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Institute of Mathematics, Ëotvös Loŕand University, 1117 Budapest, Hungary
∗Corresponding author: simonp@cs.elte.hu

AND

ISTVAN Z.KISS

Department of Mathematics, School of Mathematical and Physical Sciences,
University of Sussex, Falmer, Brighton BN1 9RF, UK

[Received on 6 October 2010; revised on 2 September 2011; accepted on 12 January 2012]

In this paper, the rigorous linking of exact stochastic models to mean-field approximations is studied.
Using a continuous-time Markov chain, we start from the exact formulation of a simple epidemic model
on a certain class of networks, including completely connected and regular random graphs, and rigorously
derive the well-known mean-field approximation that is usually justified based on biological hypotheses.
We propose a unifying framework that incorporates and discusses the details of two existing proofs and
we put forward a new ordinary differential equation (ODE)-based proof. The more well-known proof is
based on a first-order partial differential equation approximation, while the other, more technical one,
uses Martingale and Semigroup theory. We present the main steps of both proofs to investigate their
applicability in different modelling contexts and to make these ideas more accessible to a broader group
of applied researchers. The main result of the paper is a new ODE-based proof that may serve as a
building block to prove similar convergence results for more complex networks. The new proof is based
on deriving a countable system of ODEs for the moments of a distribution of interest and proving a
perturbation theorem for this infinite system.

Keywords: epidemic model; network; mean-field approximation; countable system of ODEs; Markov
chain

1. Introduction

Complex networks occur in a large variety of real-world systems ranging from ecology and epidemi-
ology to neuroscience (Bansalet al., 2007; Keeling & Eames, 2005; Sporns & K̈otter, 2004). In most
applications, networks provide the backbone on which various dynamical processes unfold. For ex-
ample, infectious diseases transmit on intricate social networks, while neurons interact on non-trivial
weighted and dynamical graphs. This underpinned the rapid development of research that seeks to un-
derstand how the structure/topology of the network impacts on the behaviour of different dynamics on
networks (Bansalet al., 2007; Keeling & Eames, 2005). The analysis of even the simplestdynamics
on networkscan be challenging mathematically, and often, results are mainly simulation based. As a
result, research in this direction is fragmented into more theoretical work that explores the rigorous
link between exact stochastic models and their ordinary differential equation (ODE)-based mean-field
approximations (Ethier & Kurtz, 2005; Kurtz, 1970, 1971, 1980), and work that mainly relies on sim-
ulation. While simulations can be straightforward to implement, the often large number of parameters
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makes the exploration of the possible behaviours difficult and generalization of simulation results is
rarely possible. In an effort to increase tractability and depart from a purely simulation-based approach,
various simple differential equation models have been proposed. These are all different from simple
mean-filed models, which operate on the homogenous random mixing assumption, in that they capture
non-trivial network features such as network heterogeneity, clustering or can accommodate dynamically
evolving networks. These models range from pairwise models (Keeling, 1999; Rand, 1999; Satoet al.,
1994; Trapman, 2007; van Baalen, 2000) and ODE-based heterogeneous mixing models (Kiss et al.,
2006; Morenoet al., 2002) to probability function formalism (Volz & Meyers, 2007, 2009). However,
in almost all cases, the performance of these more sophisticated models is only tested by comparing
ODE-based results to pure simulation. Thus, the goodness of fit is mostly performed by numerical
and/or visual inspection without rigorous mathematical arguments. The major obstacle that precludes a
theoretical formalism for comparison is either due to not being able to derive the Kolmogorov equations
or, in the case where this is possible, these are intractable due to their sheer number.

The problem of rigourously linking exact stochastic models to mean-field approximations goes back
to the early work ofKurtz (1970, 1971). Kurtz studied pure-jump density-dependent Markov processes
where apart from providing a method for the derivation of the mean-field model also used solid mathe-
matical arguments to prove the stochastic convergence of the exact to the mean-field model. His earlier
results (Kurtz, 1970, 1971) relied on Trotter-type approximation theorems for operator semigroups.
Later on, the results were embedded in a more general context of Martingale Theory (Ethier & Kurtz,
2005). These results have been cited and extensively used by modellers in areas such as ecology and
epidemiology to justify the validity of heuristically formulated mean-field models. The existence of sev-
eral approximation models, often derived based on different modelling intuitions and approaches, has
recently highlighted the need to try and unify these and test their performance against the exact stochas-
tic models (House & Keeling, 2011). Some steps in this directions have been made (Ball & Neal, 2008;
Lindquistet al., 2010), where authors clearly state the link between exact and mean-field models.

The present paper, in the case of a simpleSI Smodel and a suitable class of networks, including
completely connected and regular random graphs, proposes a unifying framework that incorporates and
discusses the details of two existing proofs and proposes a new ODE-based proof. This complements
and offers an alternative to the existing ones that are purely based on stochastic theory and partial
differential equation (PDE) arguments. The paper is organized as follows. In Section2, the model is
formulated and we present the main result in general terms and discuss the three different approaches
used to prove the convergence of the exact stochastic to the mean-field model. In Section3, we give
the detailed proof based on PDE arguments, while in Section4, the proof based on stochastic theory
arguments is presented. Section5 contains the new ODE-based approach, with pluses and minuses of
the three different models included in the final Section.

2. Model

Let us consider the simpleSI S-type dynamics on a graph withN nodes and assume that the structure
of the network allows us to determineNSI, the number ofSI pairs, once the number of infected nodes
NI is known. The simplest graph satisfying this assumption is the complete graph for whichNSI(k) =
k(N − k) if NI = k. In the case of ann-regular random graph, the widely used approximation for the
number ofSI pairs isNSI(k) = k(N − k)n/N if NI = k. Once theNSI(k) function is defined, then the
epidemic propagation on the graph can be described by a Markov chain with state space{0, 1, 2, . . . , N}.
Denoting byxk(t) the probability of findingk infectious nodes, the Kolmogorov equation (or master
equation) takes the form
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ẋk = ak−1xk−1 − bkxk + ck+1xk+1, k = 0, 1, . . . , N, (2.1)

where

ak = τ NSI(k), ck = γ k, bk = ak + ck, a−1 = 0 = cN+1. (2.2)

In the case of a complete graph, it is known that the mean-filed approximation is available only if
τ scales with 1/N, henceτ = β/N is used, yieldingak = βk(N − k)/N. In the case of ann-regular
random graph,ak = nτk(N − k)/N and this can be written in the same form as for the complete graph
with β = nτ . Therefore, in the following, we assume that the master equation takes the form (2.1) and

ak = βk(N − k)/N, ck = γ k, bk = ak + ck, a−1 = 0 = cN+1. (2.3)

Let us assume that initially the number of infected nodes isk0. Thus the initial condition to (2.1) is

xk0(0) = 1, xk(0) = 0 for k 6= k0, (2.4)

with the expected value of the number of infected nodes given by

[ I ](t) =
N∑

k=0

kxk(t). (2.5)

Differentiating [I ] with respect to time and using the Kolmogorov equations forxk, one can derive
the following differential equation for [I ]:

˙[ I ] =
β

N
[SI] − γ [ I ], (2.6)

where [SI] is the expected value of the number ofSI-type edges. Equation (2.6) cannot be used to
determine the expected value [I ] since [SI] cannot be expressed in terms of [I ]. However, the approxi-
mation

[SI] ≈ NSI([ I ])

yields a self-contained differential equation the solution of which approximates [I ]. In the case of a
complete graph, this approximation takes the form [SI] ≈ [S][ I ], and for a homogeneous random graph,
it is [SI] ≈ [S][ I ]n/N. Substituting this approximation into (2.6) and dividing byN, we introduce the
variablei (t) instead of [I ](t)/N. Then fori , the following simple differential equation holds (for both
cases, but with different meaning ofβ)

i̇ = βi (1 − i ) − γ i . (2.7)

This equation is known as the mean-field approximation of the original Kolmogorov equation (2.1).
It is well-known thati (t) is a good approximation of [I ](t)/N in the following sense.

THEOREM 2.1 If i (0) = [ I ](0)/N, then for anyt > 0, we have

lim
N→∞

[ I ](t)

N
= i (t).
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In fact, the statement of the theorem is not rigorous in this form since the type of the convergence is
not specified and this will depend on the method of proof. There are basically two different methods of
proof and these yield different types of limits. The two main approaches use (a) first-order PDE and (b)
martingale and semigroup theory arguments.

The first-order PDE approach yields that [I ](t)/N tends toi (t) for any fixedt . This is the most
intuitive approach since it is based on the idea that for largeN, the discrete distributionxk(t) can
be approximated by a continuous density function. The exact statement that can be proved by using
this method is presented in Theorem3.1. The main steps of the proof can be found in the Appendix
of Diekmann & Heesterbeek(2000), however not all details of the rigorous mathematical proof are
presented there. InSimon et al. (2011), a rigorous proof is given and for sake of completeness, we
briefly summarize this in Section3.

The stochastic approach yields that the stochastic variableI (t)/N (not the expected value) tends
stochastically toi (t). This implies that the expected value [I ](t)/N also tends toi (t). The statement is
formulated in exact terms in Theorem4.1. The theorem is proved in several different ways inEthier &
Kurtz (2005), Kurtz (1970, 1971). The first proof was based on a Trotter-type approximation theorem
for semigroups followed by a proof based on martingale theory. The proof inEthier & Kurtz (2005),
which is valid in a general context, reduces the problem to the study of Poisson processes by using
the previously developed semigroup and martingale techniques. In Section4, we present the main steps
of the proof inEthier & Kurtz (2005) applied to our special setting. This enables the reader to follow
the main ideas of the stochastic proof without going into and understanding the technical details of the
original proof inEthier & Kurtz (2005).

The main purpose of this paper is to show a new ODE-based approach. We will call this an elemen-
tary approach since a self-contained proof of the theorem will be shown without using a combination
of highly specialist mathematical tools from different areas, the availability of which is beyond the op-
portunities of the average scientist working in mathematical ecology, epidemiology or other applied
research areas. Moreover, this elementary proof may lead to future work where proving similar results
for more complex networks can be attempted. According to our knowledge, the above theorem has not
been generalized to more complicated networks by using the two more sophisticated approaches.

Our elementary, ODE-based approach, presented in Section5, yields that [I ](t)/N tends uniformly
on bounded time intervals toi (t). Moreover, we also give an upper estimate for the difference in terms of
network sizeN, and we prove thati (t) is an upper approximation of [I ](t)/N. According to our knowl-
edge, this has not been previously verified and it does not follow from the previous two approaches.

3. First-order PDE approach

In this section, the first proof of Theorem2.1 is given. The main idea of the proof is based on the
observation that for largeN, the discrete distributionxk(t) can be approximated by a continuous density
functionρ(t, z). The rigorous version of Theorem2.1 in this context reads as follows.

THEOREM 3.1 If i (0) = [ I ](0)/N, then for anyt > 0, we have

lim
N→∞

∣
∣
∣
∣i (t) −

[ I ](t)

N

∣
∣
∣
∣ = 0.

Let us introduce a continuous time-dependent density functionρ(t, z) instead of the discrete distri-
butionxk(t), with the following formal relation,z = k/N. Following this,ẋk, xk(t), xk−1(t) andxk+1(t)
in (2.1) can be formally change to∂tρ(t, z), ρ(t, z), ρ(t, z−1/N) andρ(t, z+1/N), respectively. This
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leads to the following partial differential equation:

∂tρ(t, z) = (Nz+ 1)γρ(t, z + 1/N) + (Nz− 1)(N − Nz+ 1)ρ(t, z − 1/N)β/N −

(Nz(N − Nz)β/N + Nzγ )ρ(t, z).

Now using the approximations

ρ(t, z + 1/N) = ρ(t, z) + ∂zρ(t, z)/N, ρ(t, z − 1/N) = ρ(t, z) − ∂zρ(t, z)/N,

neglecting the 1/N and 1/N2 terms and writingρ instead ofρ(t, z), after some algebra, the following
first-order PDE forρ is obtained

∂tρ = zγ ∂zρ + (2z − 1)βρ − z(1 − z)β∂zρ + γρ.

Introducing the functiong(z) = γ z − βz(1 − z), the equation forρ becomes

∂tρ = ∂z(gρ). (3.1)

This first-order PDE needs an initial condition of the following type

ρ(0, z) = ρ0(z). (3.2)

Since the formal relation between the variables isz = k/N, the initial condition (2.4) yields

ρ0(z) = 1 for
k0

N
< z <

k0 + 1

N
and ρ0(z) = 0 otherwise.

Finally, the expected value of the infected nodes from the first-order PDE needs to be determined.
Thus, we have to find the function corresponding to [i N ](t) = [ I ](t)/N in (2.5). Usingz = k/N and
changing the termxk(t) to ρ(t, z), we note that the sums in (2.5) correspond to an integral. Namely,
[i N ](t) corresponds to

N
N∑

k=0

k

N
ρ

(
t,

k

N

)
1

N
,

and this sum is an approximation of the integral

N
∫ 1

0
zρ(t, z)dz.

Noting that
∫ 1

0 ρ0(z)dz = 1/N, we can introducei ∗(t) as a function corresponding to [i N ](t) as
follows:

i ∗(t) =

∫ 1
0 zρ(t, z)dz
∫ 1

0 ρ0(z)dz
. (3.3)

The mean-field equation (2.7) can be solved explicitly and the solution is given by

i (t) =
B(t)i0

β − γ − A(t)i0
,
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wherei0 = i (0) is the initial condition and

A(t) = β − β exp((β − γ )t), B(t) = (β − γ ) exp((β − γ )t).

The first-order PDE (3.1) can also be solved explicitly, and then (3.3) yields

i ∗(t) =
B(t)

A(t)

[
−1 +

N(β − γ )

A(t)
log

(
1 +

2A(t)

2N(β − γ − A(t)i0) − A

)]
.

Having these explicit formulas fori ∗(t) and i (t), it is easy to see thati ∗ is not a solution of the
mean-field equation (2.7) but it can be proved that asN → ∞ it tends to the solution of (2.7). Namely,
we have the following Lemma.

LEMMA 3.1 Letρ be the solution of the system (3.1)–(3.2). Let i ∗(t) be defined by (3.3). Let i (t) be
the solution of the scaled mean-field equation given by (2.7) with initial condition i (0) = k0/N. Then
for anyt > 0, we have

lim
N→∞

|i (t) − i ∗(t)| = 0.

The Lemma can be proved by using the explicit formulas fori ∗(t) and i (t). Now the proof of
Theorem3.1can be concluded as follows. We want to prove that the scaled expected value [i N ](t) tends
to the solutioni (t) of the scaled mean-field equation asN → ∞. In order to prove this, we introduced
a first-order PDE that can be considered the limit of (2.1) asN → ∞. Using this PDE, we defined the
function i ∗(t) that corresponds to [i N ](t). According to Lemma3.1, i ∗(t) is close toi (t) for large N.
Hence, we only have to show finally that [i N ](t) is close toi ∗(t). Thus the proof of Theorem3.1will be
complete if the following Lemma is verified.

LEMMA 3.2 Letxk be the solution of (2.1) satisfying the initial condition given by (2.4), and letρ be
the solution of (3.1) with initial condition given by (3.2). Let [i N ](t) = [ I ](t)/N and let [I ](t) andi ∗(t)
be defined by (2.5) and (3.3). Then for anyt > 0, we have

lim
N→∞

|[i N ](t) − i ∗(t)| = 0.

The proof of the Lemma is based on the fact that system (2.1) can be considered as the discretization
of the first-order PDE (3.1) in the variablez. It is known even for more general PDEs, see, e.g. Chapters
3 and 4 inHundsdorfer & Verwer(2003), that the solution of the discretized system tends to that of the
PDE as the step size of the discretization goes to zero, that is in our caseN tends to infinity.

4. Stochastic proof of Theorem 2.1

Let us denote by(I (t))t>0 the stochastic process that determines the number of infected nodes at timet .
In this section, we will prove thatI (t)/N converges stochastically toi (t) asN → ∞, this is formulated
in the following Theorem.

THEOREM 4.1 If i (0) = [ I ](0)/N, then for anyT > 0, there existK > 0, such that for anyδ > 0, we
have

P

(∣∣
∣
∣i (t) −

I (t)

N

∣
∣
∣
∣ > δ

)
6

K

Nδ2
, for all t ∈ [0, T ].
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It is important to note that this theorem is stronger than Theorem2.1since it implies that the expected
value of I (t) converges toi (t).

Before going into the details of the proof, we note that this approach can be generalized to so-called
density dependent Markov chains. In our case, this means that there exist two continuous functions
A, C: R → R, such that the transition coefficients in the Kolmogorov equation (2.1) can expressed as
follows:

ak

N
= A

(
k

N

)
,

ck

N
= C

(
k

N

)
.

From (2.3), these functions are

A(z) = βz(1 − z), C(z) = γ z.

Following Kurtz (1970), we introduceF(z) = A(z) − C(z). This is motivated by being relatively
easy to derive the following equation:

E(I (t)) = E(I (0)) +
∫ t

0
E(F(I (s)))ds,

where E stands for the expected value (henceE(I (t)) = [ I ](t)). Therefore, ifF and E commute
(i.e. E(F(I )) = F(E(I ))), the expected value of [I ] satisfies the following mean-field equation:

˙[ I ] = F([ I ]). (4.1)

At this stage, it is worth noting that for certain scenarios, simple arguments can be used to derive the
mean-field equations without further precise mathematical arguments. Namely, when the Kolmogorov
equations are numerically tractable, the precise evolution of the probability distribution over time can
be computed. If this distribution proves to be unimodal and highly picked, thenF and E commute at
least approximately and then (4.1) follows immediately.

The main step of this approach is to prove thatI (t) can be expressed as follows:

I (t) = I (0) + Y1




t∫

0

β I (s)
S(s)

N
ds



− Y2




t∫

0

γ I (s)ds



 , (4.2)

whereY1 andY2 are standard Poisson processes (withλ = 1). The equation in this form can be found
in Kurtz (1980) and in Section2 of Chapter 11 inEthier & Kurtz (2005). The derivation is based on
Martingale and Semigroup theory and it can be found inEthier & Kurtz (2005). The choice of this
equation as a starting point is also motivated by its ease of intuitive interpretation. The Poisson process
Y1 counts the number of infections in the time interval [0, t ] the intensity of which can be expressed by
the integral in the argument ofY1. Similarly, the Poisson processY2 counts the number of recoveries in
the time interval [0, t ], the intensity of which can be expressed by the integral in the argument ofY2.

We note that the earlier approach ofKurtz (1970, 1971) does not use Martingale theory. In these two
papers, a self-contained proof can be found and can be followed without understanding the notations
and most of the preliminary work presented in Chapters 3 and 4 of the bookEthier & Kurtz (2005).

Let us introduce

i N(t) =
I (t)

N
(4.3)
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andỸi (τ ) = Yi (τ ) − τ , which is a Poisson process centred at its expectation, that isE(Ỹi (τ )) = 0 for
all τ .

Dividing (4.2) by N, after some simple calculations, we get

i N(t) = i N(0) +
∫ t

0
F(i N(s))ds +

1

N
Ỹ1

(∫ t

0
β I (s)

S(s)

N
ds

)
−

1

N
Ỹ2

(∫ t

0
γ I (s)ds

)
. (4.4)

If t ∈ [0, T ], then the value of the integral iñY1 is bounded by 0 andβNT, and the value of the
integral inỸ2 is bounded by 0 andγ N T. Hence, the following inequalities hold true:

sup
t∈[0,T ]

∣
∣
∣
∣Ỹ1

(∫ t

0
β I (s)

S(s)

N
ds

)∣∣
∣
∣ 6 Ỹ1(βN T), sup

t∈[0,T ]

∣
∣
∣
∣Ỹ2

(∫ t

0
γ I (s)ds

)∣∣
∣
∣ 6 Ỹ2(γ NT). (4.5)

The proof is now based on the following proposition, a law of large numbers type statement and can
be proved by using Chebyshev’s inequality like the law of large numbers.

PROPOSITION4.1 LetX(t) be a standard Poisson process (withλ = 1). LetY(t) = X(t)− t andc > 0
be a positive number. Then for anyε > 0 and for anyn ∈ N, the following inequality holds:

P

(
1

n
|Y(cn)| > ε

)
6

c

nε2
.

Proof. It follows easily thatE(Y(t)) = 0 and that the varianceD2(Y(t)) = t for all t . Let us define
Zn = Y(cn)/n. Then,E(Zn) = 0 andD2(Zn) = c/n for all n. Now applying Chebyshev’s inequality
to Zn, we get the desired statement. �

Using this proposition, an upper estimate for

yN(t) =
1

N
Ỹ1

(∫ t

0
β I (s)

S(s)

N
ds

)
−

1

N
Ỹ2

(∫ t

0
γ I (s)ds

)
(4.6)

can be derived as follows. From (4.5), we obtain

sup
t∈[0,T ]

|yN(t)| 6
1

N
Ỹ1(βNT) +

1

N
Ỹ2(γ N T). (4.7)

Thus, if

sup
t∈[0,T ]

|yN(t)| > ε,

then at least one of the inequalities

1

N
Ỹ1(βN T) >

ε

2
or

1

N
Ỹ2(γ N T) >

ε

2

holds. Hence,P(supt∈[0,T ] |yN(t)| > ε) can be estimated by the probability of the larger. Therefore, it
can be obviously estimated by the sum of the two probabilities

P

(

sup
t∈[0,T ]

|yN(t)| > ε

)

6 P

(
1

N
Ỹ1(βN T) >

ε

2

)
+ P

(
1

N
Ỹ2(γ NT) >

ε

2

)
. (4.8)
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Thus, using Proposition4.1, we obtain

P

(

sup
t∈[0,T ]

|yN(t)| > ε

)

6
4(β + γ )T

Nε2
. (4.9)

Now the difference ofi N(t) andi (t) can be estimated (the latter is defined by (2.7)).

PROPOSITION4.2 Let i (t) be the solution of (2.7) and leti N(t) be given by (4.3). Let us denote by
M the Lipschitz constant ofF on [0, 1]. If i N(0) = i (0), then for allt > 0, the following inequality
holds:

|i N(t) − i (t)| 6 |yN(t)|eMt .

Proof. The functionsi N andi satisfy

i N(t) = i N(0) +
∫ t

0
F(i N(s))ds + yN(t)

and

i (t) = i (0) +
∫ t

0
F(i (s))ds.

Subtracting the two equations, using the initial conditions and the Lipschitz constant ofF , we
obtain

|i N(t) − i (t)| 6 |yn(t)| +
∫ t

0
M |i N(s) − i (s)|ds.

Using Gronwall’s lemma, the statement follows easily. �

Thus, if

sup
t∈[0,T ]

|i N(t) − i (t)| > δ,

then

sup
t∈[0,T ]

|yN(t)| > δe−MT .

Hence,

P

(

sup
t∈[0,T ]

|i N(t) − i (t)| > δ

)

6 P

(

sup
t∈[0,T ]

|yN(t)| > δe−MT

)

.

Finally, we can use the estimate in (4.9) to get

P

(

sup
t∈[0,T ]

|i N(t) − i (t)| > δ

)

6
4(β + γ )Te2MT

Nδ2
,

and this proves Theorem4.1.
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5. ODE-based proof of Theorem 2.1

In this section, the main result of the paper is formulated and proved. This is an ODE-based proof where
the evolution equations of the moments of the distribution form a countable system of ODEs. The proof
only uses ODE techniques and a perturbation theorem for the infinite system is presented.

THEOREM 5.1 Leti be the solution of (2.7) with initial conditioni (0) = [ I ](0)/N, and let [I ] be given
by (2.5) through the master equation (2.1). Then for anyT > 0 there existK > 0, such that

∣
∣
∣
∣i (t) −

[ I ](t)

N

∣
∣
∣
∣ 6

K

N
, for all t ∈ [0, T ].

In fact, we have 06 i (t) − [ I ](t)
N 6 K

N for t ∈ [0, T ], that is i (t) is an upper approximation of
[ I ](t)/N.

The approximation (2.7) of (2.6) is based on the moment closure technique. Thus, to keep an exact
system, all higher-order moments must be considered and this leads to a countable (infinite) system of
ODEs.

5.1 Moment equations and their approximations

Let us introduce thej th moment of the probability distributionxk(t) (i.e. the probability of finding states
with k infectious nodes, wherek = 0, 1, . . . , N)

yj (t) =
N∑

k=0

(
k

N

) j

xk(t). (5.1)

To derive differential equations for the moments, the following Proposition is given.

PROPOSITION5.1 Letrk (k = 0, 1, 2, . . .) be a sequence and letr (t) =
∑N

k=0 rkxk(t), wherexk(t) is
given by (2.1). Then

ṙ (t) =
N∑

k=0

(ak(rk+1 − rk) + ck(rk−1 − rk))xk(t).

Proof. From (2.1), we obtain

ṙ (t) =
N∑

k=0

rkẋk(t) =
N∑

k=1

rkak−1xk−1(t) −
N∑

k=0

rkbkxk(t) +
N−1∑

k=0

rkck+1xk+1(t)

=
N−1∑

k=0

rk+1akxk(t) −
N∑

k=0

rkbkxk(t) +
N∑

k=1

rk−1ckxk(t).

Using thataN = 0, c0 = 0 andbk = ak + ck, we get

ṙ (t) =
N∑

k=0

(rk+1ak − rk(ak + ck) + rk−1ck) xk(t) =
N∑

k=0

(ak(rk+1 − rk) + ck(rk−1 − rk))xk(t).

�
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Before applying Proposition5.1 with rk = (k/N) j , it is useful to define the following two new
expressions:

Rk, j =
(k + 1) j − k j − jk j −1

N j −1
, Qk, j =

(k − 1) j − k j + jk j −1

N j −1
.

Combining these with Proposition5.1 leads to

ẏj (t) =
N∑

k=0

(
ak

N

(

j
k j −1

N j −1
+ Rk, j

)

+
ck

N

(

− j
k j −1

N j −1
+ Qk, j

))

xk(t).

From (2.3), we get that

ak

N
−

ck

N
= (β − γ )

k

N
− β

k2

N2
,

and therefore,

ẏj (t) =
N∑

k=0

(

j (β − γ )
k j

N j
− jβ

k j +1

N j +1

)

xk(t) +
N∑

k=0

(ak

N
Rk, j +

ck

N
Qk, j

)
xk(t).

Hence,

ẏj (t) = j (β − γ )yj (t) − jβyj +1(t) +
1

N
dj (t), (5.2)

where

dj (t) =
N∑

k=0

(ak Rk, j + ck Qk, j )xk(t). (5.3)

Using the binomial theoremRk, j andQk, j can be expressed in terms of the powers ofk, hencedj

can be expressed asdj (t) =
∑ j

l=1 djl yl (t) with some coefficientsdjl . Therefore, system (5.2) is an
infinite homogeneous linear system for the momentsyj . This homogeneous linear system is not written
in the usual matrix form because it is useful to separate the O

( 1
N

)
terms in order to handle the large

N limit. The dj terms containN, hence to use the 1/N → 0 limit it has to be shown thatdj remains
bounded asN goes to infinity. This is proved in the next Proposition.

PROPOSITION5.2 For the functionsdj , the following estimates hold.

06 dj (t) 6
j ( j − 1)

2
(β + γ ), for all t > 0.

Proof. Taylor’s theorem, with second degree remainder in Lagrange form, states that

f (x) = f (x0) + f ′(x0)(x − x0) + f ′′(ξ)
(x − x0)

2

2
,



12 of20 P. L. SIMON AND I. Z. KISS

whereξ is betweenx0 andx. This simple result can be used to find estimates for bothRk, j andQk, j . In
particular, applying the above result whenf (x) = x j , x = k + 1 andx0 = k gives

Rk, j =
j ( j − 1)

2

ξ j −2

N j −1

with someξ ∈ [k, k + 1]. Similarly, whenx = k − 1 andx0 = k, we obtain

Qk, j =
j ( j − 1)

2

η j −2

N j −1

with someη ∈ [k, k + 1]. Hence,Rk, j andQk, j are non-negative yielding thatdj (t) > 0. On the other
hand, using (2.3) and thatξ/N 6 1 andη/N 6 1 leads to the inequality given below

ak Rk, j + ck Qk, j 6
j ( j − 1)

2

(ak

N
+

ck

N

)
6

j ( j − 1)

2
(β + γ ).

Hence, the statement follows immediately from (5.3) and using that
∑N

k=0 xk(t) = 1. �

The exact equations for the moments (5.2) are now setup such that the limit ofN → ∞ can be
considered. This leads to the following system:

żj (t) = j (β − γ )zj (t) − jβzj +1(t), (5.4)

with the same initial condition as foryj , that iszj (0) = k j
0/N j . It is worth noting that a solution of

system (5.4) can be obtained in the formzj = zj . Substituting this expression forzj in (5.4), we get the
following equation forz:

ż = (β − γ )z − βz2,

with initial condition z(0) = k0/N. This differential equation is the same as (2.7) for i . Hence, the
approximating equations for the moments (5.4) are not only more tractable but they allow to recover
the mean-field equations. However,y1(t) = [ I ](t)/N andz are not identical. The former comes from
the exact system, whilez is based on the approximating equations obtained from the exact system in the
limit of N → ∞. Therefore, the relation between the two needs to be formally established, see Theorem
5.2. The following two statements prove that indeed,z1 = z = i is the only uniformly bounded solution
of equation (5.4) and thatz1 is a good approximation toy1 for t ∈ [0, T ] and for N large. The lemma
and theorem given below play a crucial role in completing the proof of Theorem5.1. To increase the
clarity and transparency of the proof a diagram linking all propositions, lemmas and theorems is given
in Fig. 1.

LEMMA 5.1 System (5.4) subject to the initial conditionzj (0) = k j
0/N j has a unique uniformly

bounded solution, where uniform boundedness means that there existsM such that|zj (t)| 6 M for

all j . This solution can be given aszj = zj
1 andz1(t) = i (t).

THEOREM 5.2 Let us assume that the solutions of systems (5.2) and (5.4) satisfy the same initial con-
dition yj (0) = k j

0/N j = zj (0). Then for anyT > 0, there existK > 0, such that

06 z1(t) − y1(t) 6
K

N
for t ∈ [0, T ].

The rather technical proof of the lemma is postponed to the Appendix.



FROM EXACT STOCHASTIC TO MEAN-FIELD ODE MODELS 13 of20

FIG. 1. The flow of the proof of Theorem 5.1

5.2 Proof of Theorem5.2

In this subsection, we prove Theorem5.2. This together with with Lemma5.1 yields our main result
formulated in Theorem5.1. Throughout this section, letyj be given by (5.1), and letzj be the unique

solution of (5.4) subject to the initial conditionzj (0) = k j
0/N j . Then the following proposition verifies

the left inequality in the statement of Theorem5.2.

PROPOSITION5.3 Under the above conditions, we have thaty1(t) 6 z1(t) for all t > 0.

Proof. Since the variance (y2 − y2
1) is non-negative, it follows thaty2

1(t) 6 y2(t) for all t . Sinced1 = 0,
the first equation of system (5.2) now reads as

ẏ1 = (β − γ )y1 − βy2.

Hence,ẏ1 6 (β − γ )y1 − βy2
1. If there existst2 > 0 such thaty1(t2) > z1(t2), then there exists

t1 < t2 for which y1(t1) = z1(t1) and y1(t) > z1(t) for all t ∈ (t1, t2]. Let v(t) = y1(t) − z1(t) for
t ∈ [t1, t2]. Then using the functionF(x) = (β − γ )x − βx2 gives

v̇ = ẏ1 − ż1 6 f (y1) − f (z1) 6 M(y1 − z1) = Mv,

whereM is the Lipschitz constant ofF on the interval [0, 1]. Applying Gronwall’s lemma tov, we get
v(t) 6 0 for all t ∈ [t1, t2], which is a contradiction. �

In the next two Lemmas, it will be proved that ifj is large enough, thenzj 6 yj . This result will be
heavily used in the proof of Lemma5.4.

LEMMA 5.2 There existj0 ∈ N andδ > 0, such that

zj (t) 6 yj (t), for all j > j0, t ∈ [0, δ].
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Proof. In order to derive an upper estimate forzj , we exploit the fact that usingz2 = z2
1 the functionz1

can be explicitly determined from the first equation of system (5.4), ż1 = (β − γ )z1 − βz2
1. Introducing

q = k0/N = z1(0) andα = β − γ gives

z1(t) =
αq

(α − βq) exp(−αt) + βq
.

To estimate this expression, two different cases need to be considered.

Case 1.If α − βq < 0, thenz1 is decreasing.
In this case, let us choose a numbert ′ > 0 andα′ < α such that

exp(−αt) 6 1 − α′t, for all t ∈ [0, t ′].

Then for allt ∈ [0, t ′]

z1(t) 6
αq

(α − βq)(1 − α′t) + βq
=

q

1 + ct
,

wherec = −α′(α − βq)/α > 0. Hence,

zj (t) 6
q j

(1 + ct) j
, for all t ∈ [0, t ′]. (5.5)

A trivial lower estimate foryj is yj (t) > (k0/N) j xk0(t). In order to get a lower estimate forxk0(t),
let us multiply (2.1) by ebkt and integrate from 0 tot . This gives

xk(t)e
bkt = xk(0) + ak−1

∫ t

0
xk−1(s)e

bksds + ck+1

∫ t

0
xk+1(s)e

bksds. (5.6)

In the case whenk = k0 and upon using the initial condition (xk0(0) = 1), it follows thatxk0(t) >
e−bk0 t for all t > 0. From e−bk0 t > 1 − bk0t , it follows that

yj (t) > q j (1 − bk0t) for all t > 0. (5.7)

PropositionA.1, stated and proved in the Appendix, can now be applied whend = bk0. For an
arbitraryt0 < 1/bk0, the index j0 is chosen according to the proposition. Letδ = min{t ′, t0}. Then for
all j > j0 andt ∈ [0, δ], from (5.5) and (5.7), it follows that

zj (t) 6
q j

(1 + ct) j
6 q j (1 − bk0t) 6 yj (t).

Case 2.If α − βq > 0, thenz1 is non-decreasing.
The proof is similar hence it is presented only briefly.
The upper estimate forz1(t) in the interval [0, 1/α] is

zj (t) 6
q j

(1 − ct) j
, (5.8)

wherec = α − βq.
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The lower estimate foryj is based on the observation thatyj (t) > (k0/N) j xk0(t) +
((k0 + 1)/N) j xk0+1(t). Deriving lower estimates forxk0(t) and forxk0+1(t), it follows that there exists
j1 ∈ N andt ′ > 0, such that

yj (t) > q j (1 + d j t), for all t ∈ [0, t ′], j > j1, (5.9)

whered ∈ (1, 1 + 1/Nq).
Then applying PropositionA.2, which is stated and proved in the Appendix, we get the desired

statement. �

The next proposition is needed in the proof of Lemma5.3.

PROPOSITION5.4 For allk ∈ {0, 1, . . . , N} and for allt > 0, we havexk(t) > 0.

Proof. In the casek = k0 and upon using the initial condition (xk0(0) = 1), from (5.6), it follows that
xk0(t) > e−bk0 t > 0 for all t > 0. The statement fork > k0 can be proved by induction. Assuming that
xk−1(t) > 0, (5.6) gives

xk(t) > ak−1 e−bkt
∫ t

0
xk−1(s)e

bksds > 0.

Using a similar argument, the statement fork < k0 follows easily. �

LEMMA 5.3 For anyT > 0, there existsj1 ∈ N, such that

zj (t) 6 yj (t), for all j > j1, t ∈ [0, T ].

Proof. Using thatzj = i j , an upper bound forzj can be derived. It follows easily from (2.7) that if
i (0) > 1 − γ /β, theni is a decreasing function. If the opposite inequality holds, theni is an increasing
function. Hence,q = max{k0/N, 1 − γ /β} is an upper bound fori , that is i (t) 6 q for all t > 0.
Therefore,

zj (t) 6 q j , for all t > 0. (5.10)

A lower bound onyj can now be derived. Let us start by choosingk ∈ {0, 1, . . . , N} such that
k/N > q holds and introducej0 andδ according to Lemma5.2. Let r be given by

r = min{xk(t): t ∈ [δ, T ]} > 0.

The positivity ofr is guaranteed by Proposition5.4. Finally, let us choosej1 > j0 in such a way
thatr (k/N) j > q j for all j > j1. Then for allt ∈ [δ, T ] the following inequality holds:

yj (t) >
(

k

N

) j

xk(t) >
(

k

N

) j

r > q j > zj (t).

On the other hand, from Lemma5.2, it follows that zj (t) 6 yj (t) for t ∈ [0, δ] since
j > j1 > j0. �

To formulate our final Lemma, a new variable is introduced together with its corresponding evolution
equation. For allj ∈ N and j > 1, u j is defined by

u j = yj − zj .



16 of20 P. L. SIMON AND I. Z. KISS

Subtracting (5.2) and (5.4) gives

u̇ j (t) = j (β − γ )u j (t) − jβu j +1(t) +
1

N
dj (t), (5.11)

where the initial condition isu j (0) = 0.
Our next and final Lemma gives bounds onum(t) and yields the basis of the proof of Theorem5.2.

LEMMA 5.4 For anyT > 0, there existm ∈ N andKm > 0, such that

|um(t)| 6
Km

N
, for all t ∈ [0, T ].

Proof. According to Lemma5.3, we can findm ∈ N, such thatum(t) > 0 andum+1(t) > 0 for all
t ∈ [0, T ]. Now let us consider (5.11) with j = m. Multiplying this equation by exp(−m(β − γ )t) and
integrating from 0 tot gives

um(t)e−m(β−γ )t = −βm
∫ t

0
um+1(s)e

−m(β−γ )sds +
1

N

∫ t

0
dm(s)e−m(β−γ )sds.

Combining thatum+1(t) > 0 with the upper bound fordm given in Proposition5.2 results in the
following inequality,

06 um(t) 6
1

N

(m − 1)(β + γ )

2(β − γ )
dm(β−γ )t .

Thus, the statement holds withKm = (m−1)(β+γ )
2(β−γ ) em(β−γ )T . �

Now we are in the position to complete the proof of Theorem5.2.

Proof of Theorem5.2. Let us choosem andKm according to Lemma5.4. We prove by induction that
for any j = 1, 2, . . . , m − 1, there existsK j for which

|u j (t)| 6
K j

N
, for all t ∈ [0, T ].

For j = 1, this together with Proposition5.3 is exactly the statement of Theorem5.2.
Let us assume that the statement is true foru j +1 and prove it foru j . Multiplying (5.11) by

exp(− j (β − γ )t) and integrating from 0 tot gives

u j (t)e
− j (β−γ )t = −β j

∫ t

0
u j +1(s)e

− j (β−γ )s ds +
1

N

∫ t

0
dj (s)e

− j (β−γ )s ds.

Combining that|u j +1(t)| 6 K j +1/N with the upper bound fordj given in Proposition5.2 results
in the following inequality:

|u j (t)| 6 K j /N with K j =
2βK j +1 + ( j − 1)(β + γ )

2(β − γ )
ej (β−γ )T .

�
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6. Discussion

Understanding the link between exact stochastic and mean-field approximation models is a challenging
problem that arise often in applied research and when formulated rigorously can lead to difficult theoreti-
cal questions. Identifying the theoretical link between different modelling paradigms, such as stochastic
versus ODE- or PDE-based models, requires the concurrent use of a number of different mathemati-
cal techniques. For example, Theorem3.1combines PDE elements with the discretization theorem for
PDEs which is mainly used in Numerical Analysis. At the same time, Theorem4.1 uses Martingale
(see (4.2)) and/or semigroup theory. The concurrent use of different mathematical tools may limit the
applicability of these results or can make it non-trivial to check if the assumptions of the theoretical
results hold.

This paper makes two main contributions. First, it provides a unifying framework for the existing
proofs and discusses the exact way in which convergence of the exact to the mean-field model holds.
On the the other hand, we propose a novel proof that only relies on ODE-techniques and thus increase
the transparency of our results and makes it more accessible to applied researchers. The main idea of
our proof is the use of all moments of the distribution. This enabled us to keep the system exact and
formulate convergence results to an approximation model based on the simplest form of moment clo-
sures. Our results rely on perturbation methods for infinite ODE systems and allowed us to theoretically
identify the link between the exact model and moment closure models often derived based on heuristic
arguments.

It is worth noting that the simplest method, the PDE-based approach, leads to the point-wise conver-
gence of the expected value, while the stochastic method yields the stronger convergence in the sense
that convergence also holds for the distribution. Our main result proves the uniform convergence of the
expected value that in some sense lies between the two existing approaches. The technique presented in
this paper could lead to further developments on several different fronts. For example, the most natural
extension could be to generalize the link between exact stochastic and approximation models for net-
works other than fully connected or to check the validity of existing moment closure techniques that so
far have only been tested via numerical simulations. At the same time, the results presented in the paper
could also be extended for general dynamics and in the context of applied areas other than ecology and
epidemiology.
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Appendix A

First, we prove Lemma5.1. This together with Theorem5.2yields the proof of Theorem5.1.

Proof of Lemma5.1. Since system (5.4) is linear and homogeneous, it is enough to prove that the only
solution with zero initial condition is the constant zero function.

The system is autonomous hence it is enough to prove that the statement is true on a time interval of
lengthT , that iszj (t0) = 0 for all j implieszj is constant zero on [t0, t0 + T ]. This result can then be
extended using induction to show thatzj is constant zero on the intervals [kT, (k + 1)T ] for all k ∈ N.
Thus, it is sufficient to prove that there existsT > 0, such thatzj (0) = 0 for all j implies thatzj is
constant zero on [0, T ].

Multiplying (5.4) by exp(− j (β − γ )t), introducingv j (t) = zj (t) exp(− j (β − γ )t) and denoting
β − γ by α leads to the following differential equation forv j :

v̇ j (t) = − jβv j +1(t)e
αt . (A.1)
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It is useful to show now that conditionsv j (0) = 0 andv j (t) 6 M for all j imply that there exists
T > 0, such thatv j (t) = 0 on the time interval [0, T ].

Integrating (A.1) and using the initial conditionv j (0) = 0 gives

v j (t) = − jβ
∫ t

0
v j +1(s)e

αs ds. (A.2)

This equation can be used iteratively andv1 can be expressed in terms ofv j +1 as

v1(t) = (−1) j j
β j

α j −1

∫ t

0
v j +1(s)e

αs(eαt − eαs) j −1 ds. (A.3)

This statement can be proved by induction using (A.2). Let us now choose a numberT such that
β(exp(αT) − 1)/α < 1. Then, for allt 6 T and for alls ∈ [0, t ], the following inequality holds,
β(exp(αt)−exp(αs))/α < 1. Therefore, the right-hand side of (A.3) can be estimated byjq j ∙ constant,
whereq = β(exp(αT) − 1)/α < 1 sincev j is uniformly bounded. Thus, the right-hand side tends to
zero when taking the limitj → ∞. Hence,v1(t) = 0 for all t ∈ [0, T ].

Using (A.1) with j = 1 gives thatv2(t) = 0 also holds for allt ∈ [0, T ]. Similarly, by induction, it
follows thatv j (t) = 0 for all t ∈ [0, T ] and for all j ∈ N. This completes the proof. �

Now we prove two Propositions that were used in the proof of Lemma5.2.

PROPOSITIONA.1 For any positive numbersc andd and for allt0 ∈ (0, 1/d), there existsj0 ∈ N such
that for all j > j0 andt ∈ [0, t0], the inequality(1 + ct)− j 6 1 − dt holds.

Proof. Let f (t) = 1/(1 − dt) andg(t) = (1 + ct) j . We will prove that there existsj0 ∈ N such that
for all j > j0 andt ∈ [0, t0], the inequality f (t) 6 g(t) holds. Sincef (0) = 1 = g(0), it is enough to
prove thatf ′(t) 6 g′(t) for all t ∈ [0, t0]. We have that

f ′(t) =
d

(1 − dt)2
6

d

(1 − dt0)2

and

g′(t) = jc(1 + ct) j −1 > jc.

Hence, choosing a numberj0 to satisfy

d

(1 − dt0)2
6 j0c,

it follows that for all j > j0 andt ∈ [0, t0]

f ′(t) 6
d

(1 − dt0)2
6 j0c 6 jc 6 g′(t).

�

PROPOSITIONA.2 Let c > 0 andd > 1. Then for allt0 ∈ (0, (d − 1)/dc), there existsj0 ∈ N such
that for all j > j0 andt ∈ [0, t0], the inequality(1 − ct)− j 6 1 + d j t holds.
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Proof. Let f (t) = (1 − ct)− j andg(t) = 1 + d j t . We will prove that there existsj0 ∈ N such that for
all j > j0 and t ∈ [0, t0], the inequality f (t) 6 g(t) holds. Sincef (0) = 1 = g(0), it is enough to
prove thatf ′(t) 6 g′(t) for all t ∈ [0, t0]. We have that

f ′(t) = jc(1 − ct)− j −1 6 jc(1 − ct0)
− j −1

and

g′(t) = d j .

The assumptiont0 ∈ (0, (d − 1)/dc) implies d(1 − ct0) > 1, hence there exists a numberj0 for
which

j
c

1 − ct0
6 d j (1 − ct0)

j , for all j > j0.

Thus, we get that for allj > j0 andt ∈ [0, t0]

f ′(t) 6
j c

(1 − ct0) j +1
6 d j = g′(t)

holds. �
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