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Summary

The effects of an electric field on the travelling waves arising in Belousov–Zhabotinsky systems
are analysed using the Oregonator to describe the kinetics. The model is reduced to a two-
variable version involving the concentrations of HBrO2 and M3+

ox , the oxidized form of the
catalyst, using previously-suggested scalings. The travelling wave equations for this two-
variable model are solved numerically for a range of kinetic parameters and the ratio of diffusion
coefficientsD. An upper bound on the field strengthE is found, arising from a saddle-node
bifurcation, for the existence of travelling waves. There can also be a lower bound onE for their
existence, dependent on the other parameters in the system. The conditions for this termination
of a solution at a finite field strength are determined. In other cases, travelling waves exist for
all negative field strengths and an asymptotic solution for large|E| is constructed. This acts as a
confirmation of the numerical results and provides further insights into the structure of the wave
profiles. Numerical integrations of the corresponding initial-value problem are undertaken.
These show wave deceleration and annihilation in positive fields and wave acceleration in
negative fields, in line with experimental observations. In cases when there is termination at
a finite value ofE, wave trains are seen to develop for (negative) field strength less than this
value.

1. Introduction

Propagating pulses of reaction are usually well-ordered structures and, as such, play an important
role in many chemical and biological processes. They often arise in excitable media, whereby
the system undergoes a rapid reaction, the ‘excitory region’, followed by a slow recovery to its
original state. During this latter process the system is refractory, insensitive to further stimuli and
needs to have returned sufficiently close to its rest state before further waves can be generated. As
a consequence, excitable media subject to external stimuli usually form either individual waves
or regular trains of equally spaced waves. The excitable media studied in most detail, both
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experimentally and theoretically, are, perhaps, systems based on the Belousov–Zhabotinsky (BZ)
reaction. This system is often used as a paradigm for the more complex excitable media that arise in
biological applications. This reaction exhibits all the features particular to excitable media, single
reaction pulses and wave trains in 1D and, in 2D, target patterns and spirals (forming under suitable
conditions).

When an electric field is applied to a BZ system the resulting behaviour can become much more
complex. In 1D wave acceleration and deceleration as well as wave annihilation are observed (1 to
3), though, perhaps the most unexpected behaviour seen in 1D is wave splitting. In this a sequence
of waves become detached from the rear of the original wave and travel in a direction opposite to
that of the original wave. In 2D an initially symmetric, radially spreading wave can be broken when
an electric field of sufficient strength is applied, with spirals forming at the broken ends (4 to 6).
There is also the possibility of more waves forming at these broken ends (perhaps the analogue
of wave splitting seen in 1D). As the reaction proceeds under the influence of the electric field,
further wave breakings and recombinations can arise, depending on the electric field strength and
the specific chemical composition of the reactant mixture. Applying direct or alternating electric
fields to BZ systems has also been observed (7 to 12) to cause complex motion of spiral centres in
2D configurations.

Models for BZ systems are usually based on Oregonator kinetics (13, 14), which involves the
three active species, an autocatalyst HBrO2, an inhibitor Br− and an oxidised form of the catalyst
M3+

ox (usually ferriin). Expressing this mechanism in dimensionless form (15 to 17) shows that,
to a good approximation, the concentration of Br− can be regarded as varying quasi-statically in
relation to the concentrations of the other two active species. In this reduced, two-variable form,
the reaction dynamics are relatively simple. There is only one (chemically acceptable) steady state,
with parameter values for which this is an excitable state. There is also the possibility of oscillatory
behaviour arising from Hopf bifurcations. This two-variable reaction mechanism has been used
extensively as the kinetics in models of spatially-distributed systems, both as a generic model for
excitable media and, more directly, to describe specific effects seen in BZ systems (effects of electric
fields and differential illumination on a light sensitive version of the BZ reaction are two such
examples). The consequences of making the reduction from the three-variable to the two-variable
system on the travelling waves are examined briefly in the field-free case, where perhaps larger than
expected differences between the two waveforms are seen.

More detailed kinetics have been suggested for modelling the BZ reaction, a review and a detailed
examination of some of these different mechanisms is given in (4). These mechanisms involve
further active species and further kinetic steps and are thought to provide a better description for BZ
chemistry. The reaction dynamics of these extended schemes can be much more complex than for
the two-variable Oregonator, multistability and further bifurcations can arise. This makes models
based on these extended schemes as the kinetics in spatially-distributed systems more difficult to
analyse, as the nature of their ‘base state’ is not readily determined. This can, in turn, make it
difficult to unravel the mechanisms that lead to structures that are essentially spatially-distributed.

Thus there are advantages to using two-variable Oregonator kinetics in trying to understand how
propagating waves and other spatio-temporal structures arise, both as a model for a general excitable
system and for specific BZ systems. This is the purpose of our paper. In particular, we develop a
spatially-distributed model for a BZ system which includes the effects of applying electric fields to
the reactants and which uses the Oregonator model for the kinetics. We make our basic reaction–
diffusion electromigration model dimensionless using the standard scalings used previously (15 to
17). We show, to be consistent with previous studies, that Br− should still be regarded as in a
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quasi-steady state. This reduces our model to one for the two variables, HBrO2 and M3+
ox , and we

examine this reduced model in detail. Our main aim is to determine the range of behaviour that our
model can predict that is also observed experimentally and to see if there are any features seen in
the experiments which are not also supported by our model. This will allow an assessment to be
made of the viability of using two-variable Oregonator kinetics for modelling electric field effects
on BZ systems. This kinetic model (in its reduced form) has proved effective in explaining the
nature of flow-driven structures in BZ systems (see (18 to 20), for example) and in wave and spiral
modifications in light sensitive media ((21 to 23) provide examples).

Previous studies have highlighted the subtle nature of the interaction of an applied electric field
with reacting and diffusing ionic chemical species. The initial work by Schmidt and Ortoleva
(24 to 26) and Ortoleva (27) showed that electric fields can have a considerable influence on
wave propagation and pattern formation in chemical systems. Later studies of reaction fronts in
autocatalytic systems (28 to 30) haveshown a much greater range of complex behaviour than might
have been expected in these simple systems. Much of this was seen in a detailed examination, both
experimentally and theoretically, of reaction fronts in the iodate–arsenous acid system subjected to
applied electrc fields (31,32). Models based on two-variable Oregonator kinetics for the effects of
electric fields on BZ systems have been studied previously. However, these tend to be inconsistent
with the ionic charges of the reactants, usually assuming that there is electromigration of HBrO2
caused by the electric field, (12,33) for example. Although these models can be regarded as good
generic models for convective (electromigratory) effects on excitable media, they have drawbacks
when applied specifically to interpreting the behaviour of a BZ system.

2. Model

Oregonator kinetics for the BZ reaction can be conveniently expressed as

A + Y → X + P ratek3ay,

X + Y → 2P ratek2xy,

A + X → 2X + 2Z ratek5ax, (1)

2X → A + P ratek4x2,

B + Z → 1

2
f Y ratekcbz,

whereX ≡ [HBrO2], Y ≡ [Br−] and Z ≡ [M3+
ox ] are the active species. We treatA ≡ [BrO−

3 ]
andB (representing all oxidised organic species) as pooled chemicals, that is, they are assumed to
remain at their initial concentrations throughout. AsP represents reaction products it does not enter
our discussion. The dependence of the reaction rates on [H+] in (1) has been omitted as we are
assuming that the system is run at constantpH (which is usually the case in experiments).

To derive the reaction–diffusion electromigration equations governing our system, we make the
constant field approximation. This is valid provided that the other, non–reacting ionic species are in
plentiful supply compared to the reacting ionic species Br− andM3+

ox (34). We take planar geometry
usingx andt as our space and time variables. This leads to the equations, on using (1),

∂ X

∂t
= DX

∂2X

∂x2
+ k3AY − k2XY + k5AX − 2k4X2, (2)
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Fig. 1 Electromigratory effect onY− andZ3+ of applying an electric fieldE > 0

∂Y

∂t
= DY

∂2Y

∂x2
+ DYE

∂Y

∂x
− k3AY − k2XY + 1

2
f kcBZ, (3)

∂ Z

∂t
= DZ

∂2Z

∂x2
− 3DZE

∂ Z

∂x
+ 2k5AX − kcBZ, (4)

whereDX , DY andDZ are the diffusion coefficients of reactantsX, Y− andZ3+ respectively and
E is a measure of the (constant) applied electric field strength. The additional migratory effect of
applying the electric field (E > 0) on the ionic speciesY− andZ3+ is shown in Fig. 1.

We make (2) to (4) dimensionless using the scalings suggested originally by Tyson (15 to 17),
namely

X =
(

k5A

2k4

)
u, Y =

(
k5A

k2

)
v, Z =

(
(k5A)2

k4kcB

)
w, t̄ = (kcB)t, x̄ = x

(
kcB

DX

)1/2

. (5)

Applying (5) in (2) to (4) and dropping the bars on the dimensionless time and space variablest̄, x̄
for convenience, we obtain the dimensionless system

∂u

∂t
= ∂2u

∂x2
+ 1

ε
(u(1 − u) − uv + qv) , (6)

∂w

∂t
= DW

∂2w

∂x2
− DW E

∂w

∂x
+ u − w, (7)

ε′
(

∂v

∂t
− DV

∂2v

∂x2
− 1

3
DV E

∂v

∂x

)
= f w − (q + u)v, (8)

where

q = 2k3k4

k2k5
, ε = kcB

k5A
, ε′ = 2kck4B

k2k5A
(9)

are the usual kinetic parameters and where

DW = DZ

DX
, DV = DY

DX
, E = 3E

(
DX

kcB

)1/2

. (10)

We note that the choice of dimensionless variables (5), which preserves the essential form of the
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original dimensionless version of the Oregonator model, forces the parameterε′ to multiply both
the diffusion and electromigration terms in equation (8) for Br−. The reduced model is then derived
on the assumption thatε′ � 1, it is usually at least an order of magnitude less thanε. Then formally
letting ε′ → 0 in equation (8) shows thatv is in the quasi-steady state

v = f w

u + q
. (11)

On using (11) in (6), (7) we obtain our reduced model as

∂u

∂t
= ∂2u

∂x2
+ 1

ε

(
u(1 − u) − f w(u − q)

(u + q)

)
, (12)

∂w

∂t
= D

∂2w

∂x2
− DE

∂w

∂x
+ u − w (13)

for u andw which are dimensionless versions of [HBrO2] and [M3+
ox ] respectively and where we

have replacedDW by D.
Note that, in this reduction, the electric field appears only in the equation for [M3+

ox ], the only
ionic species in this version. It is the model given by (12), (13) that we now consider in detail.
Before doing so we give a brief description of the spatially uniform system.

2.1 Spatially uniform system

This system is given by the ordinary differential equations that are obtained from (12), (13) with the
spatial derivatives omitted. This has the single steady state

us = ws = 1
2

(
1 − ( f + q) +

√
(1 − f − q)2 + 4q(1 + f )

)
. (14)

The (linear) stability of this steady state is determined by putting

u = us + U, w = ws + W, whereU, W � 1. (15)

This results in the linear equations

U̇ = 1

ε
(αU − βW) , Ẇ = U − W, (16)

where

α = 1 − 2us − 2 f qus

(us + q)2
, β = f (us − q)

(us + q)
. (17)

Note thatβ > 0 andβ − α > 0.
Equations (16) show that the steady state (14) is stableα < ε, with there being a Hopf bifurcation

whenα = ε. The situation is illustrated in Fig. 2 with plots ofα againstf for representative values
of q. The Hopf bifurcations occur when the lineα = ε intersects the appropriate curve. It can do so
at two values off , f1 and f2 say, for a given value ofq. The system is oscillatory forf in the range
f1 < f < f2 and is an excitable system forf > f2. The nature of the Hopf bifurcation is easily
determined by BIFOR2 (35). Our calculations for a range of values ofq show that this bifurcation
is subcritical at the smaller value off and supercritical for the larger value. For example, for
q = 0·002 the Hopf bifurcation is degenerate atε = ε∗ = 0·8006, f = f ∗ = 0·9760, changing
from subcritical for f < f ∗ to supercritical forf > f ∗.
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Fig. 2 (a) Plots ofα, as defined in (17), againstf for q = 0·02, 0·002, 0·0002. The spatially uniform system
is stable forα < ε. (b) A sketch ofα againstf to show the change from unstable (oscillatory) to stable

(excitable) behaviour atf = f2 whenα = ε

3. Spatially distributed system

3.1 Travelling waves

We start by considering the travelling waves (single pulses) that can arise in our model (12), (13).
To derive the travelling wave equations we introduce the travelling coordinatey = x − ct, where
c is the (constant) wave speed and takeu andw to depend only ony. This leads to the ordinary
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differential equations

u′′ + cu′ + 1

ε

(
u(1 − u) − f w(u − q)

(u + q)

)
= 0, (18)

Dw′′ + (c − DE)w′ + u − w = 0 (19)

on−∞ < y < ∞ (where primes denote differentiation with respect toy). The boundary conditions
are

u → us, w → ws as |y| → ∞, (20)

whereus andws are given by (14).
We were able to solve (18) to (20) numerically using the method described in (37). These

numerical solutions calculate the wave speedc for given values of the parameters and are continued
in one of the parameters using a pseudoarclength method. In Fig. 3a we give plots ofc against
the electric field strengthE for f = 2·5 and D = 1·0, q = 0·002 and for a range of values ofε

(noted on the figure). All the curves have a similar characteristic in that they show a saddle-node
bifurcation atE = Em, with two solution branches forE < Em. For the smaller values ofε there
is a local minimum forc on the lower solution branch. Both solution branches are unbounded for
negative values ofE (at least as far as we have been able to compute) and on the upper solution
branchc appears to be tending to a constant value (dependent onε) as E → −∞. For the larger
values ofε, Em < 0 with the case whenEm = 0 being determined from (37) at ε = ε0 = 0·076.
For values ofε > ε0 there are no travelling waves in positive fields for this value off .

We are able to compute the limiting field strengthEm using the method developed in (37) and a
graph ofEm againstε is shown in Fig. 3b (for the same parameter values as before). The change
in sign of Em at ε0 is clearly seen in the figure withEm increasing monotonically asε is decreased.
For larger values ofε travelling waves are possible only in strong negative fields, for example, at
ε = 0·5, Em = −5·3991. This figure also shows that, when the system is in its more excitable
state—small values ofε—small changes in the electric field strength can radically affect whether
waves propagate or fail in positive fields.

The effect of the electric field is to alter the wave profile. This is illustrated in Fig. 4 with plots
of u andw profiles for a range of values ofE, with f = 2·35, ε = 0·05, q = 0·002, D = 1·0.
The effect of a positive electric field is to decrease both the height and lateral spread of both theu
andw profiles; compare the profiles forE = 0·9 with those forE = 0. A negative field has the
opposite effect. The lateral spread of both theu andw profiles and the maximum of theu profile
are increased as the value of|E| is increased. The effect on the maximum value ofw in the wave is
for it to be first increased in the smaller negative fields and then to decrease as the field strength is
increased; compare thew profiles forE = −1·0 andE = −20·0 in Fig. 4b.

We next consider the effect of the stoichiometry factorf on the solution. We takeε = 0·05
(q = 0·002, D = 1·0) and plot curves ofc againstE for a range of values off in Fig. 5a. There
is again a maximum valueEm of E for the existence of a travelling wave solution with a saddle-
node bifurcation atE = Em. The value ofEm decreases asf is increased and forf greater than
about 3·2 we find thatEm < 0, as might be expected from Fig. 3a. For the larger values off (the
curves for f � 2·5) both solution branches continue to large|E| for negative fields, with the upper
branch solutions appearing to tend to a constant value asE → −∞. However, for smaller values
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Fig. 3 (a) Plots of the wave speedc of the travelling waves against the electric field strengthE for f = 2·5
and a range of values ofε. (b) The electric field strengthEm at the saddle-node bifurcation plotted againstε

for f = 2·5. The values of the other parameters areq = 0·002 andD = 1·0
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Fig. 4 Plots of the (a)u and (b)w waveprofiles for a range of values ofE and
f = 2·35, ε = 0·05, q = 0·002, D = 1·0
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of f (the curves forf = 2·3, 2·25) the solution terminates at a finite value ofE. The reason for
this is explained in (37) and concerns the nature of the eigenvaluesλ of the linear equations which
approximate the travelling wave equations (18), (19) as|y| → ∞. Considering these equations as
a four-dimensional first-order ordinary differential equation and linearizing about the steady state
(us, 0, ws, 0) gives the characteristic polynomial for the Jacobian as

Dλ4+(c(1 + D) − DE) λ3+
(
c(c − DE)+ Dα

ε
− 1

)
λ2+

(α

ε
(c − DE) − c

)
λ+ (β − α)

ε
= 0.

(21)

A travelling wave (pulse) is a solution of equations (18), (19) in(u, u′, w, w′) phase space
corresponding to a homoclinic orbit on the steady state(us, 0, ws, 0). A necessary condition for
the existence of a homoclinic orbit is that there must be both a stable and an unstable manifold on
the steady state. Hence a sufficient condition for the non-existence of a travelling wave is that all
the roots of equation (21) have either positive or negative real parts.

For negative fields and for all the cases we computed for positive fields,(c− DE) > 0 and so the
coefficient ofλ3 in equation (21) is positive. This means that there must be at least one negative real
root or two complex conjugate roots with a negative real part. Thus travelling waves (single pulses)
fail to exist when equation (21) does not have any roots with a positive real part. Conditions for
this to happen can be derived from the Routh–Hurwitz criterion (see (36, Appendix 2) for example),
which gives a relation betweenc and E (for given values of the other parameters). These curves
are plotted in Fig. 5b for a range off , together with the wave speed curves forf = 2·3 and
2·25. This figure shows that, even though the wave speed curves are close together, they end at
noticeably different values ofE, at respectivelyE = −3·631 andE = −0·616 for the upper branch
solutions. This behaviour continues as we decreasef , the wave speed curves change only slightly
whereas the ‘non-existence’ curves have a much greater variation. We find that there is a value
of f at which the ‘non-existence’ curve intersects the wave speed curve at the saddle-node point,
occurring at f = 2·115 for Fig. 5b. For values off less than this there are only the lower branch
solutions. There is then a value forf , just below f = 1·9 in Fig. 5b, where the ‘non-existence’
curve lies wholly to the right of any possible wave speed curves and there no travelling waves (as
single pulses) for any value ofE.

We can gain further information about this wave termination process by considering the solution
of equation (21) for negative fields as|E| → ∞, assuming thatc remains ofO(1) (and positive)
in this limit. A standard perturbation approach shows that there are two solutions ofO(1), one of
O(|E|) and one ofO(|E|−1). The O(1) solutions are, to leading order, given by

λ2 + cλ + α/ε = 0. (22)

If α > 0, then both roots of (22) are negative or have negative real part and, ifα < 0, they are real
and of opposite sign. The other solutions are

λ ∼ −|E|
(
1 + c

D
|E|−1 + · · ·

)
, λ ∼ − (β − α)

Dα
|E|−1 + · · · (α 	= 0). (23)

Whenα = 0, this latter root becomes

λ ∼ − β

εc
|E|−1/2 + · · · .
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Fig. 5 (a) Plots of the wave speedc of the travelling waves against the electric field strengthE for ε = 0·05
and a range of values off . (b) ‘Non-existence’ curves obtained from equation (21) for a range off and wave
speed curves forf = 2·25, 2·3, to show the termination of a solution at a finite value ofE. For these values

of f the kinetic system is unstable.cont.
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Fig. 5 cont. (c) ‘Non-existence’ curves forf = 2·39 and f = 2·40 to, show the transition atα = 0. (d) A
‘non-existence’ curve obtained from the Routh–Hurwitz criteria (RH) and a wave speed plot forf = 2·35,

kinetic system stable. The values of the other parameters areq = 0·002, D = 1·0
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Expressions (23) show that there is always at least one negative root for|E| large, and with (22)
that, if α > 0, all roots have negative real parts. Thus a necessary condition for the existence of
a travelling wave in the|E| → ∞ limit is that α < 0. This, in turn, provides an upper bound (at
α = 0) on f for the termination of wave solutions at a finite value ofE. Forq = 0·002,α = 0 at
f = 2·39425 (note that the Hopf bifurcation occurs atf = 2·3087 forε = 0·05). This value for
f provides a limiting case for the ‘non-existence’ curves shown in Fig. 5b. To show the transition
at α = 0 from having wave solutions terminating at a finite (negative)E to having waves for all
negative fields, we plot the ‘non-existence’ curves forf = 2·39 (α > 0) and for f = 2·40 (α < 0)
in Fig. 5c. For f = 2·40 the curve gives (large) positive values forE and, as we have seen, the
solutions finish at a saddle-node bifurcation well before these field strengths are reached.

We explored this point a little further by considering values off for which the kinetic system
is stable, that is,α < ε. (Note that, for the values off in Fig. 5b, the kinetic system is unstable,
α > ε.) We show a wave speed plot and a ‘non-existence’ curve obtained from the Routh–Hurwitz
criteria for f = 2·35 in Fig. 5d. The upper branch solution terminates on the ‘non-existence’
curve atE = −13·778. As a further check we computed the eigenvaluesλ from equation (21) as
the travelling wave solution progressed along the upper branch and found that, where the positive
eigenvalue was lost was the point of intersection of the two curves in the figure. We were unable to
continue the lower branch solution to the ‘non-existence’ curve. On this branch the solution became
oscillatory (with complex values forλ) and we found that eventually we were unable to satisfy the
boundary conditions. This occurred atE = −16·36 in Fig. 5d.

In Fig. 5a we identified a saddle-node bifurcation atE = Em and, as mentioned above, we can
calculate this value in terms off . The results are shown in Fig. 6 (forε = 0·05, q = 0·002, D =
1·0). The curve starts atf = 2·115 (whereEm = 1·235) and decreases monotonically asf is
increased, giving negative values forEm for f > 3·213, in line with Fig. 5a.

Our previous study (37) suggests that changing the parameterq does not make significant changes
in the travelling wave solutions, provided it remains small. However,D, the ratio of diffusion
coefficients, can play a more important role. From values given in (4), D 
 0·3 and to illustrate
this point we computed the wave speed plots forD = 0·3 and a range of values off (with q =
0·002, ε = 0·05). These are shown in Fig. 7a. The curves have a similar form to those shown
in Fig. 5a,b, though the values ofEm are considerably greater, for example withf = 2·5, Em =
0·7851 forD = 1·0 compared toEm = 8·1420 forD = 0·3. The conditions for the change from
having the curves continue to large|E| and finishing at a finite value ofE is independent ofD;
see (22), (23). However, the change in the value ofE at which this occurs is greater forD = 0·3;
compare the curves forf = 2·3 and f = 2·25 in Fig. 7a with those in Fig. 5b. One feature to
note about these curves is that, for the smaller values off , stable (upper branch) travelling wave
solutions exist (as single pulses) only in positive fields. The curve forf = 2·25 in Fig. 7a terminates
at E = 1·6383 on the ‘non-existence’ curve RH.

In Fig. 7b we plotEm, the value ofE at the saddle-node bifurcation, againstD for f = 2·5
(andq = 0·002, ε = 0·05). The figure shows thatEm decreases monotonically withD, becoming
negative atD 
 1·39 and changing only slightly asD is increased further. For smaller values ofD;
Em increases rapidly asD is decreased. This can be expected from equation (19) asD multiplies
the electric field strengthE and, in the limit asD → 0, the situation without an electric field and
M3+

ox immobile is approached.
In Figs 3a and 5a we saw that the wave speedc appeared to be approaching a constant value for

large negative fields. We now consider this further by looking at the solution of equations (18), (19)
for E < 0 in the limit as|E| → ∞.
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Fig. 6 The electric field strengthEm at the saddle-node bifurcation plotted againstf for ε = 0·05
(q = 0·002, D = 1·0)

3.1.1 Large, negative fields, E→ −∞. We start our solution at the front of the wave (region I)
where we leave the variables unscaled and look for a solution by expanding

u(y, |E|) = u0(y) + u1(y)|E|−1 + · · · , w(y, |E|) = w0(y) + w1(y)|E|−1 + · · · ,

c(|E|) = c0 + c1|E|−1 + · · · . (24)

The leading-order problem givesw′
0 = 0, hence from (20),w0 ≡ us, and then

u′′
0 + c0u′

0 + 1

ε

(
u0(1 − u0) − f us(u0 − q)

(u0 + q)

)
= 0, u → us as y → ∞. (25)

A consideration of equation (25) shows that

u0(y) → ua asy → −∞, (26)

whereua is given by

u2
a − (1 − q − us)ua + f q = 0, that is,ua = 1

2

(
1 − q − us +

√
(1 − q − us)2 − 4 f q

)
.

(27)

Wenote thatua > us at least for the small values ofq required by the model.
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Fig. 7 (a) Plots of the wave speedc of the travelling waves against the electric field strengthE for a range of
values of f for D = 0·3. (b) The electric field strengthEm at the saddle-node bifurcation plotted againstD

for f = 2·5. The values of the other parameters areq = 0·002 andε = 0·05
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To obtain some idea of the values of the various constants that will arise in our discussion it is
instructive to evaluate them for smallq (note that we takeq = 0·002 in our numerical solutions and
that smaller values ofq, for example,q = 0·0008, have also been suggested as reasonable values

for this parameter). From (37) us 
 ( f + 1)

( f − 1)
q (for f > 1, which is the only case we consider here)

and, from (27),

ua ∼ 1 − f ( f + 1)

( f − 1)
q + · · · . (28)

It is the problem given by (25) to (27) that determinesc0. We can scaleε out of this problem
by writing ỹ = ε−1/2y, c0 = ε−1/2c̃0. This reduces the equation to the one that arises in the
solution forε small, as discussed in (37) where plots ofc̃0 (in the present context) againstf for
q = 0·002, 0·0008 are given. Forq = 0·002 andf = 2·5, c̃0 = 1·5651, givingc0 = 1·5651ε−1/2,
consistent with the values for large|E| seen in Fig. 3a. In order to obtain a unique value forc̃0,
the equilibrium points(ua, 0) and(us, 0) in the (u, u′) phase plane of equation (25) must both be
saddle points (giving a saddle–saddle connection). This is the case provided thatα < 0, as defined
by (17), which is precisely the necessary condition derived above for the existence of a travelling
wavesolution in the large|E| limit.

At O(|E|−1), w1 satisfiesDw′
1 = −(u0 − us) from which it follows thatw1 ∼ −(ua − us)y/D

asy → −∞. This suggests that the expansion breaks down wheny is of O(|E|) and leads to region
II, where we puty = |E|−1y and still leaveu andw unscaled. The leading-order problem for this
region is given by

u(1 − u) − f w(u − q)

(u + q)
= 0, Dw′ + u − w = 0 (29)

subject to

u ∼ ua + · · · , w ∼ us −
(

ua − us

D

)
y + · · · as y → 0− (30)

on matching with region I. From (29) we obtain

du

dy
= u(u − us)(u + us)(u − q)

D(2u3 − (1 + 2q)u2 + 2q(1 − q)u + q2)
, (31)

where−us (us > 0) is the negative root of the quadratic equation that determines the steady state,
us ∼ ( f − 1) for q small. For the values ofq that we are concerned with the right-hand side of
equation (31) is strictly positive forub < u � ua, whereub is the largest root of the denominator,
with

ub ∼ 1
2 − q + · · · for q small. (32)

Hence there is a value−y0 of y (y0 > 0) at which the solution of equation (31) becomes singular,
with du/dy → ∞ asu → u+

b and

u ∼ ub + √
2Ab (y + y0)

1/2 + · · · asy → −y0, (33)
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where

Ab = ub(ub − us)(ub + us)(ub − q)

2D(3u2
b − (1 + 2q)ub + q(1 − q))

.

Since the singularity aty = −y0 arises from the denominator in equation (29) becoming zero atub,
which is wheredw/du → 0, expression (29) shows that

w ∼ wb + Bb(y + y0) + · · · as y → −y0, (34)

where

wb = ub(1 − ub)(ub + q)

f (ub − q)
, Bb = −ub(ub − us)(ub + us)

D f (ub − q)
= − (ub − wb)

D
.

Note that

Ab 
 2 f − 1

8D
, wb 
 1

4 f
, Bb 
 1 − 2 f

4D f
for q small.

The singularity aty = −y0 leads to region III where we put

ζ = |E|2/3(y + y0), u = ub + |E|−1/3U, w = wb + |E|−2/3W. (35)

The leading-order problem in this region gives

D
dW

dζ
= −(ub − wb), henceW = −

(
ub − wb

D

)
ζ (36)

on matching with region II, and then after a little algebra

εc0
dU

dζ
− βb

2Ab
U2 + βbζ = 0, U ∼ √

2Ab ζ 1/2 as ζ → ∞, (37)

whereβb = 2Ab(3u2
b − (1 + 2q)ub + q(1 − q))

u2
b − q2

, with βb 
 2 f − 1

4D
for q small. We can solve

equation (37) in terms of Airy functions (38) to give, on satisfying the boundary condition,

U = −
(

(2Ab)
2εc0

βb

)1/3
Ai ′(ζ )

Ai(ζ )
, where ζ =

(
β2

b

2Ab(εc0)2

)1/3

ζ . (38)

Expression (38) becomes singular atζ = ζ 0, whereζ 0 is the first zero of the Airy function (ζ 0 =
−2·3381), with

U ∼ − 2Abεc0

βb(ζ − ζ0)
+ · · · as ζ → ζ0. (39)

To continue we need a further region, region IV, in which we putη = |E|1/3(ζ − ζ0) = y +
|E|y0 − |E|1/3ζ0 and leaveu andw unscaled. Thus the equations in region IV are essentially the
same as those in region I with nowη as independent variable. Following the analysis of region I we
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find that noww ≡ wb to leading order, on matching with region III. This result modifies slightly
the leading-order equation foru, which we can now write as

u′′ + c0u′ − (u − ub)
2

ε(u + q)

(
u − f qwb

u2
b

)
= 0, (40)

where primes denote differentiation with respect toη, subject to the matching condition that

u ∼ ub − 2Abεc0

βbη
+ · · · as η → ∞. (41)

A consideration of equation (40) shows that

u → uc = f qwb

u2
b

= q(1 − ub)(ub + q)

ub(ub − q)
as η → −∞, (42)

whereuc 
 q for q small.
To complete the asymptotic expansion we require a final region, region V, where we putY =

|E|−1η. The equations for this region are, at leading order, essentially the same as in region II, with
Y as the independent variable, though now subject to

u → uc, w → wb asY → 0−. (43)

From equation (29) we find that the equation foru is effectively given by (31). Hereuc < us (at
least for smallq) and so the numerator in equation (31) is negative foru in the rangeuc � u < us.
The denominator has a zero atub and, for smallq, atu = u1 
 (1 ± √

2)q. Now the condition to
have a solution as|E| → ∞ is thatα < 0, which, for smallq, isthat f > 1+√

2 orus < (1+√
2)q.

Thus under these conditions,us is less than the value ofu1, where the denominator of (31) is zero,
with the denominator then being positive foruc � u < us. Hencedu/dY < 0 over this range and
equation (31) then shows thatu → us, w → us asY → −∞, the conditions at the rear of the
wave. Note that it can readily be shown by direct substitution that havingα = 0 corresponds to
having(dw/du)us = 0, using the form forw = w(u) given in (29)1.

The above analysis shows the structure of the wave for|E| large (andq small). There is a region
(region I) at the front of the wave, ofO(1) thickness, whereu increases from the small values
associated withus to a value of approximately unity andw remains unchanged atus. It is the
solution in this region that fixes the wave speed, which is independent ofD in this limit. There is
then a wider region (region II), of extentO(|E|), in which the value ofu falls to approximately12
andw increases to its maximum valuewb, of approximately 1/4 f . This region ends in a singularity
in the solution foru and to remove this singularity two further regions (regions III and IV), of extent
O(|E|1/3) andO(1) respectively, are required. In these regionsw remains atwb to leading order.
At the end of region IV,u has fallen to a small value of approximatelyq and it is in the final region,
region V, of extentO(|E|), whereu increases back tous andw approachesus from above. The
width of the wave is determined mainly by regions II and V, giving an overall extent ofO(|E|).
Finally we note that the approach to the boundary conditions at both the front and rear of the wave
is consistent with that given by (22), (23).

The form of the wave described above is seen in the numerical solutions of the travelling wave
equations, the spread of the wave increases with|E| and the maximum values ofu andw approach
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values of unity and 1/4 f respectively as|E| is increased (see Fig. 4). As|E| increases the wave
speeds approach (finite) limiting values, as given by (25), (26), with these values being independent
of D. This can be seen in Figs 3a, 5a and 7a, with values forc for the larger values of|E| being
consistent withc0 calculated from (25), (26), these values are essentially the ones given in (37).
The result that wave speed is independent ofD for |E| large can clearly be seen by comparing the
curves for f = 3·0 and large|E| in Figs 5a (D = 1) and 7a (D = 0·3). The development of the
various regions identified in the above asymptotic analysis for large|E| is becoming apparent in the
u profile for E = −20·0 in Fig. 4a.

3.2 Numerical simulations

Wesolved the initial-value problem given by equations (12), (13) using an implicit method based on
the Crank–Nicolson scheme with Newton–Raphson iteration to solve the nonlinear finite-difference
equations. We started with the system in its spatially uniform steady state (14) and applied a
localized perturbation tou, usually puttingu = us + 0·3 in a region of width 2·0 centred onx = 0.
We allowed waves to develop, one propagating in the positivex-direction and one in the negative
x-direction, before the electric field was switched on, as suggested by experiments (4,5). We need
treat only positive values ofE as the effect of the electric field on a wave propagating in the negative
direction is equivalent to taking−E. Weused a space step�x = 0·05, the time step�t was varied
to maintain accuracy, usually�t = 0·0032. The number of grid pointsN was determined by the
context, typically we tookN = 4000. No-flux boundary conditions were applied at the ends of the
computational domain.

The first consideration is the stability of the travelling waves. Calculations of the temporal
eigenvalues reported in (37) (for E = 0) show that the solutions on the upper branch (Figs 3a, 5a)
are stable and those on the lower branch unstable. We did not perform these stability calculations
for E 	= 0 here. However, in all the numerical integrations that were performed it was only waves
on the upper branch that developed in the initial-value problem. This suggests that, in this case as
well, the upper branch solutions are temporally stable and the lower branch solutions unstable.

We illustrate the development of the waves in the electric field in Fig. 8 with grey-level plots of
w for f = 2·35 with E = 0·9 (Fig. 8a) andE = 2·0 (Fig. 8b). In both cases the electric field is
switched on att = 6·0 with a polarity indicated in the figure. For the smaller value ofE we can see
a slight deceleration and thinning of the wave propagating towards the negative electrode. There is
acorresponding acceleration and thickening of the wave propagating towards the positive electrode.
These changes in speed are relatively small, in line with Fig. 3a. In the stronger field (Fig. 8b)
we see the fairly rapid annihilation of the wave propagating towards the negative electrode (here
E > Em) with again the acceleration and thickening of the wave propagating towards the positive
electrode.

In all the cases that we considered whereE > Em, the waves propagating towards the negative
electrode were annihilated when the electric field was applied. This suggests that the saddle-node
bifurcation atEm is a strong cut-off value for wave propagation. We next examined the alternative
mechanism by which single pulses were terminated at their ‘non-existence’ curve (see Fig. 5b,c).
We illustrate this case in Fig. 8c with a grey-level plot ofw for E = 10·0 and f = 2·32. For this
case we switched the electric field on att = 0 and only a wave propagating towards the positive
electrode forms in this strong field. For this value off the solution terminates atE = −6·0014
so there is no single pulse that will travel towards the positive electrode. What we do find is the
development of a wave train propagating towards the positive electrode. The starting point (local
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Fig. 8 Grey-level plots ofw, obtained from numerical integrations of the initial-value problem (12), (13),
for (a) E = 0·9, f = 2·35, (b)E = 2·0, f = 2·35, electric field switched on att = 6·0.

(c) E = 10·0, f = 2·32, electric field switched on att = 0. The values of the other parameters are
q = 0·002, ε = 0·05, D = 1·0. The dark colours correspond to higher concentrations

pacemaker) for these waves moves towards the negative electrode as further waves form in the wave
train. A similar situation arises in the case without electric fields when the single pulse solution has
terminated at an RH curve (37,39).

A feature that is observed experimentally is wave reversal (2), whereby the direction of
propagation of the wave is changed when the polarity of the electric field is reversed. We can



ELECTRIC FIELD EFFECTS ON TRAVELLING WAVES 487

Fig. 9 Wavereversal forE = 40·0, with a plot of the position of the wavexw againstt . The polarity of the
field was switched att = 8·06. The values of the other parameters are

f = 2·35, q = 0·002, ε = 0·05, D = 1·0

find this behaviour in our model provided the electric field strengths are relatively high. In this case
we start with a high positive field switched on att = 0. In this field only the wave that propagates
towards the positive electrode forms. If we then reverse the polarity of the field after this wave
has fully developed, its direction of propagation is changed, though it still propagates towards the
positive electrode. This is illustrated in Fig. 9 forE = 40·0 and f = 2·35, q = 0·002, ε =
0·05, D = 1·0 with a plot of the position of the wavexw, monitored by the maximum value ofu,
againstt , with the polarity of the field being changed att = 8·06. Reversal occurs by the wave
first rapidly slowing down and then stopping when the polarity is changed. Theu profile starts by
reducing in size as the ‘tail’ of thew profile moves through the wave, with a sharp front appearing
towards the new positive electrode. As this profile is being established theu profile starts to grow,
reaches its maximum value and then the wave starts propagating in the reversed direction, having
the same form and speed as before field reversal.

The numerical integrations show that a high value forE is required for this to happen. For smaller
values ofE, though still aboveEm so that only waves propagating towards the positive electrode
form, the wave that does form is annihilated when the polarity is reversed. For the above parameter
values we found wave reversal atE = 30·0 and annihilation withE = 25·0. The numerical
simulations suggest that a necessary condition to see wave reversal is a long recovery region foru
andw compared to the excitation region. Thus high field strengths are required (see Fig. 4). This
is also borne out when we perform numerical integrations withD = 2·0. In this case the recovery
region is, for the same field strength, longer than forD = 1·0. In this case we find wave reversal at
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Fig. 10 A grey-level plot ofw obtained from numerical integrations of the initial-value problem (12), (13) for
E = 0·9, D = 0·3, f = 2·25, q = 0·002, ε = 0·05, electric field switched on att = 0, to illustrate the

formation of two wave trains. The dark colours correspond to higher concentrations

smaller values ofE, with the change from reversal to annihilation occurring betweenE = 18·0 and
E = 17·5.

For D = 0·3 we noted that there were values off at which waves form only in positive fields
(see Fig. 7a). So there are field strengths for which single pulses cannot form in either a positive or
a negative field. In this case two wave trains form, one propagating towards the negative electrode
and one propagating towards the positive electrode. We illustrate this behaviour in Fig. 10 with a
grey-level plot ofw for f = 2·25 andE = 0·9 (with q = 0·002, ε = 0·05) and with the field
switched on att = 0. The figure shows the formation of the two wave trains. The wavelength of the
wavepropagating in the positive direction is greater than that propagating in the negative direction.
To accommodate the formation of both wave trains requires the initiation site to move towards the
positive electrode as the waves form, as can be seen in the figure.

4. Discussion

We have considered the effect of applying electric fields to waves propagating in the BZ system,
which we have described using a two-variable version of the Oregonator model. In this, Br− is
taken to be varying quasi-statically with the two active species HBrO2 andM3+

ox (ferriin), the electric
field being taken to act only onM3+

ox . We have examined the travelling wave equations (18), (19)
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for this model in detail, both numerically and by an asymptotic analysis for large negative fields,
determining the conditions under which a single pulse wave could exist. We found that there were
two ways in which these solutions could be terminated. One was at a saddle-node bifurcation, seen
in plots of the wave speedc against the field strengthE (Figs 3a, 5a, 7a). This terminating value
of E could be positive or negative depending on the values of the other parameters. Numerical
integrations of the corresponding initial-value problem showed that waves propagating towards the
negative electrode were annihilated when field strengths greater than this were applied. The other
mechanism by which single pulses ceased to exist was through a change in sign of the eigenvalues
that determine the approach of the solution to the conditions at the rear of the wave. Field strengths
at which this occurred were determined by applying the Routh–Hurwitz criteria to equation (21) for
these eigenvalues. For field strengths less than this, wave trains were seen in the integrations of the
initial-value problem.

Wecan say a little more about these wave trains in the large|E| limit. They arise in the asymptotic
theory whenα > 0, that is, whenus > u1, whereu1 is the smaller positive zero of the denominator
in equation (31). In this case a singularity develops in the solution, atY = −Y0 say, in region V,
similar to that in region II. This can be removed via regions similar to regions III and IV in the
theory for a single pulse. This then returns us to region I, the equation for which now has to be
modified to

u′′ + c0u′ + (u − u1)
2

ε(u + q)

(
f w1q

u2
1

− u

)
= 0, where w1 = u1(1 − u1)(u1 + q)

f (u1 − q)
(44)

subject to the matching conditions

u ∼ u1 + εc0(u1 + q)

(1 − u1)y
+ · · · as y → ∞, u → f w1q

u2
1

= (1 − u1)(u1 + q)q

u1(u1 − q)
as y → −∞

(45)

to complete the periodic nature of the solution in this case. We note that this problem is independent

of the parameterf depending only on the parameterq, that
(1 − u1)(u1 + q)q

u1(u1 − q)

 1 for q small and

that the wavelength of the wave train is given to a first approximation by(y0+Y0)|E|. The parameter
ε can be scaled out of the problem as before by writingỹ = ε−1/2y, c0 = ε−1/2c̃0. A graph ofc̃0
againstq obtained from the numerical integration of equations (44), (45) is given in Fig. 11. The
figure shows that̃c0 is relatively insensitive to changes inq and decreases monotonically asq is
increased. The values ofc0 obtained for these wave trains are slightly higher than the wave speeds
for the single pulses at the parameter values whereα = 0. For example, forε = 0·05, q = 0·002,
α = 0 at f = 2·3943. At this valuec0 = 7·201 for the wave train compared toc0 = 7·033 for the
single pulse.

The effect of applying an electric field was to decelerate or annihilate waves propagating towards
the negative electrode and to accelerate those propagating towards the positive electrode. The speeds
of these latter waves were bounded as the field strength was increased, as was clearly brought out
in the asymptotic solution for large|E|. This gave a maximum propagation speed in an applied
electric field (for given values of the other parameters). This behaviour appears counterintuitive at
first sight, and is opposite to what is seen in autocatalytic systems (28 to 32), as the ionic species
in our model has a positive charge. However, it is the behaviour that is observed experimentally,
see (2) for example. Also, the effect of the electric field is to steepen theM3+

ox profiles in waves
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Fig. 11 A plot of the wave speed̃c0 againstq of the wave trains in the large|E| limit, obtained from
equations (44), (45),c0 = ε−1/2c̃0

propagating towards the negative electrode and to lengthen them when propagating towards the
positive electrode (Fig. 4). This is also in agreement with experimental observations (2).

Two other features that were observed experimentally are wave reversal and wave splitting (2 to
5). We were able to get wave reversal in our model when the polarity of the field was changed,
though only at relatively high field strengths. These electric field strengths are very much higher
than are needed for annihilation and are probably unrealistic experimentally. We could reduce the
field strength needed for reversal by increasing the value of the ratio of the diffusion coeffientsD.
Again this is not realistic experimentally asD 
 0·3 from values quoted in (4). However, a critical
difference between wave reversal seen experimentally and in our model is that, in the experiments,
it is waves propagating towards the negative electrode that change direction when the polarity is
reversed (2). In our model, it is the opposite case, it is waves propagating towards the positive
electrode that change direction. We were unable to find any wave splitting in our model. We did
see wave trains (Figs 8c, 10) but these propagated in the same direction as the initial wave, whereas
in wave splitting (2,3,5) the secondary waves propagate in a direction opposite to that of the initial
wave.

A critical feature of our model is the reduction from three to two variables via (11). This is a
standard approximation that is frequently used in modelling BZ systems and we briefly examine the
consequences of following this approach. We concentrate only on the case whenE = 0 and, taking
the same values (f = 2·35, ε = 0·05, q = 0·002, DW = 1·0) for both models, we computed
the wave profiles from the corresponding initial-value problems for the two-variable (reduced) and
three-variable versions of the model; for the three-variable case we tookε′ = 0·001, DV = 1·0.
If we compare theu andw profiles for the two models, we find that they have comparable initial
slopes at the front of the wave. However, both profiles achieve somewhat higher maxima in the
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Fig. 12 Plots ofv, the dimensionless concentration of Br−, obtained from the two-variable model (12), (13)
(full line) and the three-variable model (6) to (8) (broken line) forE = 0, f = 2·35 and

ε = 0·05, ε′ = 0·001, q = 0·002, DV = DW = 1·0

two-variable version compared to those in the three-variable case, being about 12 per cent higher.
The spread of the waves is comparable in both models. Perhaps the best illustration of the difference
between the two models is provided by thev profiles (a dimensionless version of the concentration
of Br−). This is computed directly in the three-variable model and from (11) in the two-variable
case. These profiles are shown in Fig. 12. Both profiles have a similar shape, with a fall to small
values in the concentration at the front of the wave, achieving a relatively high maximum value
before falling to the steady statevs = f us/(us + q) at the rear of the wave. However, there are
significant differences between the two profiles, the extent of the region of small concentrations at
the front of the wave is greater and a considerably higher maximum value is achieved in the two-
variable model, about 70 per cent higher, with a correspondingly sharper peak in this profile. The
approach to conditions at the rear of the wave is monotone in the two-variable model whereas, in
the three-variable model, there are small oscillations in the concentrations at the rear of the wave.
Finally, perhaps the most significant difference between the two cases is in the wave speeds. This
is somewhat higher,c 
 6·1, for the two-variable model compared toc 
 4·8 in the three-variable
case.

The two-variable Oregonator model predicts many of the features seen experimentally when
electric fields are applied to BZ systems, giving some qualitative agreement with observations. Thus
it is a useful guide for predicting and understanding many of the underlying mechanisms. However,
the above considerations, admittedly for only one set of parameter values, suggest that using the
quasi-static approximation (11) for the concentration of Br− is not a particularly viable assumption
if more quantitative agreement is required or to obtain some of the fine detail, for example, the wave
reversal seen experimentally or wave splitting. These latter features are much more dependent on
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the detailed movement of the ionic species, Br− and M3+
ox , in the applied electric fields (2, 3) and

could be expected to require the full three-variable version to model them. The strong inhibitory
nature of Br− on the BZ reaction is well established; see (3) for example. It is consumed within the
excitory part of the reaction and very small concentrations of this species have to be achieved before
the reaction can proceed further (40). Thus the detailed migration of Br− within the electric field,
which is described only loosely by the two-variable model, can have a strong controlling influence
on the nature of wave propagation.

From equations (6) to (8) it might be thought that the ratioε′/ε = 2k4/k2 would be a better
measure of the validity of the quasi-static approximation (11) rather than justε′. Our results have
ε′/ε = 0·02 and the differences we found between the two cases are perhaps greater than might be
expected with this ratio. One point to mention in favour of using the two-variable model is that the
time step needed to obtain our results for the three-variable model was�t = 0·001, making any
numerical search of the three-variable model a much lengthier proposition.
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