To illustrateMRS, we will considertheexamplesentencein (1a)which we will assumehasthe two
possiblescopedrepresentationsshown in (1b)and(1c). In bothcases,weshow aconventionalrepresen-
tation,followedby theMRSrepresentation,in whichtheinformationusuallycarriedby nestingrelations
is insteadencodedby the useof handles(e.g.,h1, h3 etc). In MRS, conjunctionis implicit: relations
with thesamehandleareassumedto beconjoined.Thetoplevel handlein theMRS representation(e.g.,
h1), indicatestheoutermostrelation(s).

(1) a Everymanagerintervieweda big Germanconsultant.

b a(y, consultant(y)
�

German(y)
�

big(y), every(x,manager(x),interview(e,x,y)
�

past(e)))
h1:[ h1:a(y,h3,h5), h3:consultant(y), h3:German(y), h3:big(y), h5:every(x,h6,h8),
h6:manager(x),h8:interview(e,x,y),h8:past(e)]

c every(x,manager(x),a(y, consultant(y)
�

German(y)
�

big(y), interview(e,x,y)
�

past(e)))
h1:[ h2:a(y,h3,h8), h3:consultant(y), h3:German(y), h3:big(y), h1:every(x,h6,h2),
h6:manager(x),h8:interview(e,x,y),h8:past(e)]

In a fully scopedrepresentation,the handlesare constants,but if we allow the labelsin argument
positionsin relationsto bevariablesover handles,we canunderspecifyscope.TheMRS representation



which correspondsto the generalizationof the two readingsabove can be written as (2), wherethe
uppercaseH4 etccorrespondto variablesover handles.

(2) H1 [ h2:a(y,h3,H4),h3:consultant(y),h3:German(y),h3:big(y),h5:every(x,h6,H7),h6:manager(x),
h8:interview(e,x,y),h8:past(e)]

In general,wemayrequireconstraintswhichrestricttheassignmentof handlesto variables.For instance,
if we addtheinformationthath2 outscopesh5 to (2), we have thereadingin (1b). For applicationssuch
asMT, it is oftendesirablenot to have to fully specifyquantifierscope,thoughtherearealsocaseswhere
scopemustberepresentedandMRS is animprovementover theversionsof flat semanticsdescribedby
Phillips (1993)andby Trujillo (1994)sinceit allows this. However, for simplicity in thecurrentpaper,
wewill generallyignorequantifierscopeandomit thehandlesin theexampleswhereit is unimportant.

3 Lexical lookup
Thefirst phasein generationis lexical lookup,which is analogousto morphologicalprocessingduring
parsing. Lexical entries,lexical rules andgrammarrulesareall indexed by the relationswhich they
contain. In order to find the lexical entrieswith which to populatethe chart, the input semanticsis
checked againstthe indexed lexicon. When a lexical entry is retrieved, the variablepositionsin its
relationsareinstantiatedin one-to-onecorrespondencewith thevariablesin theinput MRS.

For instance,given theMRS in (2c), the instantiatedlexical entry for interview would containinter-
view(e,x,y). Hereandbelow, lowercasee, x, y, etc indicateinstantiatedvariables.Note that,asfar as
generationis concerned,thesearereally constants,e.g.,x andy cannever beequated.Handlevariables
(i.e., labelargumentsnot coindexedwith relations)areleft uninstantiated.

Lexical andmorphologicalrulesareappliedto the instantiatedlexical entriesin this phase. If the
lexical rulesintroducerelations,their applicationis only allowed if theserelationscorrespondto parts
of the input semantics.In this case,their relationsarealso instantiated.The chart is populatedwith
edgescontaininginstantiatedlexical itemsor structuresderived by lexical rule(s), eachwith pointers
to the semanticrelationswhich they cover. For expositorypurposes,we representedgesasa tuple of
index, relation list, syntacticcategory label andorthography. For instance,we canrepresentthe edge
correspondingto interview aftertheapplicationof thepastruleas:

(3) e interview(e,x,y),past(e) V interviewed

Lexical lookup andinstantiationwould be trivial to implementif therewerea one-to-onemapping
betweenrelationsandlexical entriesor lexical rules.Severalthingsmaycomplicatethispicture:

Relationscorrespondingto more than onelexical item For instance,agrammarmightusethesame
semanticrelationfor synonymssuchasautumnandfall. This is straightforwardly analogousto lexical
ambiguityduringparsingandrequiresthatwe includemultiple lexical edgesin thechart.How common
this is dependsontheparticulargrammar’s approachto synonymy andto lexical encoding:for example,
onegrammarmight usea singlestructureto encodemultiple subcategorizationpossibilitiesfor a single
sense,while anothermight requiremultiple structures.In thesecondcase,thelexical lookupphasewill
producemultiple edgesspanningthesamerelation(evenif thestructuresarerelatedby lexical rules).

This situationcanalsooccurbecausethetypedfeaturestructureencodingof MRS allows for under-
specificationof relations. For instance,the temporallocationsensesof in andon could have different
relationsbothof whicharesubsumedby a temporallocationrelation.It canbedesirableto specifysuch
ageneralrelationin theinput to thegenerator, for instanceto allow thegrammarto make thedistinction
betweenin andon in exampleslike onTuesdaymorningvs. in themorning.

Lexical items containing more than onerelation Compareparsing,wheresinglelexical itemsmay
includemultiple ‘words’,e.g.,ice cream. For instance,anythingcouldberepresentedascontainingtwo
relations,any andthing. This leadsto edgesin thechartwhichcovermorethanonerelation,andpossibly
overlapwith otherlexical edges.Thusanedgecorrespondingto anythingcouldoverlapwith onefor any.

Grammar rules which intr oduce relations An exampleof this is a rule which licensesbarenoun
phrasessuchascatsanddirty water, whichmightplausiblyapplyaquantifieror genericoperator. Previ-
ouslexically-drivenapproacheshave notallowedsuchrules.In ourapproach,any potentiallyapplicable



Lexical edges(inactive)
x manager(x) N manager
x the(x) Det the
e work(e,x),past(e) VP worked

Activeedgesconstructed Requirededge
x manager(x) NP manager x Det
e work(e,x),past(e) S worked x NP

Inactive edgesconstructed
x manager(x),the(x) NP themanager
e work(e,x),past(e),manager(x),the(x) S themanager worked

Figure1: Exampleof achartfor generatingthemanager worked. Thisassumestherearetwo rulesS �
NP VP (VP head)andNP � DetN (N head).

grammarrulesareinstantiatedin the lexical lookupphaseandpassedto thechartgenerator. Grammar
ruleswhich introducerelationswhicharenot in theinputwill beexcluded.

Lexical items which do not intr oducerelations In principle,all lexical itemswithout relationshave
to beaddedto thechartwhengeneratingany sentence(compareemptycategoriesin parsing).Although
somegrammarwritersinsistthatall wordscarrysemanticinformation,in othergrammarswordslike do
and(infinitival) to havenorelations.Evena few suchitemswill seriouslyaffectefficiency. However, for
thelexicalist grammarswe have examined,it is relatively straightforward to provide filters which avoid
unnecessarypostulationof suchitems,sincethecontexts in which they mayoccurcanbedistinguished
on thebasisof theinput semantics,thoughtheactualfilters arenecessarilyhighly grammar-specific.

For instance,in the LinGO grammar(discussedin � 6), in a sentencesuchas Kim had slept, the
auxiliary had doesnot introducea relation. The tenseis indicatedby the event variable. In this case,
hadshouldonly bepostulatedif thereis aneventvariablemarkedashaving tensepastperf. Thissortof
filter canbeimplementedusingrulesdefinedby thegrammarwriter, wheretheantecedentof therule is
a patternwhich is checked againstthe input semantics,andtheconsequentis an identifier for a lexical
entry. If a lexical entryhasno relations,it is only addedif it is licensedby a rule. For example,therule
for hadcanbeexpressedasfollows:

< [ EVENT [ TENSE pastperf ]] > => had_aux

Heretheantecedentmatchesany semanticexpressionwhich containsa verbwith a pastperfeventvari-
able.

4 Chart generation

Oncethechartis instantiated,thechartgenerationphaseis invoked. Chartgenerationis very similar to
chartparsing,but whatanedgecoversis definedin termsof thesemantics,ratherthanorthography. Each
edgeis associatedwith thesetof relationsit covers.Weassumeanedgeis indexedby a semanticindex
(following Kay (1996)).Thestrategy weuseis bottom-up,head-first:i.e.,anactiveedgeis createdfrom
an inactive oneby instantiatingthe headdaughterof a rule. Whenan active edgeis applied,a check
is madeto ensurethat thedaughtersdo not overlap: i.e., that they do not includethesamerelation(s).
Figure1 shows a tiny chart.

Intuitively, a semanticindex is a variabledenotingan individual entity in a logical form. However,
this conceptis to someextentgrammar-specific.For thepurposesof chartgeneration,what is required
is just that,whenconstructingan active edge,an index for the missingcomponentcanbe determined,
andthateachinactive edgecanbecheckedto seeif it hasa compatibleindex. A goodindexing scheme
will beonein which this is maximallydiscriminating:however in our implementationit is not essential
that every edgehave a ‘sensible’ index, sincean edgefor which an actualindex cannotbe identified
will begivena genericindex, which is compatiblewith all otherindices(thoughthis naturallyreduces
efficiency).



However, in general,thereareproblematiccasesfor efficiency whenedgeshave thesameindex. In
particular, in intersectivemodification,anindefinitenumberof modifiersmayapplyandapplicationorder
is not locally determined.For instance,whengeneratingfrom (4) theedgesin (5) will all beconstructed.

(4) big(x), German(x),consultant(x)

(5)

x consultant(x) N consultant
x consultant(x),big(x) N big consultant
x consultant(x),German(x) N Germanconsultant
x consultant(x),big(x), German(x) N big Germanconsultant

Notethat,if Germanbig consultantis excludedby thegrammar, thesecondedgeis wasted.
In general,chartgenerationmaybeexponentialfor intersective modification,evenwhenchartparsing

is polynomial(seeKay (1996)and,for the equivalentproblemin Shake-and-Bake, Brew (1992)). Of
course,if thereare no constraintson the linear order of modifiers, therewill be ��� possiblephrases
incorporating� modifiers.However, evenif thegrammarconstrainsmodifierssothereis only onevalid
ordering,thenumberof edgesbuilt by achartgeneratorwill still be ��� , becauseof thesubphrases.E.g.,
with theinput in (3a),edgessuchaseverymanager intervieweda Germanconsultantwill begenerated,
omitting big.

Kay’s partial solutionto this problemis to proposethatedgesbe checked beforethey arecreatedto
seeif they would sealoff accessto a semanticindex for which thereis still anunincorporatedmodifier.
In his example:

(6) Newspaperreportssaidthetall youngPolishathleteranfast.

theindex for athleteis notavailableoutsidethephrasethetall youngPolishathleteran fast. Thisat least
preventstheexponentialityproliferating. However this criterioncanbeexpensive to checkandmaybe
of limited utility. For instance,in (7) theindex for run mustbeavailableto how:

(7) How did thenewspaperssaytheathleteran?

For Shake-and-Bake, wherea similar problemarises,a variety of alternative solutionshave beenpro-
posed(e.g.,Brew (1992),Trujillo (1994)).Noneof theseapproacheschangestheworstcasecomplexity,
however.

For mostgrammars,this probleminherentlyinvolves intersective modification,becauseit canonly
arisewhenboth the syntacticcategory andthe semanticindex arecompatiblein the structuresbefore
andafter rule application.With non-intersective modification,thesemanticswill prevent themodifiers
applyingin thewrongorder(assumingtheir scopeis specifiedin the input). E.g., in (8), probablyrun
cannotbegenerated:

(8) heprobablydid not run.
h1[ h1:probably(h2),h2:not(h3),h3:run(e,x)]

With subcategorizedcomplements,thesyntaxpreventsspurioussubphrases,even if complementsatis-
factionis binarybranching,aslongastheorderof complementsis fixed.For instance,giventheinput in
(9), theedge(10) will never begenerated(without a gap)becausethegrammarwill not licenseattach-
mentof thecomplementmoney beforeKim.

(9) sandy(x),bet(e,x,y,z), kim(y), money(z)

(10) e bet(e,x,y,z), money(z) V betmoney

Our approachto theproblemis to treatintersective modificationin a separatephase,afterall possi-
ble edgesthat do not involve potentially recursive intersective modificationhave beenconstructedby
chartgeneration.This reducesworst-casecomplexity to polynomialin thecasewheremodifierorderis
constrained,andalsohelpsefficiency whenit is free.
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Figure2: Fragmentswithout intersective modifierrule

5 Modification
The propertiesof intersective modificationthat causetheseefficiency problemsalsomeanthat it can
be delayeduntil after the restof the structureof the sentenceis generated.At this point, intersective
modifierscanbeaddedby adjunctionto thepartialstructures.This is possiblejust becauseintersective
modificationdoesnot involve changesin category (other thanspecialization),and thereforenew rule
applicationswill never be licensedby theapplicationof an intersective modifier lower in the tree. (An
exceptionto this generalizationis if themodifiercontainsa gap,aswe will discussbelow.) Structures
on the edgesabove the adjunctionsite mustbe recalculatedafter adjunction,sincemodificationmay
specializethestructure,but at worstthis leadsto treesbeingexcluded.

For example,whengeneratingfrom (3c), if intersective modificationis excludedduringthestandard
chart generationphase,we obtain fragmentsas shown in Figure 2, correspondingto every manager
intervieweda consultant, big andGerman. Theinactive edgeswhichcorrespondto modifiers(theedges
for big andGerman) areconvertedto active edgesusingthe previously excludedintersective modifier
rules. Theseedgesaregroupedinto partitions,correspondingto setsof relationswith the edgesthat
cover them. Themodifier edgesfrom eachpartitionareappliedto the treeby adjunction,asshown in
Figure3, until all relationsin thepartitionhave beenadded.In this case,theresultcorrespondsto every
manager intervieweda big Germanconsultant, whichcoversthecompleteinput.

This techniquehastwo substantialefficiency advantages:

Unwantededgesreduced Assumethatprecedenceconstraintsarespecifiedsoany orderingconstraint
betweentwo modifierscanbe determinedwhen adjunctionof the secondmodifier is attempted.
For instance,if  , � and � arepossiblemodifiersof � , any orderingconstraintbetween and
� is determinablewithout referenceto � . In this case,partial phrasesare only constructedas
an intermediatestepto building correctstructures.Thus, if linear order is fixed, the numberof
edgesconstructedwill beequalto thenumberof modifiers,in sharpcontrastwith chartgeneration.
Thedifferencearisebecausemodifiersmaybeadjoinedabove or below a previousadjunctionsite,
whereaschartgenerationcannotinsertconstituentsinto edges.

Proliferation delayed Becausemodificationis appliedat theendof thegenerationprocess,any prolif-
erationof modifier edgesdueto lack of constraintson word orderonly multiplesthe final edges,
not theintermediateresults.

Our useof adjunctionis similar to the locate-adjoinmechanismin Poznánski et al (1995),although
we apply it to the resultsof chart generationratherthan make useof the generaltree reconstruction
methoddescribedthere.Poznánski et al (1995)only describehow to constructa singlestring,although
theapproachwasextendedto generateall stringsusinganagenda(Poznánski,personalcommunication).
Theadvantageof thecurrentalgorithmis thatit exploits thenaturalpropertiesof modification,imposes
lessstringentconstraintson the grammarandinput, andutilizes thechart’s efficiency for dealingwith
ambiguity.

For our two-phasegenerationalgorithmto work, the grammarmustsatisfythe conditionthat mod-
ification doesnot alter the propertiesof the partial phrasesin sucha way asto licensethe application
of non-modifierrules. Modifierswith gapsarea counter-example. For instance,considertheexample
in Figure4. Here, the modificationof the VP by the PP/NPis requiredto licensewhich office. The
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Figure4: Extractionoutof amodifier(which officedid youwork in?)

phrasewhich officedid youwork is notaconstituent,thuswill notbegeneratedin thefirst phase,andthe
attachmentof which office to did youwork in is not modification,sowill not occurin thesecondphase.
Thesolutionis simply to treatmodificationby slashedconstituentsduring thenormalchartgeneration
phase,ratherthanby adjunction.This is reasonable,becauseextractionout of adjunctsis limited to a
singleconstituent,anddoesn’t presentthecomplexity problemswe have discussed.



meanedgesgenerated meanCPUtime(secs)
standardchartgeneration 856 5.4
two phasegeneration 501 3.3

Table1: Generationperformanceon 44dialogueexamples.Meannumberof stringsgeneratedperinput
was5.0,meanstringlength5.4words.

Onceall modifiersareadjoined,thecompleteedgesarecheckedto seewhetherthey coverall theinput
relationsandwhetherthey arecompatiblewith theinputsemantics.Compatibilityof underspecifiedrep-
resentationsis anon-trivial notion,sincein principleit is desirableto generatesentenceswhichpreserve
ambiguity. Howeverspacelimitationsprecludediscussionof this here.

6 Evaluation

So far the generationalgorithmhasbeentestedwith two pre-existing grammarsfor English,both of
which weredevelopedby grammarwriterswho hadaccessto parsersbut not generators.Themaintest
wasonthelarge-scaleEnglishgrammardevelopedby theLinguisticGrammarsOnline(LinGO) project.1

Thisgrammarhasawidecoverageof linguisticphenomena,includingconjunction,extraposition,ellipsis
etc,andsomemoreperipheralconstructions,suchastime expressionsandtagquestions,which arere-
quiredfor processingspokendialogue.It producesquitedetailedanalysesusingMRSfor thesemantics.
Although we madesomeminor changesto this grammarfor generation,theseweremostly concerned
with regularizingthesemanticrepresentationto make implementationof thelexical lookupphasemore
straightforward,andthey hadtheindependentbenefitof makingthegrammarmoreconsistentandeasier
to understand.Thesecondgrammaris smallerandmuchlesscomplex andrequiredno changesfor the
generatorto work.2

We testedtheperformanceof thetwo-phasealgorithmagainstthestandardchartgeneratorusingthe
LinGO grammar. Onalogical form correspondingto sentence(11a)(with all PPsattachedto nouns),the
two-phasesystemtook 1.8secondsandconstructed314edges,comparedto 5.6secondsand923edges
for the standard.In (11a)themodifiersarein a fixed order: in contrast,in (11b) the modifier orderis
not constrainedby the grammarand48 stringsaregenerated( ������� , becauseof topicalization). The
two-phasesystemrequires4.3secondsand776edges,comparedto 54.8secondsand4710edgesfor the
standard.

(11) a themanagerin thatoffice interviewedanew consultantfrom Germany

b ourmanagerorganizedanunusualadditionalweeklydepartmentalconference

Of course,theseexamplesareartificial. We alsotestedthe systemby generatingfrom thefirst (un-
derspecified)logical forms producedby parsingsomecollecteddialoguesentences.Thesewerepart
of a testsetusedto evaluateparsingandwerethusnot in any way tunedfor this evaluation: indeeda
considerablepercentagecontainedno modifiers. The resultsin Table1 illustratesthe performanceon
44 exampleswhichwentthroughin bothruns.An additional4 exampleswhichcreatedtoo many edges
for thestandardgeneratorsucceededon thetwo-phasesystem.As this illustrates,oneof themajorad-
vantagesof thenew algorithmis thatnaturallyoccurringsentenceswhich hadpathologicalcomplexity
behavior with previousapproachesto lexically-drivengenerationbecometractable.

7 Conclusions

Thegenerationalgorithmdescribedherehasseveralkey advantagesfor processinglexicalist grammars
suchasHPSGs:

1. It makesvery few assumptionsaboutthe grammar, andmostof thoseconditionscanbe violated
without affectingcoverage(thoughat acostin efficiency).

1http://hpsg.stanford.edu/hpsg/lingo.html
2Of course,in bothcasesthegeneratorrevealedsomebugsin thegrammarwhich werefixed.



2. The logical form equivalenceproblemis reducedwithout impoverishingthe representation.Al-
thoughwe assumedthe useof MRS here,it is alsopossibleto generatewith a grammarusinga
non-flatrepresentation,providedefficientproceduresareavailableto:

(a) retrieve andinstantiatelexical entriesandrulesbasedon generatorinput
(b) determinecoverageof edges
(c) checkcompatibilityof completeedgeswith theinput.

The greatadvantageof flat representationsfor generationwith this type of algorithmis that such
proceduresaretrivial to implementandcanbewritten to beusableby avarietyof grammars,given
suitableparameterization.

3. Althoughthealgorithmis lexically driven,semanticsmaybecontributedby grammarrules.

4. Efficiency is improvedcomparedto chartgenerationandtheoriginal Shake-and-Bake approachby
takingadvantageof thenaturalpropertiesof mostgrammars.

We alsobelieve our approachhasconsiderablepromisein that we cangeneratefrom logical form, in-
stantiatedlexical entries,or a combinationof two, which is usefulfor flexible templaticgeneration.We
expectto demonstratethis lastpoint in futurework.
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