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Abstract
In this short comment we report on our test of the generalisation proposed

by Shang in [8]. Shang in [8] claims to generalise previous results developed
by Kiss and Simon in [3] and Nagy, Kiss and Simon in [6]. However, our
tests show that the proposed generalisation performs poorly for all networks
proposed by Shang, except for heterogenous networks with relatively high
average degree. While the binomial closure gives good results, in that the
solution of the full Kolmogorov equations, with the newly proposed infectious
rates, agrees well with the closed system, the agreement with simulation is ex-
tremely poor. This disagreement invalidates Shang’s generalisation and shows
that the newly proposed infectious rates do not reflect the true stochastic pro-
cess unfolding on the network. We emphasise that our simulations are run
on networks which are constructed a priori followed by the simulation of the
spreading process on these using a Gillespie-type approach [1, 2], where inter
event times are chosen from an exponential distribution with a rate given by
the sum of the rates of all possible events, followed by the choice of an event
at random but proportionally to its rate. We conclude that the generalisation
proposed by Shang [8] is incorrect and that Shang’s simulation method and
the excellent agreement with the ODE models is based on flawed or incor-
rectly implemented simulations. To support this statement, we also validate
our simulation results by using the well-known pairwise and effective degree
models.
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1 Introduction

Kiss and Simon in [3] considered the susceptible-infected-suceptible (SIS)dynamics
on a fully connected network with N nodes. The model was formulated in terms of
the master equation given by

pk(t) = ak−1pk−1(t)− (ak + ck)pk(t) + ck+1pk+1(t), (KE)

where pk(t) is the probability that there are k infectious nodes at time t ≥ 0, with
k = 0, 1, 2, . . . , N . Furthermore, the rates of infection, ak, and rates or recoveries,
ck, are given by

ak = τk(N − k), ck = γk for k = 0, 1, . . . , N with a−1 = cN+1 = 0.

All infection and recovery processes are modelled as independent Poisson processes.
The infection rates encode all the information about the network, and the rate of
recovery is simply a rate corresponding to pooled Poisson processes. Kiss and Simon
in [3] show that rather than solving this full system, it is possible to derive a low-
dimensional ODE based on the assumption that the number of infectious nodes is
binomially distributed. Namely, it is assumed that pk(t) is distributed binomially,
i.e. B(n, p), where n and p depend on time.

More precisely, the low-dimensional ODE is formulated for the first moment
of the distribution, and this will also involve the second moment and the third.
However, due to the assumption that pk(t) is binomially distributed, it is possible
to express the third moment in terms of the first and second. This then yields an
ODE system with 2 equations only. We briefly focus on deriving equations for the
moments. Namely, for

yj(t) =
N∑
k=0

(
k

N

)j

pk(t) or Yj(t) =
N∑
k=0

kjpk(t), (1)

where N jyj = Yj with j = 1, 2, . . .. Deriving evolution equations for these is straight-
forward. For example, the derivative of the first moment, and in a similar way for
all other moments, can be given in function of higher-order moments upon using the
Kolmogorov equations, Eq. (KE). The derivation for the first moment is outlined
below,

Ẏ1(t) =
N∑
k=0

kṗk =
N∑
k=0

k(ak−1pk−1 − (ak + ck)pk + ck+1pk+1)

=
N∑
k=0

(kak−1pk−1 − kakpk + kckpk + kck+1pk+1).

By changing the indices of the summation, plugging in the corresponding expressions
for the transition rates ak and ck, and taking into account that a−1 = cN+1 = 0 the
following expression holds,

Ẏ1(t) =
N∑
k=0

(τ(k + k2)(N − k)− τk2(n− k)− k2γ + (k2 − k)γ)pk.
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Based on our notations, see Eq. (1), the equation above reduces to

Ẏ1(t) = τNY1 − τY2 − γY1. (2)

We emphasise that this was possible due to the special form of the ak coefficients,
namely that these are quadratic polynomials in k. Using a similar procedure, the
equation for the second moment Y2 can be easily computed and is given by

Ẏ2 = 2(τN − γ)Y2 − 2τY3 + (τN + γ)Y1 − τY2. (3)

Equations (2) & (3) can be recast in terms of the density dependent moments yjs
to give

ẏ1 = (τN − γ)y1 − y2, (4)

ẏ2 = 2(τN − γ)y2 − 2τy3 +
1

N
((τN + γ)y1 − τNy2) . (5)

The above equations are not closed or self-contained since the second moment de-
pends on the third and an equation for this is also needed. It is easy to see that
this dependence of the moments on higher moments leads to an infinite but count-
able number of equations. Hence, a closure is needed and below we show that it is
possible to express Y3 as a function of Y1 and Y2. The first three moments of the
binomial distribution can be specified easily in terms of the two parameters and are
as follows,

Y1 = np (6)

Y2 = np+ n(n− 1)p2 (7)

Y3 = np+ 3n(n− 1)p2 + n(n− 1)(n− 2)p3. (8)

Using Eqs. (6) & (7), n and p can be expressed in term of Y1 and Y2 as follows,

p = 1 + Y1 −
Y2
Y1
, n =

Y 2
1

Y1 + Y 2
1 − Y2

. (9)

Plugging the expressions for p and n, Eq. (9), into Eq. (8), the closure for the third
moment is found to be

Y3 =
2Y 2

2

Y1
− Y2 − Y1(Y2 − Y1).

This relation defines the new closure, and in terms of the density dependent moments
this is equivalent to

y3 =
2y22
y1
− y1y2 +

1

N
(y21 − y2).

Using the equation for the first moment, Eq. (4), the closure at the level of the
second moment yields the following approximate equation

ẋ1 = (τN − γ)x1 − τNx21.
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Using the equations for the first two moments, Eqs. (4) & (5), and the closure at
the level of the third moment yields

ẋ1 = (τN − γ)x1 − τNx2,

ẋ2 = 2(τN − γ)x2 − 2τNx3 +
((
τ +

γ

N

)
x1 − τx2

)
,

where

x3 =
2x22
x1
− x1x2 +

1

N
(x21 − x2).

Hence, we have derived two approximate systems, with the first and second closed
at the level of the second and third moment, respectively. It is in general true
that the higher the moment at which the closure the more likely that the resulting
approximate model performs well. We note that we used x instead of y to highlight
that the closed systems, defined in term of x, are only an approximation to the exact
system given in terms of y.

The major challenge is generalising this to arbitrary networks is in finding a
correct functional form for the infection rates ak for any network in general. Kiss
and Simon [3] have shown that for homogenous random networks and based on the
random mixing argument ak can be written as

ak = τ(N − k)〈k〉 k

N − 1
,

where it is assumed that infectious nodes are distributed at random around suscepti-
ble nodes. Our numerical experiments also show that such a formula also performs
well for Erdős-Rényi random networks. For other graphs no such immediate or
intuitive formula exists.

Shang in [8] proposed that ak in general could be written as

ak =
τk(N − k)〈k2〉
〈k〉(N − 1)

, ck = γk for k = 0, 1, . . . , N with a−1 = cN+1 = 0,

(10)
where the network is given in terms of a degree distribution with P (k) denoting the
probability that a randomly chosen node has degree k, with k = 0, 1, 2, . . . , N − 1
for a network of size N . Moreover 〈k〉 =

∑
kP (k) and 〈k2〉 =

∑
k2P (k). While

there is not explicit explanation for this, we can heuristically explain how such a
formula could be arrived at. A newly infected node, under the assumption of random
mixing will have degree l with probability lP (l)/〈k〉. Hence, such a node has l
onward connections and one such links leads to a susceptible node with probability
(N − k)/(N − 1). Putting this together for a single node and averaging across all
degrees gives ∑

l

lP (l)

〈k〉
× l × N − k

N − 1
,

and upon multiplying this with k, the number of infectious nodes, yields

ak =
τk(N − k)〈k2〉
〈k〉(N − 1)

.
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Shang then used the same procedure as above to derive a set of 2 ODEs for these
potentially more general infection terms. His closed system yields

ẋ1(t) =

(
τ〈k2〉N
〈k〉(N − 1)

− γ
)
x1 −

τ〈k2〉N
〈k〉(N − 1)

x2, (11)

ẋ2(t) =

(
τ〈k2〉(2N − 1)

〈k〉(N − 1)
− 2γ

)
x2 −

2τ〈k2〉N
〈k〉(N − 1)

x3

+

(
τ〈k2〉

〈k〉(N − 1)
+
γ

N

)
x1, (12)

where the same closure applies, namely

x3 =
2x22
x1
− x1x2 +

1

N
(x21 − x2).

2 Testing Shang’s generalisation

To carry out our tests we used the same networks and parameters as give in Shang’s
paper [8]. We note that some of these choices are not natural, as the proposed
network have a very low average degree, which in general makes it very difficult
to obtain good mean-field like approximation for stochastic processes unfolding on
sparse networks.

Table 1: Network models with degrees in the range 1 ≤ k ≤ 20 for the truncated
power laws and k ∈ {0, 1, 2, . . .} for the networks with Poisson degree distributions.

Network Degree distribution 〈k〉 〈k2〉
Homogenous/regular P (4) = 1 4 16

Bimodal P (2) = P (4) = 0.5 3 10

Poisson P (k) = 〈k〉k e−〈k〉

k!
10 110

Truncated power law (a) P (k) = 0.673k−2e−k/30 2.0406 9.6613
Truncated power law (b) P (20− k) = 0.673k−2e−k/30 17.9635 328.1197

2.1 Full versus reduced/closed ODEs

Here we show that solving the master equations, Eq. (KE), directly with the more
general infection terms, Eq. (10), gives good agreement with the solution of the
closed/reduced system, Eqs. (11-12). In Fig. 1, we show that for a range of pa-
rameter values the agreement is excellent, and in line with what Shang found in [8],
which simply means that the assumption of a binomial distribution for the number
of infected individuals at a given time is a valid approximation. However, it does
neither confirm nor invalidates the appropriateness of the choice of the new infection
rates ak, as proposed by Shang in [8]. Their appropriateness is tested via comparing
the output from the master and / or reduced equations to the average of stochastic
simulations and this is what we test next.
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2.2 Comparison of Shang’s generalisation to simulation

We first generate networks with the prescribed degree distribution by using the con-
figuration method. This is followed by implementing the epidemic as a continuous-
time Markov Chain on these networks. This is done by using a Gillespie-type ap-
proach [1, 2]. In this case, inter event times are chosen from an exponential distri-
bution with a rate given by the sum of the rates of all possible events, followed by
the choice of an event at random but proportionally to its rate.

We now move on to the crucial comparison of output based on the closed system
to results from explicit stochastic network simulations. First, we validate our own
simulations for the range of networks suggested by Shang in [8], see Table 1 for a
summary. We use the pairwise [7], see Appendix 5.1, and effective degree models [4],
see Appendix 5.2, and as shown in Figs. 2 and 3, the agreement with our simulations
is excellent. As pointed out before, the small disagreements are due to the very small
average degree of the networks used in [8]. A small average degree is well-known
to make the approximation with mean-field type models difficult. The same figures
show that the agreement improves as the average degree increases, see the case of
networks with homogenous and heterogeneous degree distributions with 〈k〉 = k = 4
and 〈k〉 = 10, respectively.

In Figs. 4 and 5, we plot the prevalence based on Shang’s closed model, Eqs.
(11-12), versus that from simulations. These plots show clearly that the agreement
is poor, except for heterogenous networks with relatively large average degree and
for networks with the inverted truncated power law distribution with very high de-
gree as shown in Fig. 5. Our tests significantly differ from Shang’s results and we
infer that Shang’s simulation method, which is not described in [8], is flawed or
incorrectly implemented. We point out that the results concerning the full master
equation and its reduction are correct and we were able to reproduce these. How-
ever, this alone neither leads to nor guarantees agreement with results based on
simulations. In all our tests, and in line with Shang’s work, we also attempted to
time shift the prevalence, see the right panel in Fig. 4, but this did not lead to
better agreement. Moreover, a close visual inspection shows clearly that there are
fundamental differences between Shang’s closed model and simulation results and
that no amount of time shifting will lead to a better agreement. For example, the
equilibrium prevalence is very different and this again is in stark disagreement with
Shang’s results.

3 Discussion

It is our view that identifying general infectious terms ak remains a major challenge
as this is highly dependent on the structure of the network, parameters of the dis-
ease dynamics, and more importantly on the correlations that build up during the
spreading process. It is unfortunate that this generalisation does not work and, as we
shown in [6], it is possible to try to derive semi-analytical or numerical approxima-
tions for the infection rates. We conclude that Shang’s simulation method is flawed
and that Shang’s generalisation is not valid. We look forward to any clarifications.

6



4 Acknowledgements

P. Rattana acknowledges funding for her Ph.D. studies from the Ministry of Science
and Technology, Thailand.

7



5 Appendix

5.1 Appendix A: Compact pairwise model

House and Keeling [7] have successfully extended the general pairwise model of
Eames and Kelling [5] to heterogeneous networks and for both SIR and SIS models.
Here, we focus on the SIS model. The original pairwise equations of Eames and
Kelling [5] are,

[Ṡk] = γ[Ik]− τ [SkI],

[İk] = τ [SkI]− γ[Ik],

[ ˙SkSl] = −τ
∑

m ([SkSlIm] + [ImSkSl]) + γ([SkIl] + [IlSk]),

[ ˙SkIl] = τ
∑

m ([SkSlIm]− [ImSkIl])− τ [SkIl]− γ[SkIl] + γ[IkIl],

[ ˙IkIl] = τ
∑

m ([ImSkIl] + [ImSlIk]) + τ([SkIl] + [SlIk])− 2γ[IkIl],

(13)

where [Ak] stands for the expected number of nodes of degree k across the whole
network in state A, [AkBl] represents the number of links of type A − B when A
has degree k and B has degree l, [AkB] =

∑
l[AkBl], τ is the transmission rate and

γ is the recovery rate.
Then, they used the following more compact closure

[AkB] ≈ [AB]
k[Ak]∑
l l[Al]

.

Using this in the standard pairwise SIS model, Eq. (13), the reduced/compact
pairwise models is given by:

[Ṡk] = γ([k]− [Sk])− τ [SI]
k[Sk]∑
l l[Sl]

,

[ṠI] = τ [SI]
(∑

k

k[Sk]− 2[SI]
)∑

l l(l − 1)[Sl]

(
∑

mm[Sm])2
− (τ + γ)[SI]

+γ
(∑

k

k([k]− [Sk])− [SI]
)
,

where [k] is the number of nodes of degree k.

5.2 Appendix B: Effective degree model

Lindquist et al. [4] formulated the SIS mean-field model base on the effective
degree approach. This model is based on keeping track of the expected number of
susceptible and infected nodes with all possible neighbourhood combinations, Ssi
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and Isi, respectively. Ssi represents the expected number of susceptible nodes that
have s connections to other susceptible nodes and i connections to infected nodes,
with similar argument for Isi.

Accounting for all possible transitions, the equations as formulated by Lindquist
et al. [4] are:

Śsi = −τiSsi + γIsi + γ
[
(i+ 1)Ss−1,i+1 − iSsi

]

+

∑M
k=1

∑
j+l=k τjlSjl∑M

k=1

∑
j+l=k jSjl

[
(s+ 1)Ss+1,i−1 − sSsi

]
,

Ísi = τiSsi − γIsi + γ
[
(i+ 1)Is−1,i+1 − iIsi

]

+

∑M
k=1

∑
j+l=k τ l

2Sjl∑M
k=1

∑
j+l=k jIjl

[
(s+ 1)Is+1,i−1 − sIsi

]
,

for {(s, i) : s ≥ 0, i ≥ 0, s + i ≤ M}, where M is the maximum node degree in the
network.
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Figure 1: Time evolution of the fraction infected (I/N) based on networks with
N = 1000 nodes, I0 = 10 initial infectious nodes chosen at random, γ = 1 and
τ = 1.6. Continuous lines represent the solution of the full equations, see Eq. (KE),
while the solution of reduced model is given by Eqs. (11-12) for (�) - homoge-
neous distribution P (4) = 1, (◦) - bimodal distribution P (2) = P (4) = 0.5, (�)
- Poisson distribution with 〈k〉 = 10, and (.) - truncated power law distribution
P (k) = 0.673k−2 exp(−k/30) for 1 ≤ k ≤ 20. For all cases there is excellent agree-
ment between the full and reduced equations.
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Figure 2: Time evolution of the fraction infected (I/N) based on networks with N =
1000 nodes, I0 = 10 initial infectious nodes chosen at random, γ = 1 and τ = 1.6.
Simulations are averaged over 20 different network realisations and 20 simulations
on each of these: homogeneous distribution P (4) = 1 (�), bimodal distribution
P (2) = P (4) = 0.5 (◦), Poisson distribution with 〈k〉 = 10 (�) and truncated power
law distribution P (k) = 0.673k−2 exp(−k/30) for 1 ≤ k ≤ 20 (.), (simulation: black
dashed line, effective degree model: green line, compact pairwise model: blue line).
We note that the effective degree model has not been implemented for networks
with Poisson distribution due to the degrees being theoretically unbounded.
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Figure 3: Time evolution of the fraction infected (I/N) based on networks
with N = 1000 nodes, I0 = 10 initial infectious nodes chosen at random,
γ = 1 and τ = 1.6. The networks have truncated power law distribution
P (k) = 0.673k−2 exp(−k/30) for 1 ≤ k ≤ 20 (.) and degree inverted distribution
(/), i.e. P (20− k) = 0.673k−2 exp(−k/30). Simulations are averaged over 20 dif-
ferent network realisations and 20 simulations on each of these, (simulation: black
dashed line, effective degree model: gree line, compact pairwise model: blue line).
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Figure 4: Time evolution of the fraction infected (I/N) based on networks with
N = 1000 nodes, I0 = 10 initial infectious nodes chosen at random, γ = 1 and
τ = 1.6. Simulations are averaged over 20 different network realisations and 20
simulations on each of these: homogeneous distribution P (4) = 1 (�), bimodal
distribution P (2) = P (4) = 0.5 (◦), Poisson distribution with 〈k〉 = 10 (�) and
truncated power law distribution P (k) = 0.673k−2 exp(−k/30) for 1 ≤ k ≤ 20 (.).
Simulations are black dashed lines and results based on Shang’s model, see Eqs.
(11-12), are given by the red lines.

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

Iteration time

I/
N

Figure 5: Time evolution of the fraction infected (I/N) based on networks
with N = 1000 nodes, I0 = 10 initial infectious nodes chosen at random,
γ = 1 and τ = 1.6. The networks have truncated power law distribution
P (k) = 0.673k−2 exp(−k/30) for 1 ≤ k ≤ 20 (.) and degree inverted distribution
(/), i.e. P (20− k) = 0.673k−2 exp(−k/30). Simulations are averaged over 20 differ-
ent network realisations and 20 simulations on each of these. Simulations are black
dashed lines and results based on Shang’s model, see Eqs. (11-12), are given by red
lines.
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